几类非线性系统的自适应Backstepping神经网络控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非线性控制理论一直是近二十年来自动化控制领域研究的热点课题之一,尤其是将Backstepping设计方法和神经网络逼近理论有机结合的自适应Backstepping神经网络控制方法更是受到了众多研究者的广泛关注,也已经取得了很大进展,但仍然有很多问题有待于进一步研究和探讨.本论文旨在研究自适应Backstepping神经网络控制方法在随机非线性和离散时间非线性系统领域中的推广,结合随机微分方程稳定性理论、时滞泛函微分方程稳定性理论以及关联大系统的分散控制理论等,对几类随机非线性系统和离散时间非线性系统的输出反馈控制和跟踪控制问题进行了研究,其主要成果可概括如下:
     1.利用圆盘判据,在随机非线性系统中引入一种新的非线性观测器以估计系统的不可测状态,对具有不可测状态的严格反馈随机非线性系统设计输出反馈控制器.这种非线性观测器的主要优点在于不但可以去掉一般输出反馈设计中对系统状态依赖的非线性函数的Lipschitz限制条件,而且可以避免传统线性观测器所带来的高增益问题,论文的主要工作都是基于这种方法展开的.
     2.结合自适应Backstepping神经网络控制方法和非线性观测器设计技术,解决了一类具有不可测状态的不确定随机非线性严格反馈系统的输出反馈镇定问题.通过构造一个状态四次、参数二次的Lyapunov函数,证明了闭环系统依概率稳定,并且这里仅采用一个神经网络补偿所有的输出依赖的未知非线性上界函数,简化了现有的一些自适应Backstepping神经网络控制设计方法.
     3.将自适应Backstepping神经网络控制方法推广到随机非线性时滞系统.首先,研究一类具有时变时滞的不确定随机非线性严格反馈系统的输出反馈镇定问题,基于圆盘判据和自适应Backstepping神经网络控制方法,引入非线性观测器并最终整合系统所有的输出依赖的未知上界函数而仅采用一个神经网络加以补偿,从而去掉了要求输出依赖的非线性上界函数已知的限制.然后,将这种思想进一步延伸到一类同时具有离散和分布时变时滞的不确定随机非线性严格反馈系统的自适应输出反馈镇定问题.
     4.将自适应Backstepping神经网络控制方法延伸到随机非线性关联大系统.首先,采用分散的非线性观测器估计不可测的系统状态,并结合Backstepping技术,对每一个子系统引入一个神经网络补偿依赖于该子系统输出所有未知上界函数,解决了随机非线性关联大系统的分散镇定问题.其次,通过构造状态四次、参数二次的Lyapunov-Krasovskii泛函,并结合Young不等式放大技巧将耦合项的作用归结到各个子系统中,克服了Ito?项、时滞项以及各子系统间耦合作用给控制器设计带来的困难,解决了随机非线性时滞关联大系统的自适应输出反馈分散镇定问题.
     5.研究了一类未知时变非线性离散时间系统的自适应跟踪控制问题.结合神经网络逼近技术和傅里叶级数展开的方法,将其转化为一类相对简单的具有未知常值参数的线性参数化严格反馈系统,进而利用已有的非线性离散时间Backstepping设计方法对新的系统设计自适应控制器,可保证自适应闭环系统的所有信号对任意有界初始条件、参考轨迹和外部干扰是有界的,并可以获得一个比较小的平均跟踪误差,且采用的设计方法可以避免传统非线性离散时间Backstepping设计方法中的过参数化问题.
Nonlinear control theory has always been one of the focuses in automatic control com-munity during the last two decades. Especially the adaptive backstepping neural networkcontrol theory, encompounded by backstepping technique and neural network approxima-tion theory, has attracted much attention of many researchers and some important resultshave been obtained. However, there still exist some open issues need to be further inves-tigated. This dissertation is devoted to study the extension of the adaptive backsteppingneural network control scheme to the stochastic nonlinear and discrete-time nonlinear con-trol areas. Some important control theories, such as stability theory of stochastic di?er-ential equations and time-delay functional di?erential equations, as well as decentralizedcontrol theory of interconnected large-scale systems are combined with the adaptive back-stepping neural network control scheme to address the problems of output-feedback controland tracking control for several classes of stochastic nonlinear systems and discrete-timenonlinear systems. Details are as follows:
     1. Via the circle criterion, a new nonlinear observer is introduced to the stochasticnonlinear systems to estimate the unmeasured states, thus the problem of output-feedbackcontrol can be solved for the stochastic nonlinear strict-feedback system with unmeasuredstates. The main merit of this nonlinear observer lies in that it not only can eliminatethe Lipschitz restriction on the state-dependent nonlinearities of the traditional output-feedback control design, but also can solve the high-gain problem of the linear observer.Most results of the dissertation are based on this technique.
     2. An output-feedback stabilization control scheme is designed for a class of uncertainstochastic nonlinear strict-feedback systems with unmeasured states, where the adaptivebackstepping neural network control method is combined with the technique of nonlinearobserver design. By constructing a state-quartic and parameter-quadratic Lyapunov func-tion, the closed-loop system can be proved to be stable in probability. Moreover, here onlya neural network is employed to compensate for all unknown nonlinear upper boundingfunctions depending on the system output, which simpli?es the existing adaptive neuralnetwork control schemes.
     3. The adaptive backstepping neural network control scheme is extended to thestochastic nonlinear time-delay systems. Firstly, based on the circle criterion and the adap-tive backstepping neural network control method, a nonlinear observer is introduced andall the unknown upper bounding function depending on the system output is integratedto be compensated only by a neural network, such that the restriction of the prelimi-nary knowledge of the output-dependent nonlinear upper bounding functions is removed.Then,this idea is further extended to the problem of output-feedback stabilization for a class of uncertain stochastic nonlinear strict-feedback systems with discrete and distributeddelays.
     4. The adaptive backstepping neural network control scheme is extended to thestochastic nonlinear interconnected systems. Firstly, using decentralized nonlinear ob-server to estimate the unmeasured states and combining with the backstepping technique,for each subsystem only a neural network is employed to compensate for all unknown up-per bounding functions which depend on the respective subsystem outputs, and then theproblem of decentralized stabilization is solved for a class of large-scale stochastic nonlinearstrict-feedback systems. Secondly, by constructing a state-quartic and parameter-quadraticLyapunov-Krasovskii functional and combining with the technique of Young’s inequality,the controller designing di?culty of the It?o terms, delay terms and the coupling terms ofall subsystems is removed, so that the problem of adaptive output-feedback stabilization isdealt with for the interconnected stochastic nonlinear delay system.
     5. The adaptive tracking control problems are considered for a class of discrete-timenonlinear systems with unknown periodically time-varying parameters. By combining withthe neural network approximation technique and Fourier series expansion (FSE), the sys-tems are transformed into a class of simpler linear parametric strict-feedback systems withunknown constant parameters. Then, via the existing discrete-time nonlinear backstep-ping design technique, the adaptive controller can be designed for the new systems, whichcan ensure all the signals of the closed-loop systems are bounded for all bounded initialconditions, reference signals and external disturbances. In addition, a small-in-the-meantracking error can be achieved.
引文
[1] Khalil HK. Nonlinear systems. Third Edition, London: Prentice-hall, 2002.
    [2]郑大钟.线性系统理论.北京:清华大学出版社, 1990.
    [3] Nam K, Arapostations A. A model-reference adaptive control scheme for pure-feedback nonlinear sytems. IEEE Transactions on Automatic Control. 1988, 33(3):803-811.
    [4] Taylor DG, Kokotovic PV, Marino R, Kanellakopoulos I. Adaptive regulation of non-linear systems with unmodeled dynamics. IEEE Transactions on Automatic Control.1989, 34(4): 405-412.
    [5] Sastry SS, Isidori A. Adaptive control of linearization systems. IEEE Transactions onAutomatic Control. 1989, 34(4): 1123-1131.
    [6] Kanellakopoulos I, Kokotovic PV, Marino R. Robustness of adaptive nonlinear controlunder an extended matching condition. Proceedings of IFAC Symposium on NonlinearControl Systems and Design. 1989, Capri, Italy, 192-197.
    [7] Teel AR, Kadiyala RR, Kokotovic PV, Sastry SS. Indirect techniques for adaptiveinput-output linearizationn of nonlinear systems. International Journal of Control.1991, 53(1): 193-222.
    [8] Pomet JB, Praly L. Adaptive nonlinear regulation: Estimation from the Lyapunovequation. IEEE Transactions on Automatic Control. 1992, 37(6): 729-740.
    [9] Kanellakopoulos I, Kokotovic PV, Morse AS. Systematic design of adaptive controllerfor feedback linearizable systems. IEEE Transactions on Automatic Control. 1991,36(11): 1241-1253.
    [10] Seto D, Annaswamy AM, Baillieul J. Adaptive control of nonlinear systems with atriangular structure. IEEE Transactions on Automatic Control. 1994, 39(7): 1411-1428.
    [11] Krsti′c M, Kanellakopoulos I Kokotovi′c PV. Nonlinear and adaptive control design.New York: Wiley, 1995.
    [12] Polycarpou MM, Ioannou PA. A robust adaptive nonlinear control design. Automat-ica. 1996, 32(3): 423-427.
    [13] Yao B, Tomizuka M. Adaptive robust control of SISO nonlinear systems in a semi-strict feedback form. Automatica. 1997, 33(5): 893-900.
    [14] Marino P, Tomei P. Adaptive output feedback tracking with almost disturbance de-coupling for a class nonlinear systems. Automatica. 2000, 36(12): 1871-1877.
    [15] Jiang ZP. Combined backstepping and small-gain approach to adaptive output feed-back control. Automatica. 1999, 35(6): 1131-1139.
    [16] Ge SS, Lee TH, Li GY, Zhang J. Adaptive NN control for a class of discrete-timenon-linear systems. International Journal of Control. 2003, 76(4): 334-354.
    [17] Yeh PC, Kokotovic PV. Adaptive control of a class of nonlinear discrete-time systems.International Journal of Control. 1995, 62(2): 303-324.
    [18] Zhang Y, Wen CY, Soh YC. Robust adaptive control of uncertain discrete-time sys-tems. Automatica. 1999, 35(2): 321-329.
    [19] Zhang Y, Wen CY, Soh YC. Discrete-time robust backstepping adaptive controlfor nonlinear time-varying systems. IEEE Transactions on Automatic Control. 2000,45(9): 1749-1755.
    [20] Zhang Y, Wen CY, Soh YC. Robust adaptive control of nonlinear discrete-time sys-tems by backstepping without overparamerterization. Automatica. 2001, 37(4): 551-558.
    [21] Ge SS, Yang CG, Lee TH. Adaptive robust control of a class of nonlinear strict-feedback discrete-time systems with unknown control directions. Systems & ControlLetters. 2008, 57(11): 888-895.
    [22] Yang CG, Ge SS, Lee TH. Output feedback adaptive control of a class of nonlineardiscrete-time systems with unknown control directions. Automatica. 2009, 45(1): 270-276.
    [23]朱丽雅.非线性不确定系统的自适应神经网络控制.南京信息工程大学硕士学位论文.南京. 2008.
    [24] Lewis FL, Jagannathan S, Yeildirek A. Neural network control of robot manipulatorsand nonlinear systems. London: Taylor & Francis. 1999.
    [25] Ge SS, Wang C. Adaptive NN control of uncertain nonlinear pure-feedback systems.Automatica. 2002, 38(4): 671-682.
    [26] Narendra KS, Parthasarathy K. Identi?cation and control of dynamic systems usingneural networks. IEEE Transactions on Neural Networks. 1990, 1(1): 4-27.
    [27] Polycarpou MM, Ioannou PA. Modeling, Identi?cation and stable adaptive control ofcontinuous-time nonlinear dynamical systems using neural networks. Proceedings ofAmerican Control Conference. Boston, MA, 1992, 36-40.
    [28] Sanner RM, Slotine JE. Gaussian networks for direct adaptive control. IEEE Trans-actions on Neural Networks. 1992, 3(6): 837-863.
    [29] Yesidirek A, Lewis FL. Feedback linearization using neural networks. Automatica.1995, 31(11): 1659-1664.
    [30] Polycarpou MM. Stable adaptive neoral scheme for nonlinear systems. IEEE Trans-actions on Neural Networks. 1996, 7(3): 447-451.
    [31] Polycarpou MM, Mears MJ. Stable adaptive tracking of uncertain systems using non-linearly parametrized on-line approximators. International Journal of Control. 1998,70(3): 363-384.
    [32] Zhang T, Ge SS, Huang, CC. Adaptive neural network control for strict-feedbacknonlinear systems using backstepping design. Automatica. 2000, 36(10): 1835-1846.
    [33] Ge SS, Wang C. Direct adaptive NN control for a class of nonlinear systems. IEEETransactions on Neural Networks. 2002, 13(1): 214-221.
    [34] Kwan C, Lewis FL. Robust backstepping control of nonlinear systems using neuralnetworks. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems andHumans. 2000, 30(6): 733-766.
    [35] Li YH, et.al, Robust and adaptive backstepping control for nonlinear systems usingRBF neural networks. IEEE Transactions on Neural Networks. 2004, 15(3): 693-701.
    [36] Huang JT. Hybrid-based adaptive NN backstepping control of strict-feedback systems.Automatica. 2009, 45(6): 1497-1503.
    [37] Ge SS, Hong F, Li TH. Adaptive neural network control of nonlinear systems withunknown time delays. IEEE Transactions on Automatic Control. 2003, 48(11): 2004-2010.
    [38] Ge SS, Hong F, Li TH. Adaptive neural control of nonlinear time-delay systemswith unknown virtual control coe?cients. IEEE Transactions on Systems, Man, andCybernetics-Part B: Cybernetics. 2004, 34(1): 499-516.
    [39] Yoo SJ, Park JB. Neural-network-based decentralized adaptive control for a class oflarge-scale nonlinear systems with unknown time-varying delays. IEEE Transactionson Systems, Man, and Cybernetics-Part B: Cybernetics. 2009, 39(5): 1316-1323.
    [40] Wang D, Huang J. Adaptive neural network control for a class of uncertain nonlinearsystems in pur-feedback form. Automatica. 2002, 38(8): 1365-1372.
    [41] Wang C, Hill DJ, Ge SS, Chen GR. An ISS-modular approach for adaptive neuralcontrol of pure-feedback systems. Automatica. 2006, 42(5): 723-731.
    [42] Zhang TP, Ge SS. Adaptive dynamic surface control of nonlinear systems with un-known dead zone in pure feedback form. Automatica. 2008, 44(7): 1895-1903.
    [43] Du HB, Shao HH, Yao PJ. Adaptive neural network control for a class of low-triangular-structured nonlinear systems. IEEE Transactions on Neural Networks.2006, 17(2): 509-514.
    [44] Ren BB, Ge SS, etc. Adaptive neural control for a class of uncertain nonlinear systemsin pure-feedback form with hysteresis input. IEEE Transactions on Systems, Man, andCybernetics- Part B: Cybernetics. 2009, 39(2): 431-443.
    [45] Choi JY, Farrell JA. Adaptive observer backstepping control using neural networks.IEEE Transactions on Neural Networks. 2001, 12(5): 1103-1112.
    [46] Stoev JL, Choi JY, Farrell JA. Adaptive control for output feedback nonlinear systemsin the presence of modeling errors. Automatica. 2002, 38(10): 1761-1767.
    [47] Hua CC, Guan XP, Shi P. Robust output feedback tracking control for time-delaynonlinear systems using neural networks. IEEE Transactions on Neural Networks.2007, 18(2): 495-505.
    [48] Hsu CF, Lin CM, Lee TT. Wavelet adaptive backstepping control for a class of non-linear systems. IEEE Transactions on Neural Networks. 2006, 17(5): 1175-1183.
    [49] Ho DWC, Li JM, Niu YG. Adaptive neural control for a class of nonlinear parameterictime delay systems. IEEE Transactions on Neural Networks. 2005, 16(3): 625-635.
    [50] Xu JX, Tan Y. Nonlinear adaptive wavelet control using constructive wavelet net-works, IEEE Trans. on Neural Networks. 2007, 18(1): 115-127.
    [51] Han TT, Ge SS, Lee TH. Adaptive neural control for a class of switched nonlinearsystems. Systems & Control Letters. 2009, 58(2): 109-118.
    [52] Huang SN, Tan KK, Lee TH. Neural network learning algorithm for a class of inter-connected nonlinear systems. Neurocomputing. 2009, 72(4-6): 1071-1077.
    [53] Ge SS,Li GY, Lee TH. Adaptive NN control for a class of strict-feedback discrete-timenonlinear systems. Automatica. 2003, 39(5): 807-819.
    [54] Ge SS,Li GY, Lee TH. Correction to“Adaptive NN control for a class of strict-feedback discrete-time nonlinear systems”. Automatica. 2008, 44(7): 1930-1931.
    [55] Ge SS, Zhang J, Lee TH. Adaptive neural network control for a class of MIMOnonlinear systems with dicturbances in discrete-time. IEEE Transactions on Systems,Man, and Cyberrnetics-Part B: Cybernetics. 2004, 34(4): 1630-1645.
    [56] Zhang J, Ge SS, Lee TH. Output feedback control of a class of discrete MIMO non-linear systems with triangular form inouts. IEEE Transactions on Neural Networks.2005, 16(6): 1491-1503.
    [57] Vance J, Jagannathan S. Discrete-time neural network output feedback control ofnonlinear discrete-time systems in non-strict form. Automatica. 2008, 44(4): 1020-1027.
    [58] Ge SS, Yang CG, Lee Th. Adaptive predictive control using neural network for a classof pure-feedback systems in discrete time. IEEE Transactions on Neural Networks.2008, 19(9): 1599-1614.
    [59] Yang CG, Ge SS, etc. Output feedback NN control for two classes of discrete-timesystems with unknown control directions in a uni?ed approach. IEEE Transactionson Neural Networks. 2008, 19(11): 1873-1886.
    [60] Kushner HJ. Stability of stochastic dynamical systems. Springer-Verlag, 1972.
    [61] Khasminskii RZ. Stochastic stability of di?erential equations. Rockville, maryland:S&N International publisher, 1980.
    [62] Mao XR. Stability of di?erential equations with respect to semimartingales. Longman,1991.
    [63] Florchinger P. Lyapunov-like techniques for stochastic stability. SIAM Journal of Con-trol and Optimization. 1995, 33(4): 1151-1169.
    [64]陈志福.随机非线性系统的鲁棒自适应控制.中国科学技术大学硕士学位论文.合肥.2003.
    [65] Deng H, Krsti′c M. Stochastic nonlinear stabilization-Part I: A backstepping design.Systems & Control Letters. 1997, 32(3): 143-150.
    [66] Deng H, Krsti′c M. Output-feedback stochastic nonlinear stabilization. IEEE Trans-actions on Automatic Control. 1999, 44(2): 328-333.
    [67] Deng H, Krsti′c M, Williams RJ. Stabilization of stochastic nonlinear systems drivenby noise of unknown covariance. IEEE Transactions on Automatic Control. 2001,46(8): 1237-1253.
    [68] Arslan G, Barsar T. Risk-sensitive adaptive trackers for strict-feedback systems withoutput measurements. IEEE Transactions on Automatic Control. 2002, 47(10): 1754-1758.
    [69] Florchinger P. Lyapunov-like techniques for stochastic stability. SIAM Journal onControl and Optimization. 1995, 33(4): 1151-1169.
    [70] Liu SJ, Jiang ZP, Zhang JF. Globally output-feedback stabilization for a class ofstochastic non-minmum-phase nonlinear systems. Automatica. 2008, 44(2): 1944-1957.
    [71] Liu SJ, Zhang JF. Output-feedback control of a class of stochastic nonlinear systemswith linearly bounded unmeasurable states. International Journal of Robust and Non-linear Control. 2008, 18: 665-687.
    [72] Liu YG, Pan ZG, Shi SJ. Output feedback control design for strict-feedback stochas-tic nonlinear systems under a risk-sensitive cost. IEEE Transactions on AutomaticControl. 2003, 48(3): 509-513.
    [73] Pan ZG. Canonical forms for stochastic nonlinear systems. Automatica. 2002, 38(7):1163-1170.
    [74] Pan ZG, Basar T. Backstepping controller design for nonlinear stochastic systemsunder a risk-sensitive cost criterion. SIAM Journal on Control and Optimization.1999, 37(3): 957-995.
    [75] Ji HB, Chen ZF, Xi HS. Adaptive stabilization for stochastic parametric-strict-feedback systems with Wiener noise of unknown covariance. International Journalof Systems Science. 2003, 34(2): 123-127.
    [76] Xie XJ, Tian J. Adaptive state-feedback stabilization of high-order stochastic systemswith nonlinear parameterization. Automatica. 2009, 45(1): 126-133.
    [77] Chen WS. Output-feedback adaptive stochastic nonlinear stabilization using neuralnetworks. Journal of Systems Engineering and Electronics. 2009, [in press].
    [78] Wu ZJ, Xie XJ, etc. Backstepping controller design for a class of stochastic nonlinearsystems with Markovian switching. Automatica. 2009, 45(4): 997-1004.
    [79] Kolmanovskii VB, Myshkis AD. Introduction to the theory and applications of func-tional di?erential equations. Dordrecht, The Netherlands: Kluwer Academic, 1999.
    [80] Gao WH, Deng FQ. Parameter-dependent robust stability for nonlinear distributeddelay stochastic systems with polytopic-type uncertainties. Proceedings of the 8thInternational Conference on Machine Learning and Cybernetics. Baoding, China, 12-15 July, 2009, 3684-3689.
    [81] Li L, Jia YM, Du JP, Yuan SY. Dynamic oupput feedback control for a class ofstochastic time-delay systems. American Control Conference. Hyatt Regency River-front,St. Louis, MO, USA, June 10-12, 2009, 5121-5125.
    [82] Xu SY, Chu YM, Lu JW, Zou Y. Exponential dynamic output feedback controllerdesign for stochastic neutral systems with distributed delays. IEEE Transactions onSystems, Man and Cybernetics-Part A: Syatems and Humans. 2006, 36(3): 540-548.
    [83] Wang YC, Zhang HG, Yang J, Yang DS, Lun SX. Delay-dependent ??∞control forstochastic systems with distributed time delay. Chinese Control and Decision Confer-ence. 2008, 1164-1168.
    [84] Tsai NC, Ray A. Stochastic optimal control under randomly varying distributed de-lays. Proceedings of the 35th Conference on Decision and Control. Kobe, Japan,December 1996, 650-655.
    [85] Verriest EI. Stability and stabilization of stochastic systems with distributed delays.Proceedings of the 34th Conference on Decision and Control. New Orleans, LA, De-cember 1995, 2205-2210.
    [86] Verriest EI. Stochastic stability of a class of distributed delay systems. Proceedingsof the 44th IEEE Conference on Dicision and Conrol. Seville, Spain, December 12-15,2005, 5048-5053.
    [87] Florchinger P. Stability of some linear stochastic systems with delays. Proceeedingsof the 40th IEEE Conference on Decision and Control. Orlando, Florida USA, 2001,4744-4745.
    [88] Li HY, Chen B, Zhou Q, Lin C. Delay-dependent robust stability for stochastic time-delay systems with polytopic uncertainties. International Journal of Robust and Non-linear Control. 2008, 18: 1482-1492.
    [89] Yue D, Han QL. Delay-dependent exponential stability of stochastic systems withtime-varying delay, nonlinearity, and Markovian switching. IEEE Transactions onAutomatic Control. 2005, 50(2): 217-222.
    [90] Chen WH, Guan ZH, Lu XM. Delay-dependent exponential stability of uncertainstochastic systems with multiple delays: an LMI approach. Systems & Control Letters.2005, 54(6) :547-555.
    [91] Mao XR, Koroleva N, Rodkina A. Robust stability of uncertain stochastic di?erentialdelay equations. Systems & Control Letters. 1998, 35(3): 325-336.
    [92] Fu YS, Tian ZH, Shi SJ. State feedback stabilization for a class of stochastic time-delaynonlinear systems. IEEE Transactions on Automatic Control. 2003, 48(2): 282-286.
    [93] Hua C, Guang X.“Comments on‘State feedback stabilization for a class of stochas-tic time-delay nonlinear systems’”. IEEE Transactions on Automatic Control. 2004,49(7): 1216-1216.
    [94] Liu SJ, Ge SS, Zhang JF. Adaptive output-feedback control for a class of uncertainstochastic non-linear systems with time delays. International Journal of Control. 2008,81(8): 1210-1220.
    [95] Fu YS, Tian ZH, Shi SJ. Output feedback stabilization for a class of stochastic time-delay nonlinear systems. IEEE Transactions on Automatic Control. 2005, 50(6): 847-851.
    [96] Chen WH, Zheng WX. Delay-dependent robust stabilization for uncertain neutralsystems with distributed delays. Automatica. 2007, 43(1): 95-104.
    [97] Chen P, Tian YC, Yue D, Guo J. Delay-dependent robust stability for neutral sys-tems with discrete and distributed delays. Proceedings of the 7th World Congress onIntelligent Control and Automation. Chongqing, China, June 25-27, 2008, 916-921.
    [98] Zhou ZB, Wang JX, Wu LG. Observer-based sliding mode control for a class of non-linear systems with distributed delays. Proceedings of the 6th World Congress onIntelligent Control and Automation. Dalian, China, June 21-23, 2006, 2051-2055.
    [99] Wang JL, Wang JM, Yuan W, Shu ZX. Non-fragile delay-dependent guaranteed costcontrol for uncertain systems with both discrte and distributed delays. Proceedingsof the 46th IEEE Conference on Decision and Control. New Orleans, LA, USA, Dec.12-14, 2007, 5044-5049.
    [100] Gao HJ, Shi P, Wang JL. Parameter-dependent robust stability of uncertain time-delay systems. Journal of Computational and Applied Mathematics. 2007, 206(1):366-373.
    [101] He Y, She JH, Liu GP. Parameter-dependent Lyapunov functional for stability oftime-delay systems with polytopic-type uncertainties. IEEE Transactions on Auto-matic Control. 2004. 49(5): 828-832.
    [102] Xie SL, Xie LH. Decentrlized stabilization of a class of interconnected stochasticnonlinear systems. IEEE Transactions on Automatic Control. 2000, 45(1): 132-137.
    [103] Arslan G, Basar T. Decentralized risk-sensitive controller design for strict-feedbacksystems. Systems & Control Letters. 2003, 50(5): 383-393.
    [104] Liu SJ, Zhang JF, Jiang.ZP. Dencentalized adaptive output-feedback stabilization forlarge-scale stochastic nonlinear systems, Automatica. 2007, 43(2): 238-251.
    [105] Peng YJ, Deng FQ. Decentralized stabilization of interconnected stochastic nonlinearsystems under a risk-sensitive cost criterion. Proceedings of the 6th InternationalConference on Intelligent Systems Design and Applications. 2006.
    [106] Wu S, Deng FQ. Decentralized state feedback adaptive tracking for a class of stochas-tic nonlinear large-scale systems. Proceedings of the 7th International Conference onMachine Learning and Cybernetics. Kunming, China, 12-15 July, 2008, 2287-2292.
    [107]武塞,邓飞其.一种新型的非线性随机大系统自适应镇定方法.系统工程与电子技术.2007, 29(4): 593-597.
    [108] Zhang XM, Zheng YF. Noninear ??∞?itering for interconnected Markovian jumpsystems. Journal of Systems Engineering and Electronics. 2006, 17(1): 138-146.
    [109] Jain S, Khorrami F. Decentralized adaptive output feedback design for large-scalenonlinear systems. IEEE Transactions on Automatic Control. 1997, 42(5): 729-735 .
    [110] Wen CY, Soh YC. Decentralized adaptive control using intergrator backstepping.Automatica. 1997, 33(9): 1719-1724.
    [111] Liu XP, Huang GS. Decentralized robust stabilization for interconnected uncertainnonlinear systems with multiple inputs. Automatica. 2001, 37(9): 1435-1442.
    [112] Jiang ZP. Decentralized disturbance attenuating output-feedback trackers for large-scale nonlinear systems. Automatica. 2002, 38(8): 1407-1415.
    [113] Liu YS, Li XY. Decentralized robust adaptive control of nonlinear systems with un-modeled dynamics. IEEE Transactions on Automatic Control. 2002, 47(5): 848-856.
    [114] Ye XD, Huang J. Decentralized adaptive output regulation for a class of large-scalenonlinear system. IEEE Transactions on Automatic Control. 2003, 48(2): 276-281.
    [115] Krishnamurthy P, Khorrami F. Decentralized control and disturbance attenuationfor large-scale nonlinear systems in generalized output-feedback canonical form. Au-tomatica. 2003, 39(11): 1923-1933.
    [116] Wen CY, Zhou J, Wang W. Decentralized adaptive backstepping stabilization ofinterconnected systems with dynamic input and output interactions. Automatica.2009, 45(1): 55-67.
    [117] Wen CY, Zhou J. Decentralized adaptive backstepping stabilization in the presenceof unknown backlash-like hysteresis. Automatica. 2008, 43(3): 426-440.
    [118] Zhou J, Wen CY. Decentralized backstepping adaptive output tracking of intercon-nected nonlinear systems. IEEE Transactions on Automatic Control. 2008, 53(10):2378-2384.
    [119] Karimi A, Feliachi A. Decentralized adaptive backstepping control of electric powersystems. Electric Power Systems Research. 2008, 78(3): 484-493.
    [120] Yoo SJ, Park JB, Choi YH. Decentralized adaptive stabilization of interconnectednonlinear systems with unknown non-symmetric dead-zone inputs. Automatica. 2009,45(2): 436-443.
    [121] Wu HS. Decentralized adaptive robust control for a class of large scale systems withuncertainties in the interconnections. International Journal of Control. 2003, 76(3):253-265.
    [122] Bakule L. Decentralized control: an overview. Annual Review in Control. 2008, 32(1):87-98.
    [123] Wu HS. Decentralized adaptive robust control for a class of large-scale systems in-cluding delayed state perturbations in the interconnections. IEEE Transactions onAutomatic Control. 2002, 47(10): 1745-1751.
    [124] Zhou J. Decentralized adaptive control for large-scale time-delay systems with dead-zone input. Automatica. 2008, 44(7). 1790-1799.
    [125] Guo T, Zhang JY. Adaptive fuzzy decentralized control for a class of uncertain large-scale time-delay nonlinear systems. Fifth International Conference on Fuzzy Systemsand Knowledge Discovery. 2008, 55-59.
    [126] Spooner JT, Passino KM. Decentralized adaptive control of nonlinear systems usingradial basis neural networks. IEEE Transactions on Automatic Control. 1999, 44(11):2050-2057.
    [127] Chen WS, Li JM. Decentralized output-feedback neural control for systems withunknown interconnections. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics. 2008, 38(1): 258-266.
    [128] Huang SN, Tan KK, Lee TH. Decentralized control of a class of large-scale nonlinearsystems using neural networks. Automatica. 2005, 41(9): 1645-1649.
    [129]张小美.随机系统的鲁棒控制及状态估计――线性矩阵不等式方法.华东师范大学博士学位论文.上海. 2006.
    [130] Ge SS, Huang CC, Lee TH, etc. Stable adaptive neural network control. Boston:Kluwer Academic Publishers. 2002.
    [131] Krsti′c M, Deng H. Stabilitization of nonlinear uncertain systems. London: Spring-Verlag, 1998.
    [132] Tang Y, Qiu RH, Miao QY, Xia M. Adaptive lag synchronization in unknown stochas-tic chaotic with discrete and distributed time-varying delays. Physics Letters A. 2008,372(24): 4425-4433.
    [133] Kokotovi′c PV. The joy of feedback: nonlinear and adaptive. IEEE Control SystemsMagazine. 1992, 12(3): 7-17.
    [134] Coron JM. On the stabilization of controllable and observable systems by an outputfeedback law. Mathematics of Control, Signals, and Systems. 1994, 7(3): 187-216.
    [135] Khalil HK, Esfandiari F. Semiglobal stabilization of a class of nonlinear systems usingoutput feedback. IEEE Transactions on Automatic Control. 1993, 38(9): 1412-1415.
    [136] Atassi AN, Khalil HK. Separation results for the stabilization of nonlinear systemsusing di?erent high-gain observer designs. Systems & Control Letters. 2000, 39(3):183-191.
    [137] Teel AR, Praly L. Tools for semiglobal stabilization by partial state feedback andoutput feedback. SIAM Journal on Control and Optimization. 1995, 33(5): 1443-1488.
    [138] Kou SR, Elliott DL, Tarn TJ. Exponential observers for nonlinear dynamic system.Information and Control. 1975, 29(2): 204-216.
    [139] Arcak M, Kokotovi′c P. Nonlinear observers: a circle criterion design and robustnessanalysis. Automatica. 2001, 37(12): 1923-1930.
    [140] Fan XZ, Arcak M. Observer design for systems with multivable monotone nonlinear-ities. Systems & Control Letters. 2003, 50(4): 319-330.
    [141] Arcak M. Certainty-equivalence output-feedback design with circle-criterion ob-servers. IEEE Transactions on Automatic Control. 2005, 50(6): 905-909.
    [142] Zhang Y, Liu YG, Ding YQ. A new nonlinear output tracking controller via output-feedback. Journal of Control Theory and Applications. 2006, 4(4): 372-378.
    [143]赵平,刘淑君.一类虚拟控制系数未知的随机非线性时滞大系统的适应镇定控制.自动化学报. 2008, 34(8): 912-920.
    [144]谢立,何星,熊刚等.随机非线性时滞大系统的输出反馈分散镇定.控制理论与应用.2003, 20(6): 825-830.
    [145]陈为胜.非线性系统智能Backstepping控制与分析.西安电子科技大学博士学位论文.西安. 2007.
    [146] Zhang XM, Daniel WCH, Lu GP. Robust stabilization and state estimate for uncer-tain stochastic discrete-delay large-scale system. Proceedings of the 8th InternationalConference on Control, Automation, Robotics and Vision. Kunming, China, Dec.2004: 42-47.
    [147]张小美,郑毓蕃.不确定离散时滞随机大系统的鲁棒非脆弱控制.华东师范大学学报(自然科学版). 2005, 5-6: 90-96.
    [148] Zhang Y, Chen WH, Soh YC. Improved robust backstepping adaptive control for non-linear discrete-time systems without overparameterization, Automatica, 2008, 44(3):864-867.
    [149] Xu JX. A new periodic adaptive control approach for time-varying parameters withknown periodicity, IEEE Transactions on Automatic Control. 2004, 49(4): 579-583.
    [150] Chi RH, et.al, Adaptive ILC for a class of discret-time systems with iteration-varyingtrajectory and random initial condition. Automatica. 2008, 44(8): 2207-2213.
    [151] Lu J, et.al, Backstepping control of discrete-time chaotic systems with applicationto the Henon system. IEEE transcations on Cirscuits and Systems-I: FundamentalTheory and Applications. 2001, 48(11): 1359-1363.
    [152] Jagannathan S. Neural network control of nonlinear discrete-time systems. Boca Ra-ton, Fl: CRC Press, 2006.
    [153] Alanis AY, Sanchez EN, Loukianov AG. Discrete-time adaptive backstepping nonlin-ear control via high-order neural-networks. IEEE Transactions on Neural Networks.2007, 18(4): 1185-1195.
    [154] Lan WY, Huang J. Neural-network-based approximate output regulation of discrete-time nonlinear systems. IEEE Transactions on Neural Networks. 2007, 18(4): 1196-1208.
    [155] Zhu QM, Guo LZ. Stable adaptive neurocontrol for nonlinear discrete-time systems.IEEE Transactions on Neural Networks. 2004, 15(3): 653-662.
    [156] Park J, Sandberg IW. University approximation using radial-basis-function networks.Neural Computation, 1991, 3(2): 246-257.
    [157] Liuzzo S, Marino R, Tomei P. Adaptive learning control of nonlinear systems byoutput error feedback. IEEE Transactions on Automatic Control, 2007, 52(7): 1232-1248.
    [158] ?ksendal B. Stochastic di?erential equations-an introduction with applications. NewYork: Springer-Verlag; 1995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700