新疆黄山铜镍硫化物矿床流体化学组成及其成矿意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
与镁铁-超镁铁质岩密切相关的铜镍硫化物矿床是铜、镍、铂族元素(PGE)资源的重要矿床类型。黄山铜镍硫化物矿床于中亚造山带的南部,黄山-镜儿泉成矿带。岩体岩相发育良好,主要包括橄榄岩、辉石岩、辉长岩和闪长岩。本文通过对最新两个深钻孔岩心,在岩石学、地球化学研究的基础上,选择新鲜的橄榄石及单斜辉石采用改进的分步加热质谱计法进行流体化学组成研究,得到了如下结论:
     1、黄山铜镍硫化物矿床镁铁-超镁铁质岩组成矿物的流体挥发份在分步加热过程中阶段性释出。橄榄石中的流体挥发份在200~500℃、500~1000℃和1000~1200℃三个温度段释出,单斜辉石在200~400℃、400~1000℃和1000~1200℃三个温度段释出。
     2、黄山铜镍硫化物矿床镁铁-超镁铁质岩组成矿物的流体挥发份以H_2和N_2+CO为主要成分,其次是SO_2、CO_2和H_2S,以及微量的O_2、CH_4和Ar等气体。
     3、黄山铜镍硫化物矿床镁铁-超镁铁质岩组成矿物在不同温度段释出的挥发份总量不同,中温段释出的挥发份的量最高,平均2474.57mm~3.STP/g;低、高温段相对较低,分别为133.04mm~3.STP/g和433.05mm~3.STP/g。H_2、N_2+CO、SO_2、CO_2和H_2S等主要组分在不同温度段的含量也不相同。
     4、根据岩浆矿物结晶特征、挥发份释出温度段及化学组成,黄山铜镍岩浆硫化物矿床组成矿物中的流体挥发份可分为:成矿岩浆流体挥发份、岩浆期后热液流体挥发份和后期改造作用流体挥发份。成矿岩浆流体挥发份以高温段释出的SO_2及N_2+CO为主要组分,其次是H_2、CO_2和H_2S;岩浆期后热液流体挥发份中温段释出的主要的组分是H_2,次要组分是N_2+CO,H_2S和CO_2以及低温阶段释出的以N_2+CO为主的后期作用流体挥发份。
     5、黄山铜镍硫化物矿床成矿岩浆流体挥发份早期表现出了原始地幔来源特征,随结晶作用的进行,有外来氧化性流体组分的混入;岩浆期后热液流体挥发份总量最高,以还原性流体挥发份为主,对主要成矿元素起到搬运、富集的作用;后期蚀变作用流体挥发份成分与大气组分相似,对矿床起了一定的改造作用。
Cu-Ni sulphide deposit related to mafic-ultramafic rocks is the main type of copper, nickel,platinum group elements(PGE) deposits.Huangshan Cu-Ni sulphide deposit, Xinjiang,west China is located in the southern part of Central Asian Orogenic Belt.The lithologies of the ore-bearing intrusion are well developed,and mainly include peridotite,, pyroxenite,gabbro and diorite.
     The fluid composition of fresh olivine and clinopyroxene separates from the two dvilling cores have been measured by the improved vacuum stepwise heating mass spectrometers on the basis of their petrological and seochemcal research.The results are as follows:
     (1) The volatiles of different minerals from the mafic-ultramafic intrusion from the Huangshan Cu-Ni sulphide deposit have been released by stages during stepwise heating, The volatiles in olivine separates are released at the temperature intervals of 200-500℃, 500-1000℃and 1000-1200℃,whereas volatiles in clinopyroxene separates are released at 200-400℃,400-1000℃and 1000-1200℃
     (2) The volatiles of the minerals are composed mainly of H_2 and N_2+CO,secondary by SO_2,CO_2 and H_2S,with the minor O_2,CH_4 and Ar etc.
     (3) Volatiles released at different temperature interval have different contents of volatiles in minerals Huangshan Cu-Ni sulphide deposit.Volatiles released at mid-temperature interval has the highest contents(av.2474.57mm~3.STP/g),and those at low and high temperature intervals are relatively lower(av.133.04mm~3.STP/g and 433.05mm~3.STP/g,respectively).The contents of major volatiles such as H_2,N_2+CO,SO_2, CO_2 and H_2S are vary with temperature intervals.
     (4) Based on crystallization characteristics of magmatic minerals and chemical compositions of the volatiles at different temperature intervals,the volatiles of the minerals in Huangshan Cu-Ni sulphide deposit can be divided into three parts: ore-forming magmatic volatiles,post-magmatic hydrothermal volatiles and secondary processes volatiles.Ore-forming magmatic volatiles represented by the volatiles released at high temperatures are composed mainly of SO_2 and N_2+CO,with minor H_2,CO_2 and H_2S.Post-magmatic hydrothermal volatiles represented by the volatiles released at middle temperatures consisted of N_2+CO,H_2S and CO_2,secondary processes volatiles represented by the volatiles released at low temperatures and are mainly composed N_2+CO.
     (5) Metallogenic volatiles are characterized by primitive mantle in an early stage of magmatism,and then mixed with external oxidized fluids during crystallization in Huangshan Cu-Ni sulphide deposit.The post-magmatic hydrothermal volatiles have highest content of volatile and are dominated by reduced volatiles,which play an important role in transporting and precipitating the major metallogenic elements,increase evidently,and show the opposite characteristics to volatiles at the early stage.The volatiles in the secondary alteration are dominated by N_2 ect.air-devived components which deformed and alfer existed deposit in some extent.
引文
Anderson T.CReilly S Y.Griffin W L The trapped fluid phase in upper mantle xenoliths from Victoria,Australia:implication for mantle meta~somatism[J].Contrib.Mineral.Petrol.,1984,88:72~85
    Arndt N T,Czamansks G K,Walker R J,Chauvel C,and Fedorenko V A.Geochemistry and origin of the intrusive hosts of the Noril'sk-Thlanakh Cu~Ni~PGE sulfide deposits[J].Economic Geology,2003,98:495~515.
    Barnes S J,and Lightfood P C.Formation of magmatic nickel sulfide ore deposits and processes affecting their copper and platinum group element contents[J].Economic Geology,2005,100th:179~213.
    Barnes S J,Couture J F,Sawyer E W,and Bouchaib C.Nickel-copper occurrences in the Belleterre-Angllers belt of the Pontiac subprovince and the use of Cu/Pd ratios in interpreting platinum-group element distributions[J].Economic Geology,1993,88:1402-1418.
    Beergman S C,Dubessy J.CO_2~CO fluid inclusions in a composite peridotite xenolith:implications for mantle oxygen fugacity[J].Contrib Mineral Petrol,1984,85 :1~13.
    Bel T D R,Rossman G R.Water in the Earth's mantle :the role of nominally anhydrous minerals[J].Science,1992,255:1297~1391.
    Brenan J M.Partitioning of fluorine and chlorine between ap2atite and aqueous fluids at high pressure and temperature :impli2cations for the fluorine and chlorine content of high P~T fluids[J].Earth Planet Sic Lett ,1993,107 :672~688.
    Burnley P C,Navrotsky A.Synthesis of high-pressurehydrous magnesium silicates observations and analysis[J ].A m Mineral ,1996,81:317~326.
    Campbell I H,Barnes S J.A model for the origin of the platinum-rich sulphide horizons in the Bushveld and Stillwater Complexes[J].J.Petrol.,1983,24:133~165.
    Chai G,Naldrett A J.SecGCharacteristics of Ni~Cu-PGE mineralization and genesis of the Jinchuan deposit,Northwest China Economic Geology,1992,87:1474~1495
    Chen S P,Wang D H,Qu W J,Chen Z H,Gao X L.Geological Features and ore formation of the Hulu Ci~Ni Sulfide deposit,eastern Tianshan,Xinjiang[J].Xinjiang Geology,2005,23(3):230~233.
    Deines P.The carbon isotope geochemistry of mantle xenoliths[J].Earth-Science Reviews,2002,58:247~278.
    Des Marais,D J.Carbon abundance measurements in oceanic basalts:the need for a consensus[J].Earth and Planetary Science Letters,1986,79:21~26.
    Dick H J B,Bullen T.Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas[J].Contributions to Mineralogy and Petrology,1984,86:54~76.
    Dick H J B,Natland J H.Late stage melt evolution and transport in the shallow mantle beneath the East Pacific Rise:Deep Sea Drilling Project[B].Initial Reports,1996,147:103~134.
    Gaetani G A ,Green T L.The influence of water on melting of mantle peridotite[J].Cont rib Mineral Petrol,1998,131:323~346.
    Gao S,Luo T C,Zhang BR,Zhang H F,Han Y W,Zhao Z D,and Hu Y K.Chemical composition of the continental crust as revealed by studies in East China[J].Geochimica et Cosmochimica Acta,1998,62(11):1959~1975.
    Giggenbach W F.Geothermal gas equilibria[J].Geochim Cosmochim Acta.1980,44(12):2021-2032.
    Gu L X,Zhu J L,Guo J C,Liao J J,Yan Z F and Yan H.The East Xinjiang-type Mafic-Ultramafic complexes in orogenic environments[J].Acta Petrologica Sinica,1994,10(4):339~356.
    Guha J,Lu H,Gagnon M.Gas composition of fluid inclusions using solid probe mass spectrometry and its application to study of mineralizing processes[J].Geochimica et Cosmochimica Acta,1990,54(3):553~558
    Han B F,Ji J Q,Song B,Chen L H,Li Z H.Zircon SHRIMP U~Pb age and geology of Kalatongke-Huangshan Mafic-Ultramafic Complex,Xinjiang,China[J].Chinese Science Bulletin,2004,49(22):2324-2328.
    Harris D M,Anderson A T.Volatiles H_2O,CO_2,and Cl in a subduction related basalt[J].Cont rib Mineral Petro ,1984,87:120~128.
    Hawkesworth C J ,Gallagher K,Hergj M ,et al.Mantle and slab contributions in arc magmas[J].Ann Rev Earth Planet Sci ,1993 ,21:175~204.
    Hedenquist J.W,Lowenstern J.B.The role of magma in the formation of hydrothermal ore deposits[J].Nature,1994,370:519~527.
    Hu P Q,Zhang M J,Tang Z L,Li C,Wang J Z.Chemical and stable isotopic compositions of volatiles in mantle peridotites of the Yushigou ophiolite in Qilian orogenic belt,western China[J].Acta Petrologica Sinica,2007,23(1):169~176.
    Konzett J ,Sweeney R J ,Ulmer P.Potassium amphi2bole stability in the upper mantle :an experimental study in aperalkaline KNCMASH system to 815 GPa[J].J Petro ,1997,38 :537~568.
    Kubo T,Ohtani E,Kato F,et al.Effects of water on thea2(3 transformation kinetics in San Carlos olivine[J].Science ,1998,281:85~87.
    Lambert D D.Foster J G,Frick L R,et al.Geodynamics of magmatic Cu-Ni-PGE sulfide deposits; new insights from the Re-Os isotope system.Economic Geology,1998,93(2):121~136
    Lightfoot P C,Hawkesworth C J,Olshefsky K,et al,Geochemistry of Tertiary tholeiites and picrites from Qeqertarssuaq (Disko Island) and Nuussuaq,West Greenland with implications for the mineral potential of comagmatic intrusions.Contributions to Mineralogy and Petrology,1997,128:139-163
    Liu W,and Fei P X.Methane~rich fluid inclusions from ophiolitic dunite and post-collisional mafic-ultramafic intrusion:The mantle dynamics underneath the Palaeo~Asian Ocean through to the post-collisional period[J].Earth and Planetary Science Letters,2006,242:286~301.
    Maier W D,Barnes S J,De Waal S A.Exploration for magmatic Ni-Cu-PGE sulphide deposits;a review of recent advances in the use of geochemical tools,and their application to some South African ores.South African Journal of Geology,1998,101(3):237~253
    Mao J W,Pirajno F,Zhang Z H,Chai F M,Yan J M,Wu H,Chen S P,Cheng S L,Zhang C Q.Late Variscan Post-collisional Cu~Ni Sulfide Deposits in East Tianshan and Altay in China:Principal Characteristics and Possible Relationship with Mantle Plume[J].Acta Geologica Sinica.2006,80(7):925~942.
    Matson D W,Muenow D W,Garcia M O.Volatilecontents of phlogopite micas from south Africa kimberlite[ J ].Contrib Mineral Petrol,1986,93 :399~408.
    Maury R C,Defant M JJoron J Z.Metasomatism of the sub~arc mantle inferred from trace elements in Philippine xenoliths[J ].Nature,1992,360 :661~663.
    Mc Culloch M T,Gamble J A.Geochemical and geodynamical constraints on subduction zone magmatism[ J ].Earth Planet Sci Lett ,1991,102 :358~374.
    Miller M F,Pillinger C T.An appraisal of stepped heating release of fluid inclusion CO~2 for isotopic analysis:A preliminary to 813C characterisation of carbonaceous vesicles at the nanomole level[J].Geochimica et Cosmochimica Acta,1997,61(1):193~205.
    Moore J N,Norman D I,Kennedy B M.Fluid inclusion gas compositions from an active magmatic-hydrothermal system:a case study of The Geysers geothermal field,USA[J].Chemical Geology,2001,173:3~30.
    Mu J L.On the characteristics and forming mechanism of therich and shallow-seated ores in the huangshan Copper-Nickel deposit Hami,Xinjiang[J].Journal of Mineralogy and Petrology,1996,16(1):58~67.
    Naldrett A J A model for the Ni-Cu-PGE ores of the Noril'sk region and its application to other areas of flood basalt.Economic Geology,1992,87(8):1945-1962
    Naldrett A J,Fedorenko V A,Asif M,et al.Controls on the composition of Ni-Cu sulfide deposits as illustrated by those at Noril'sk,Siberia Economic Geology 1996,91:751~773
    Naldrett A J.Magmatic sulfide deposits:geology,geochemistry and exploration[J].Springer Verlag,Heidelberg,Berlin,2004,728.
    Naldrett A J.WorId~class Cu~Ni~ PGE deposits:key factors in their genesis[J].Mineralium Deposita,1999,34:227~240.
    Naldrett A J.Key factors in the genesis of Noril'sk,Subdury,Jinchuan,Voisey's Bay and other world-class Ni~Cu~PGE deposits:Implications for exploration,Aust.J.Earth Sci.,1997,44:281~315.
    Naldrett A J.Magmatic sulfide deposits.Springer Berlin.2004b,128:303~311.
    Navon O ,Hutcheon ID ,Rossman G R..Mantle2derived fluids in diamond micro2inclusions[J].Nature ,1988,335 :784~789.
    O'Reilly S T,Griffin W L,Segelstad T V.The nature and role of fluid in the upper mantle:evidence in xenoliths from Victoria,Austrialia.In:Nixon P H,ed.Mantle Xenoliths,John Wiley and Sons,1987:315~323.
    Pol I S,Schmidt M W.H20 transport and release in sub-duction zones :experimental constraints on basaltic and andesitic systems[J ].J Geophys Res,1995 ,100 :22299~22314.
    Qin K Z,Fang T H,Wang S L,Zhu B Q,Feng Y M,Yu H F,Xiu Q Y.Plate tectonics division evolution and Metallogenic settings in Eastern Tianshan Mountains,NW~China[J].Xinjiang Genlogy,2002,20(4):302~308.
    Rosenbaum J M ,Zindler A ,Rubenstone J L.Mantle fluids:evidence from fluid inclusions[J].Geochim Cosmochim Acta ,1996,60 :3229~3252.
    Saunders A D,Norry M J,Tarney J.Origin of MORB and chemically depleted mantle reservoirs:trace element constraints[J].Journal of Petrology (Special Lithosphere Issue),1988:425~445.
    Shaw A M,Hilton D R,Macpherson C G,et aLThe CO2-He-Ar-H2O systematics of the manus back-arc basin:resolving source composition from degassing and contamination effects[J].Geochimica et Cosmochimica Acta,2004,68:1837~1856.
    Smith J V,Delaney J S,Hervig R L,et al.Storage of F and CI in the upper mantle:geochemical implications[J].Lithos ,1981,14 :133~147.
    Stol PER E ,Newman S.The role of water in the petrogenesis of Mariana trough magmas[J].Earth Planet Sci Lett ,1994,121:292~325.
    Taylor S R,and McLennan S M.The geochemical evolution of the continental crust[J].Rev.Geophys.1995,33:241-265.
    Thompson A B.Water in the Earth's upper mantle[J].Nature ,1992,358 :295~301.
    Wang J B,Wang Y W,He Z J.Ore deposits as a guide to the tectonic evolution in the East Tianshan Mountains,NW China[J].Geology in China.2006,33(3):461~469.
    Wang R M,Liu D Q,Ying D T.The conditrons of controlling metallogny of Cu,sulphide Ore deposite and the orientation of finding Ore Hami,Xinjiang,China[M].Minerals and Rock,1987,7(1):1~152.
    Wang Y L,Zhang C J,Xiu S Z.Th/Hf-Ta/Hf identification of tectonic setting of basalts[J].Acta Petrologica Sinica,2001,17(3):413-421.
    Wendlandt R F.Sulfide saturation of basalt and andesite melts at high pressures and temperatures American Mineralogist,1982,67:877-885
    Wood B J,Bryndzia L T,Johnson K E.Mantle oxidation state and its relationship to tectonic environment and fluid speciation[J].Science,1990,248:337-345.
    Wu H,Li H Q,Mo X H,Chert F W,Lu Y F,Mei Y P,Deng G.Age of the BaishiquanMafic-Ultramific complex,Hami,Xinjiang and its geological significance[J].Acta Geologica Sinica,2005,79(4):498-502.
    Zhang M J,Hu P Q,Niu Y,Su S G.Chemical and stable isotopic constraints on the nature and origin of volatiles in the sub-continental lithospheric mantle beneath eastern China[J].Lithos,2007,96:55-66.
    Zhang M J,Hu P Q,Zheng P,Wang X B,Li L W.The Occurrence modes of H_2 in mantle-derived rocks[A],Mao J,Bierlein F P eds,Mineral deposit research,Chapter1-19.New York:Springer,2005:73-76.
    Zhang Chuan-lin,Li Xian-hua,Li Zheng-xiang,Ye Hai-min,Li Chang-nian.A Permian Layered Intrusive Complex in the Western Tarim Block,Northwestern China:Product of a Ca.275-Ma Mantle Plume?[J].Journal of Geology,2008,116(3):269-287.
    Zhang M J,Wang X B,Li L W.Composition of mantle fluid[J].Earth Science Frontiers,2000,7(2):401-412.
    Zhang Mingjie.Wang Xianbin.Liu Gang.Zhang Tongwei,et al.Compositions of Upper Mantle Fluids Beneath Eastern China:Implications for Mantle Evolution[J].Acta Geologica Sinica,2004,78:125-130
    Zhon Mei-fu,Michael Lesherb C,Yang Zheng-xi,Li Jian-wei,and Sun Min.Geochemistry and petrogenesis of 270Ma Ni-Cu-(PGE) sulfide-bearing mafic intrusions in the Huangshan district,Eastern Xinjiang,Northwest China:implications for the tectonic evolution of the Central Asian orogenic belt[J].Chemical Geology,2004,209:233-257.
    Zhu W B,Ma R S,Wang C Y.Tectonic attribute of Huangsan-Jingerquan Erquan complex in Eastern Xinjiang,China[J].Chinese Journal of Geology,1996,31(1):22-32.
    柴风梅.新疆北部三个垮岩浆型Ni-Cu硫化物矿床有关的镁铁。超镁铁质岩的地球化学特征对比研究[D].北京:中国地质大学,2006.
    陈浩琉等.镍矿床[M].北京:地质出版社,1993,1-199.
    陈世平,王登红,屈文俊,陈郑辉,高晓理.新疆葫芦铜镍硫化物矿床的地质特征与成矿时代[J].新疆地质,2005,23(3):230-233.
    陈毓川,赵逊,张一之,等.世纪之交的地球科学:重大地学领域进展[M].北京:地质出版社,2000.
    储雪蕾,孙敏,周美福.化学地球动力学中的铂族元素地球化学[J].岩石学报,2001,17(1): 112-122.
    杜乐天,戎嘉树,陈安福.地幔岩中微粒合金和还原气体[J].科学通报,1995a,40(19):1788-1790.
    杜乐天,王驹,黄树桃.地球的排烃作用[J].矿物岩石地球化学通讯,1995b,1:45-47.
    樊祺诚,刘若新,杨瑞英.地幔橄榄岩矿物中富稀土元素的CO2流体包裹体及其地球化学意义[J].岩石学报,1993,9(4):411-417.
    顾连兴,諸建林,郭继春,廖静娟,严正富,杨浩.造山带环境中的东疆型镁铁-超镁铁杂岩[J].岩石学报,1994,10(4):339-356.
    郭宏,李霞,毛启贵,张继恩.新疆东天山岩浆铜镍硫化物矿床地质特征及成矿环境[J].新疆地质,2006,24(2):135-140.
    韩宝福,季建清,宋彪,陈立辉,李宗怀.新疆喀拉通克和黄山东含铜镍矿镁铁-超镁铁杂岩体的SHRIMP锆石U-Pb年龄及其地质意义[J].科学通报,2004,49(22):2324-2328.
    韩春明,肖文交,崔彬,毛启贵,张继恩,敖松坚.新疆北部晚古生代铜矿床主要类型和地质.特征[J].地质学报,2006,80(1):74-89.
    李华芹,谢才富,常海亮.新疆北部有色贵金属矿床成矿作用年代学[M].北京:地质出版社,1998:202-220.
    刘丛强,苏根利,李和平,黄智龙.地幔流体作用.地幔捕虏体中流体包裹体的研究[J].地学前缘,2001,8(3):83-93.
    刘刚,王先彬,李立武.张家口大麻坪碱性玄武岩内地幔岩包体气体成分的初步研究[J].科学通报,1996,41(19):1775-1777.
    刘民武.中国几个镍矿床的地球化学比较研究[D].西安:西北大学地质系,2003
    刘伟.岩浆流体在热液矿床形成中的作用[J].地学前缘,2001,8(3):203-215.
    卢焕章,郭迪江.流体包裹体研究的进展和方向[J].地质论评.2000,46(4):385-396.
    卢焕章,李秉伦等.包裹体地球化学[M].北京:地质出版社.1990.
    卢焕章.地球中流体研究的一些热点[J].地学前缘,2001,8(4):386-390.
    毛景文,Franco PIRAJNO,张作衡,柴凤梅,杨建民,吴华,陈世平,程松林,张长青.天山.阿尔泰东部地区海西期后碰撞铜镍硫化物矿床:主要特点及可能与地幔柱的关系[J].地质学报,2006,80(7):925-942.
    毛景文,李晓峰,李厚民,曲晓明,张长青,薛春纪,王志良,余金杰,张作衡,丰成友,王瑞廷.中国造山带内生金属矿床类型、特点和成矿过程探讨[J].地质学报,2005,79(3):342-372
    毛景文,杨建民,韩春明,王志良.东天山铜金多金属矿床成矿系统和成矿地球动力学模型[J].地球科学,2002b,27(4):413-424.
    毛启贵,肖文交,韩春明,孙敏,袁超,闫臻,李继亮,雍拥,张继恩.新疆东天山白石泉铜镍矿床基性.超基性岩体锆石U-Pb同位素年龄、地球化学特征及其对古亚洲洋闭合时 限的制约[J].岩石学报,2006,22(1):153-162.
    慕记录.新疆哈密黄山铜镍矿床中浅富矿体特征及形成机制[J].矿物岩石,1996,3(1):58-67.
    倪志耀.新疆哈密黄山东镁铁-超镁铁杂岩体成因探讨[J].西北地质,1992,13(2):9-16.
    裴荣富等.中国特大型矿床成矿偏在性与异常成矿构造聚敛场[M].北京:地质出版社,1998.262-286.
    秦克章,方同辉,王书来,朱宝清,冯益民,于海峰,修群业.东天山板块构造分区、演化与成矿地质背景研究[J].新疆地质,2002,20(4):302-308.
    冉红彦,肖森宏.喀拉通克含矿岩体的微量元素与成岩构造环境[J].地球化学,1994,23(4):392-401.
    谭文娟,魏俊浩,郭大招,谭俊,伍静华.地质流体及成矿作用研究综述[J].矿产与地质,2005,6(3):227-232
    汤中立,李文渊.金川铜镍硫化物矿床模式及地质特征对比[M].北京:地质出版社,1995:14-209.
    汤中立.金川铜镍硫化物矿床岩浆成矿作用的偏在性[J].甘肃地质学报,1996(5)2:73-85.
    涂光炽.关于CO2若干问题的讨论[J].地学前缘,1996,3(3):53-62.
    涂光炽等.中国超大型矿床[M].北京:科学出版社,2000.3-9.
    王登红,陈毓川,徐志刚,林文蔚.新疆北部Cu-Ni-(PGE)硫化物矿床成矿系列探讨[J].矿床地质,2000年02期:147-155.
    王京彬,王玉往,何志军.东天山大地构造演化的成矿示踪[J].中国地质,2006,33(3):461-469.
    王瑞廷,毛景文,柯洪,赫英.铜镍岩浆硫化物矿床成矿作用研究综述[J].矿产与地质,2003,17(增刊):281-284.
    王润民,刘德权,殷定泰.新疆哈密土墩.黄山一带铜镍硫化物矿床成矿控制条件及找矿方向的研究[J].矿物岩石,1987,7(1):1-152.
    王有标.新疆铜镍硫化物矿床的基本地质特点[J];新疆地质,1990,4:305-320.
    王玉往,王京彬,王莉娟,方同辉.新疆北部后碰撞与幔源岩浆有关的成矿谱系[J].岩石学报,2008,20(4):35-48.
    吴华,李华芹,莫新华,陈富文,路远发,梅玉萍,邓岗.新疆哈密白石泉铜镍矿区基性.超基性岩的形成时代及其地质意义[J].地质学报,2005,79(4):498-502.
    徐章华,汤中立,蔡克勤.金川铜、镍(含PGE)岩浆硫化物矿床母岩浆成分的估计[J].现代地质.中国地质大学研究生院学报,1998,12(4):504-514.
    杨树峰,陈汉林,翼登武,厉子龙,董传万,贾承造,魏国齐.塔里木盆地早。中二叠世岩浆作用过程及地球动力学意义[J].高校地质学报,2005,11(4):504-511.
    曾昭祥.新疆哈密黄山铜镍硫化物矿床地质特征[J].新疆地质,1991,9(4):291-306.
    张德会,龚庆杰.初论元素富集成矿的地球化学机理—以岩浆热液矿床的形成为例[J].地质 地球化学,2001,29(3):8-14.
    张铭杰,李延鑫,胡沛青,王先彬,Niu Yaoling,傅飘儿.中国东部陆下岩石圈地幔中的再循环地壳流体组分[J].地质学报,2009,83(3):311-323.
    张铭杰,王先彬,李立武.地幔流体组成[J].地学前缘,2000,7(2):401-412.
    张铭杰,王先彬,刘刚.中国东部新生代碱性玄武岩及幔源岩捕虏体中的流体组成[J].地质学报,1999,73(2):162-166.
    张铭杰,王先彬.中国东部新生代碱性玄武岩中的流体组成及其碳,氧同位素地球化学特征[J].地球化学,1998,27(5):452-457.
    张文淮,张志坚,伍刚.成矿流体及成矿机制[J].地学前缘,1996,3(3-4):543-552.
    钟应先.黄山杂岩体的地球化学特征及其意义[J].矿物岩石,1991,11(1):3-14.
    朱文斌,马瑞士,王赐银.论新疆东部黄山—镜儿泉杂岩带的构造属性[J].地质科学,1996,31(1):22-32.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700