纳米粒径和电位对替米考星—氢化蓖麻油纳米悬液性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
替米考星常规制剂的生物利用度低、毒性比较大,严重影响其在疾病治疗过程中应用,频繁给药或是高剂量用药会造成药物残留增加和毒副作用增强。固体脂质纳米载体可以有效地促进药物吸收、提高生物利用度、延长药物在体内循环的时间、降低残留和减轻毒性作用,是提高兽药功效非常有效的药物载体。粒径和表面电位作为纳米颗粒的重要参数,对纳米药物载体的性能有很大的影响。
     本文以氢化蓖麻油(hydrogenated castor oil, HCO)为脂质材料、聚乙烯醇(polyvinyl alcohol, PVA为表面活性剂、季铵盐为表面电位修饰剂,运用热熔超声乳化技术制备了替米考星-氢化蓖麻油纳米(tilmicosin-loaded hydrogenated castor oil nanoparticle, TMS-HCO-NP)悬液。通过改变PVA的浓度控制纳米颗粒的粒径,用季铵盐进行表面修饰以改变纳米颗粒的表面电位。本实验运用紫外分光光度计对不同粒径和电位的TMS-HCO-NP载药量进行了测定,同时对不同制剂样品体外释放特性进行了研究。此外,在4℃和室温两种储存条件下评价粒径和表面电位对TMS-HCO-NP悬液稳定性的影响。用BHK、Vero和RAW264.7三种细胞系对不同粒径和电位的TMS-HCO-NP悬液进行了体外细胞毒性评价,并通过激光共聚焦对巨噬细胞吞噬纳米颗粒进行观察。通过小鼠皮下注射不同粒径的TMS-HCO-NP悬液,揭示粒径对制剂体内急性毒性的影响。运用肉汤稀释法、琼脂稀释法进行体外抗菌活性研究,建立了适合纳米混悬剂抗菌活性检测的新方法,并对不同粒径和电位TMS-HCO-NP悬液的抗菌活性进行了评价。
     研究结果显示,表面活性剂的浓度显著影响纳米颗粒的粒径。以不同PVA浓度(0.2%、1%和5%)制备的纳米悬液纳米颗粒的平均粒径分别为920±35nm、452±10nm和151±4nm。尽管三种不同粒径的TMS-HCO-NP悬液体外释放模式都为双相曲线,但是小粒径的纳米悬液的初始释放速率更快。三种不同粒径的TMS-HCO-NP悬液在低浓度条件下,不会影响BHK和Vero细胞增殖。在较高浓度条件下下,不同粒径TMS-HCO-NP纳米悬液对三种细胞都表现出浓度依赖性细胞毒性作用。细胞吞噬试验表明纳米颗粒的粒径越大越容易被吞噬。最小粒径的fMS-HCO-NP悬液在小鼠体内表现出更显著的急性毒性,主要是由于药物释放更快所致。肉汤稀释法显示粒径越小纳米颗粒的最低抑制浓度(minimal inhibitory concentration, MIC)和最小杀菌浓度(minimal bactericidal concentration, MBC)值越低。时间-杀菌曲线表明,在12小时内150nm的TMS-HCO-NP悬液和替米考星原药表现出最有效的杀菌活性,但在随后的时间点较大粒径纳米悬浮液表现出持续的抗菌活性,新建立的检测方法结果也表明粒径越小抗菌效果越好。三种不同粒径的纳米悬液都显示出良好的稳定性,在4℃和室温下至少可以稳定6个月。季铵盐添加比例对纳米颗粒的表面电位有影响。制备体系中双十八烷基二甲基氯化铵(DDAC)比例为2%,PVA浓度分别为0.2%、1%和5%时,纳米颗粒的电位分别为43.1±1.2mv、38.9±1.5mv和26.6±1.2mv;粒径分别为885±16nm、499±6nm和169±4nm;多分散系数分别为0.344±0.041、0.309±0.012和0.478±0.005。而2%双十二烷基二甲基溴化铵(DDAB)修饰的纳米表征如下:电位分别是48.2±1.5mv、38.6±1.3mv和27.3±1.2my;粒径分别是822±4nm、481±6nm和175±2nm;多分散系数分别是0.427±0.036、0.456±0.076和0.532±0.031。季铵盐比例的增加能显著提高纳米的ζ电位,但是当增加到一定程度后电位不再增大,并且DDAC比例增加会使粒径分布范围变宽。此外,季铵盐的加入会影响载药量,正电位TMS-HCO-NP的载药量高于负电位纳米。正电位TMS-HCO-NP与负电位相比,体外释放模式相似,但是初始释放速率变慢。细胞毒性研究表明低浓度的正电位纳米不会影响BHK和Vero细胞的增殖,但是对巨噬细胞影响较大,可能与不同细胞摄取纳米颗粒的机制有关。细胞吞噬试验表明止电位大粒径的纳米颗粒更容易被巨噬细胞吞噬。通过不同的抗菌实验方法证明,正电位TMS-HCO-NP的抗菌效果要稍高于负电位纳米组。时间-杀菌曲线也表明在同一时间点止电位TMS-HCO-NP组的细菌数比负电位要少。
     本论文研究结果表明,通过改变PVA浓度和添加季铵盐可以有效的控制粒径和改变表面电位。纳米颗粒的粒径和表面电位对TMS-HCO-NP悬液的性能有很大影响。粒径和表面电位这两个参数是研发固体脂质纳米药物制剂的重要考虑因素。
Backgroud:Traditional formulations of tilmicosin have drawbacks of high toxic effect, fast metabolism, and low bioavailability. Frequent injection or high doses over the therapeutic period will increase the cost. High doses could also result in drug resistance which poses a threat to human health. Solid lipid nanoparticles (SLN) have lots of advantages, such as enhancing therapeutic effects, reducing the residual of drug, prolonging the circulation time in vivo and decreasing the toxic effects. SLN could be a potential drug carrier system for veterinary drug. Particle size and surface charge are important characteristics of nanoparticles, and have great effect on the property of nanoparticles drug carriers.
     Methods:The tilmicosin-loaded hydrogenated castor oil nanoparticle (TMS-HCO-NP) suspensions were prepared with hydrogenated castor oil as lipid material, polyvinyl alcohol as surfactant and quaternary ammonium salt as surface modifier by a hot homogenization and ultrasonic technique. The size of the nanoparticles was controlled by varying the PVA concentration, and the surface charge was modified by adding quaternary ammonium salt. The effects of the size and surface charge on the property of the suspensions were studied. The physicochemical characteristics of TMS-HCO-NP were investigated by optical microscope, scanning electron microscopy (SEM) and photon correlation spectroscopy (PCS). The drug loading of the TMS-HCO-NP was measured by ultraviolet spectrophotometer. The release profiles of TMS-HCO-NP with different particle sizes and zeta potentials were studied. The effects of particle size and surface charge on cytotoxicity of TMS-HCO-NP suspensions were evaluated with BHK, Vero and RAW264.7cell lines, and the macrophage phagocytosis of TMS-HCO-NP was studied through confocal laser system. In vitro antibacterial activity of TMS-HCO-NP suspensions with different particle size and surface charge were investigated using three different methods. The acute toxicity of TMS-HCO-NP suspensions with different particle sizes was evaluated in ICR mice. The stability of TMS-HCO-NP suspensions was studied after stored at room temperature and at4℃for6months.
     Results:The surfactant significantly affected the size of nanoparticles. When prepared with PVA concentrations of0.2%,1%and5%, the mean diameters of the nanoparticles in the three suspensions were920±35nm,452±10nm and151±4nm, respectively. The three suspensions displayed similar biphasic release profiles, but the suspension of smaller-sized particle showed faster initial release. None of the three suspensions were cytotoxic at clinical dosage levels on BHK and Vero cell lines. At high drug concentrations, TMS-HCO-NP suspensions with different sizes exhibited a concentration-dependent cytoxicity on the three cell lines. Phagocytosis experiments showed that the larger particles could be uptaken more easily. Time-kill curves showed that within12hours the suspension with150nm particles had the most potent bactericidal activity, but later the suspensions with larger-sized particles showed increased antibacterial activity. The results of the novel method also suggested that smaller-sized particles had better antibacterial effect. The suspension with the smallest-sized particle showed significantly more acute toxicity in mice, due to faster drug release. All three suspensions exhibited good stability at4℃and at room temperature for at least6months. The proportion of quaternary ammonium salt affected the surface charge of nanoparticles. When TMS-HCO-NP suspensions were prepared with2%dioctadecyl dimethyl ammonium chloride (DDAC) and difeeerent concentration of PVA (0.2%,1%and5%), the zeta potential of the nanoparticles were43.1±1.2mv,38.9±1.5mv and26.6±1.2mv; the particle sizes were885±16nm,499±6nm and169±4nm; the polydispersity indexes were0.344±0.041,0.309±0.012and0.478±0.005. While the TMS-HCO-NP suspensions were prepared with2%didodecyldimethylammonium bromide (DDAB), the zeta potential were48.2±1.5mv,38.6±1.3mv and27.3±1.2mv; the particle sizes were822±4nm,481±6nm and175±2nm; the polydispersity indexes were0.427±0.036,0.456±0.076and0.532±0.031. With the increment of the proportion of quaternary ammonium from2%to4%, the zeta potential was increased, but the size distribution became wider. The drug loading of positive charged nanoparticles was slight higher than that of the negatively charged ones. Compared with negatively charged TMS-HCO-NP suspensions, the positively ones showed similar release patterns but slower initial release. Cytotoxicity study showed that low concentration of TMS-HCO-NP suspensions with positive surface charge did not affect proliferation of BHK and Vero but RAW264.7, which could be due to different uptake mechanisms of nanoparticles. The antibacterial activity of TMS-HCO-NP suspension with positive surface charge was slightly higher than that with the negative surface charge.
     These results demonstrate that the size and surface charge could be controlled by varying the PVA concentration and adding quaternary ammonium salt. Particle size and surface charge significantly affected the property of TMS-HCO-NP suspensions. Particle size and surface charge are important considerations for the development of drug-SLN formulations.
引文
[1]鲁建新,迟京良,闫德伟.浅议如何解决畜牧养殖业上细菌耐药性.中国畜禽种业,2007(05):45-47.
    [2]王红宁.规模化猪场细菌感染及对抗生素的耐药性研究:中国畜牧兽医学会2011学术年会,成都,2011[C].
    [3]Nacucchio M C, Bellora M J, Sordelli D O, et al. Enhanced liposome-mediated activity of piperacillin against staphylococci. Antimicrob Agents Chemother,1985,27(1):137-139.
    [4]Turos E, Reddy G S, Greenhalgh K, et al. Penicillin-bound polyacrylate nanoparticles: restoring the activity of beta-lactam antibiotics against MRSA. Bioorg Med Chem Lett,2007, 17(12):3468-3472.
    [5]Drulis-Kawa Z, Dorotkiewicz-Jach A. Liposomes as delivery systems for antibiotics. Int J Pharm,2010,387(1-2):187-198.
    [6]Mugabe C, Halwani M, Azghani A O, et al. Mechanism of enhanced activity of liposome-entrapped aminoglycosides against resistant strains of Pseudomonas aeruginosa. Antimicrob Agents Chemother,2006,50(6):2016-2022.
    [7]Alipour M, Halwani M, Omri A, et al. Antimicrobial effectiveness of liposomal polymyxin B against resistant Gram-negative bacterial strains. Int J Pharm,2008,355(1-2):293-298.
    [8]Furneri P M, Fresta M, Puglisi G, et al. Ofloxacin-loaded liposomes:in vitro activity and drug accumulation in bacteria. Antimicrob Agents Chemother,2000,44(9):2458-2464.
    [9]Kisich K O, Gelperina S, Higgins M P, et al. Encapsulation of moxifloxacin within poly (butyl cyanoacrylate) nanoparticles enhances efficacy against intracellular Mycobacterium tuberculosis. Int J Pharm,2007,345(1-2):154-162.
    [10]Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv,2009,27(1):76-83.
    [11]Raghupathi K R, Koodali R T, Manna A C. Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir,2011, 27(7):4020-4028.
    [12]Panacek A, Kvitek L, Prucek R, et al. Silver colloid nanoparticles:synthesis, characterization, and their antibacterial activity. J Phys Chem B,2006,110(33):16248-16253.
    [13]Gottenbos B, Grijpma D W, van der Mei H C, et al. Antimicrobial effects of positively charged surfaces on adhering Gram-positive and Gram-negative bacteria. J Antimicrob Chemother, 2001,48(1):7-13.
    [14]Song J, Kong H, Jang J. Bacterial adhesion inhibition of the quaternary ammonium functionalized silica nanoparticles. Colloids Surf B Biointerfaces,2011,82(2):651-656.
    [15]Schwegmann H, Feitz A J, Frimmel. F H. Influence of the zeta potential on the sorption and toxicity of iron oxide nanoparticles on S. cerevisiae and E. coli. J Colloid Interface Sci,2010, 347(1):43-48.
    [16]Hamouda T. Baker J J . Antimicrobial mechanism of action of surfactant lipid preparations in enteric Gram-negative bacilli. J Appl Microbiol.2000.89(3):397-403.
    [17]Elouahabi A. Ruysschaert J M. Formation and intracellular trafficking of lipoplexes and polyplexes. Mol Ther,2005,11(3):336-347.
    [18]Rothen-Weinhold A, Gurny R, Dahn M. Formulation and technology aspects of conrolled drug delivery in animals. Pharm Sci Technolo Today,2000,3(7):222-231.
    [19]Ahmed I, Kasraian K. Pharmaceutical challenges in veterinary product development. Adv Drug Deliv Rev,2002,54(6):871-882.
    [20]Pandey R, Sharma S, Khuller G K. Oral solid lipid nanoparticle-based antitubercular chemotherapy. Tuberculosis (Edinb),2005,85(5-6):415-420.
    [21]Li S, Zhao B, Wang F, et al. Yak interferon-alpha loaded solid lipid nanoparticles for controlled release. Res Vet Sci,2010,88(1):148-153.
    [22]Muller R H, Keck C M. Challenges and solutions for the delivery of biotech drugs--a review of drug nanocrystal technology and lipid nanoparticles. J Biotechnol,2004, 113(1-3):151-170.
    [23]Xie S, Wang S, Zhu L, et al. The effect of glycolic acid monomer ratio on the emulsifying activity of PLGA in preparation of protein-loaded SLN. Colloids Surf B Biointerfaces,2009, 74(1):358-361.
    [24]Ose E E. In vitro antibacterial properties of EL-870, a new semi-synthetic macrolide antibiotic. J Antibiot (Tokyo),1987,40(2):190-194.
    [25]Ziv G, Shem-Tov M, Glickman A, et al. Tilmicosin antibacterial activity and pharmacokinetics in cows. J Vet Pharmacol Ther,1995,18(5):340-345.
    [26]Ramadan A. Pharmacokinetics of tilmicosin in serum and milk of goats. Res Vet Sci,1997, 62(1):48-50.
    [27]North American Compendium, Inc.,942 Military Str. Port Huron, Mich 48060. In Compendium of Veterinary Products.2nd ed.1993,578-579.
    [28]Backstrom L, McDonald J, Collins MT, et al. Efficacy of tilmicosin, and a combination of tylosin and sulfamethazine, for control of swine atrophic rhinitis invovlving infection with toxigenic Pasteurella multocida type D. J Swine Health Prod,1994,2 (4):11-14
    [29]Debono M, Willard K E, Kirst H A, et al. Synthesis and antimicrobial evaluation of 20-deoxo-20-(3,5-dimethylpiperidin-1-yl)desmycosin (tilmicosin, EL-870) and related cyclic amino derivatives. J Antibiot (Tokyo),1989,42(8):1253-1267.
    [30]Xu ZN, Wang J, Shen WH, et al. Study on the extraction equilibrium of tilmicosin between the aqueous and butyl acetate phase. Chem Eng Commun,2006,193(4):427-437
    [31]Residues of some veterinary drugs in animals and foods. Joint FAO/WHO Expert Committee on Food Additives. FAO Food Nutr Pap,1996,41 (8):1-166.
    [32]European Agency for the Evaluation of Medicinal Products vetrinary medicines evaluation unit:Tlimicosin, Summary Report [DB/OL].1996.
    [33]沈建忠,谢联金.兽医药理学.北京:中国农业大学出版社,2000.
    [34]Gourlay R N, Thomas L H, Wyld S G,et al. Effect of a new macrolide antibiotic (tilmicosin) on pneumonia experimentally induced in calves by Mycoplasma bovis and Pasteurella haemolytica. Res Vet Sci,1989,47(l):84-89.
    [35]Chin A C, Lee W D, Murrin K A, et al. Tilmicosin induces apoptosis in bovine peripheral neutrophils in the presence or in the absence of Pasteurella haemolytica and promotes neutrophil phagocytosis by macrophages. Antimicrob Agents Chemother,2000,44(9):2465-2470.
    [36]Lakritz J, Tyler J W, Marsh A E, et al. Tilmicosin reduces lipopolysaccharide-stimulated bovine alveolar macrophage prostaglandin E(2) production via a mechanism involving phospholipases. Vet Ther,2002,3(1):7-21.
    [37]Huwyler U, Reeve-Johnson L, Korfitsen J, et al. Efficacy evaluation of the use of oral tilmicosin in pneumonic calves. Schweiz Arch Tierheilkd,1999,141(4):203-208.
    [38]McKay S G, Morck D W, Merrill J K, et al. Use of tilmicosin for treatment of pasteurellosis in rabbits. Am J Vet Res,1996,57(8):1180-1184.
    [39]Hoflack G, Maes D, Mateusen B, et al. Efficacy of tilmicosin phosphate (Pulmotil premix) in feed for the treatment of a clinical outbreak of Actinobacillus pleuropneumoniae infection in growing-finishing pigs. J Vet Med B Infect Dis Vet Public Health,2001,48(9):655-664.
    [40]Charleston B, Gate J J, Aitken I A, et al. Assessment of the efficacy of tilmicosin as a treatment for Mycoplasma gallisepticum infections in chickens. Avian Pathol,1998, 27(2):190-195.
    [41]Shryock T R, Klink P R, Readnour R S, et al. Effect of bentonite incorporated in a feed ration with tilmicosin in the prevention of induced Mycoplasma gallisepticum airsacculitis in broiler chickens. Avian Dis,1994,38(3):501-505.
    [42]郭腾,吴连勇,张家祥.兽用抗菌新药替米考星研究进展.中国兽药杂志,2002(07):38-39.
    [43]Modric S, Webb A I, Derendorf H. Pharmacokinetics and pharmacodynamics of tilmicosin in sheep and cattle. J Vet Pharmacol Ther,1998,21(6):444-452.
    [44]Shen J, Li C, Jiang H, et al. Pharmacokinetics of tilmicosin after oral administration in swine. Am J Vet Res,2005,66(6):1071-1074.
    [45]Moore G M, Mowrey D H, Tonkinson L V, et al. Efficacy dose determination study of tilmicosin phosphate in feed for control of pneumonia caused by Actinobacillus pleuropneumoniae in swine. Am J Vet Res,1996,57(2):220-223.
    [46]Keles O, Bakirel T, Sener S, et al. Pharmacokinetics and tissue levels of tilmicosin in fowls. Turk J Vet Anim Sci,2001,25(4):629-634.
    [47]Owens W E, Nickerson S C, Ray C H. Efficacy of parenterally or intramammarily administered tilmicosin or ceftiofur against Staphylococcus aureus mastitis during lactation. J Dairy Sci,1999,82(3):645-647.
    [47]Walters J, Brown D R. Tarrant M E. Efficacy of pulmotil (tilmicosin inpremix form) against naturally occurring pneumonia in growing fattening pigs. The 6th EAVPT Congress.1994.202.
    [48]Binder S. Le N B. Berner H, et al. Efficacy of tilmicosin in therapy of respiratory diseases in pigs. Berlinerund Munchener Tierarztliche Wochenschrift,1993.106:6-9.
    [49]Croft A. Duffield T. Menzies P. et al. The effect of tilmicosin administered to ewes prior to lambing on incidence of clinical mastitis and subsequent lamb performance. Can Vet J.2000. 41(4):306-311.
    [50]Smith R A, Gill D R, KoeveringM T, et al. Effects of tilmicosin or ceftiofur on health and performance of stressed stocker cattle. Animal Science Research Report,1993,933:308-311.
    [51]Winter T, Hofmann W. Treatment of chronic bronchopneumonia in calves with the macrolide antibiotic tilmicosin. Praktische Tierarzt,1994,75(4):302-308.
    [52]Gorham P E, Carroll L H, McAskill J W, et al. Tilmicosin as a single injection treatment for respiratory disease of feedlot cattle. Can Vet J,1990,31(12):826-829.
    [53]李宏胜,张继瑜,周旭正,等.替米考星饮水剂治疗肉仔鸡人工感染禽巴氏杆菌病的疗效试验.兽药与饲料添加剂,2006(01):10-12.
    [54]奉建芳.我国纳米给药系统的研究和应用.中南药学,2004,2(1):29-33.
    [55]Muller R H, Radtke M, Wissing S A. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv Drug Deliv Rev,2002,54 Suppl 1:S131-S155.
    [56]Wang X F, Zhang S L, Zhu L Y, et al. Enhancement of antibacterial activity of tilmicosin against Staphylococcus aureus by solid lipid nanoparticles in vitro and in vivo. Vet J,2012, 191(1):115-120.
    [57]Almeida A J, Souto E. Solid lipid nanoparticles as a drug delivery system for peptides and proteins. Adv Drug Deliv Rev,2007,59(6):478-490.
    [58]Yang S, Zhu J, Lu Y, et al. Body distribution of camptothecin solid lipid nanoparticles after oral administration. Pharmaceutical Research,1999,16 (5):751-757.
    [59]Antonio JA, Runge S, Muller RH. Peptide-loaded solid lipid nanoparticles (SLN):influence of production parameters. International Journal of Pharmaceutics,1997,149(6):255-265.
    [60]Gasco MS. Method for producing solid lipid nanospheres having an narrow size distribution. US Patent,5250236,1993,211201.
    [61]Wissing S A, Kayser O, Muller R H. Solid lipid nanoparticles for parenteral drug delivery. Adv Drug Deliv Rev,2004,56(9):1257-1272.
    [62]Service RF. Nanomaterials show signs of toxicity. Science,2003,300(5617):243.
    [63]Handy R D, Henry T B, Scown T M, et al. Manufactured nanoparticles:their uptake and effects on fish--a mechanistic analysis. Ecotoxicology,2008,17(5):396-409.
    [64]Mehnert W, Mader K. Solid lipid nanoparticles:production, characterization and applications. Adv Drug Deliv Rev,2001,47(2-3):165-196.
    [65]Mcnaught A D, Wilkinson A. Definition of electrokinetic potential in "IUPAC. Compendium of Chemical Terminology",2nd ed. Blackwell Scientific Publications, Oxford,1997. [66] Hanaor DAH, Michelazzi M. Leonelli C. et al. The effects of carboxylic acids on the aqueous dispersion and electrophoretic deposition of ZrO2 Journal of the European Ceramic Society,2012, 32(1):235-244.
    [67]王思玲,苏德森.胶体分散药物制刹.北京:人民卫生出版社,2006,189-369.
    [68]Borgstrom B. Importance of phospholipids, pancreatic phospholipase A2, and fatty acid for the digestion of dietary fat:in vitro experiments with the porcine enzymes. Gastroenterology, 1980,78(5 Pt 1):954-962.
    [69]Terada A, Yuasa A, Kushimoto T, et al. Bacterial adhesion to and viability on positively charged polymer surfaces. Microbiology,2006,152(Pt 12):3575-3583.
    [70]Lin J, Qiu S, Lewis K, et al. Mechanism of bactericidal and fungicidal activities of textiles covalently modified with alkylated polyethylenimine. Biotechnol Bioeng,2003,83(2):168-172.
    [71]高洁,连潇嫣,魏振平,等.纳米技术在药物制剂研究中的应用.化学工业与工程,2012(05):64-69.
    [72]Han C, Qi C M, Zhao B K, et al. Hydrogenated castor oil nanoparticles as carriers for the subcutaneous administration of tilmicosin:in vitro and in vivo studies. J Vet Pharmacol Ther, 2009,32(2):116-123.
    [73]Xie S, Wang F, Wang Y, et al. Acute toxicity study of tilmicosin-loaded hydrogenated castor oil-solid lipid nanoparticles. Part Fibre Toxicol,2011,8:33.
    [74]Muller R H, Mader K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery-a review of the state of the art. Eur J Pharm Biopharm,2000,50(1):161-177.
    [75]Chattopadhyay P, Shekunov B Y, Yim D, et al. Production of solid lipid nanoparticle suspensions using supercritical fluid extraction of emulsions (SFEE) for pulmonary delivery using the AERx system. Adv Drug Deliv Rev,2007,59(6):444-453.
    [76]Morley P S, Apley M D, Besser T E, et al. Antimicrobial drug use in veterinary medicine. J Vet Intern Med,2005,19(4):617-629.
    [77]Mehnert W, Mader K. Solid lipid nanoparticles:production, characterization and applications. Adv Drug Deliv Rev,2001,47(2-3):165-196.
    [78]Matschke C, Isele U, van Hoogevest P, et al. Sustained-release injectables formed in situ and their potential use for veterinary products. J Control Release,2002,85(1-3):1-15.
    [79]徐海涛,刘茂杨.双烷基季铵盐的应用.精细化工,1992(Z1):88-89.
    [80]佟会,邱树毅.季铵盐类抗菌剂及其应用研究进展.贵州化工,2006(05):1-7.
    [81]于力,仝新勇,谭燕.冬凌草甲素亚微乳的制备及其特性表征.中国中药杂志,2009(20):2590-2593.
    [82]Sanderson N M, Jones M N. Encapsulation of vancomycin and gentamicin within cationic liposomes for inhibition of growth of Staphylococcus epidermidis. J Drug Target,1996, 4(3):181-189.
    [83]Tabatt K, Sameti M, Olbrich C, et al. Effect of cationic lipid and matrix lipid composition on solid lipid nanoparticle-mediated gene transfer. Eur J Pharm Biopharm,2004,57(2):155-162.
    [84]Asasutjarit R. Lorenzen S I. Sirivichayakul S. et al. Effect of solid lipid nanoparticles formulation compositions on their size, zeta potential and potential for in vitro pHIS-HIV-hugag transfection. Pharm Res,2007,24(6):1098-1107.
    [85]Anon. In Biodegradation and Bioaccumulation Data of Existing Chemicals Based on the CSCL Japan. Chemical Inspection Testing Institute Japan. Tokyo:Japan Chemical Industry Ecology-Toxicology and Information Center.1992,3138-3139.
    [86]Takasaki A, Hashida T, Fujiwara S, et al. Bactericidal action of a quaternary ammonium disinfectant, didecyldimethylammonium chloride against Staphylococcus aureus. Japanese Journal of Toxicology and Environmental Health,1994a,40:344-350.
    [87]Takasaki A, Hashida T, Kato K, et al. Action of a quaternary ammonium disinfectant on cell membrane of Staphylococcus aureus. Japanese Journal of Toxicology and Environmental Health, 1994b,40:520-526.
    [88]Argy G, Bricout F, D'Hermies F, et al. Study of prophylaxis by didecyl dimethyl ammonium chloride against herpes simplex virus infection in nude mice. C R Acad Sci Ⅲ,1999, 322(10):863-870.
    [89]S. Budavari. The Merck Index Merck & Co. Inc. Whitehouse Station, USA,1996.
    [90]Labhasetwar V, Song C, Humphrey W, et al. Arterial uptake of biodegradable nanoparticles: effect of surface modifications. J Pharm Sci,1998,87(10):1229-1234.
    [91]Dimethy dioctadecyl ammonium chloride (DODMAC) Summary Risk Assessment Report, With addendum,2009, EUR,20397 EN/3.
    [92]郭弈光,赵娜,尚亚卓,等.双十八烷基二甲基氯化铵水溶液的性质.华东理工大学学报(自然科学版),2011(02):186-192.
    [93]NCCLS. Performance Standards for Antimicrobial Disk Susceptibility Tests-Sixth Edition; Approved Standard. NCCLS Document M2-A6. Wayne, Pennsylvania:NCCLS; 1997.
    [94]NCCLS. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically-Fourth Edition; Approved Standard. NCCLS Document M7-A4. Wayne, Pennsylvania:NCCLS; 1997.
    [95]NCCLS. Methods for Antimicrobial Susceptibility Testing of Anaerobic Bacteria-Fourth Edition; Approved Standard. NCCLS document M11-A4.Wayne, Pennsylvania:NCCLS; 1998.
    [96]Isenberg H D. Clinical evaluation of laboratory guidance to antibiotic therapy. Health Lab Sci, 1967,4(3):166-180.
    [97]Taylor P C, Schoenknecht F D, Sherris J C, et al. Determination of minimum bactericidal concentrations of oxacillin for Staphylococcus aureus:influence and significance of technical factors. Antimicrob Agents Chemother,1983,23(1):142-150.
    [98]Pelletier L J, Baker C B. Oxacillin, cephalothin, and vancomycin tube macrodilution MBC result reproducibility and equivalence to MIC results for methicillin-susceptible and reputedly tolerant Staphylococcus aureus isolates. Antimicrob Agents Chemother,1988,32(3):374-377.
    [99]Shanholtzer C J, Peterson L R, Mohn M L, et al. MBCs for Staphylococcus aureus as determined by macrodilution and microdilution techniques. Antimicrob Agents Chemother,1984, 26(2):214-219.
    [100]Washington J N. Current problems in antimicrobial susceptibility testing. Diagn Microbiol Infect Dis,1988,9(3):135-138.
    [101]NCCLS. Methods for Determining Bactericidal Activity of Antimicrobial Agents; Approved Guideline. NCCLS document M26-A. NCCLS,940 West ValleyRoad, Suite 1400, Wayne, Pennsylvania 19087 USA,1999.
    [102]CLSI. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated From Animals; Approved Standard-Third Edition. CLSI document M31-A3. Wayne, PA:Clinical and Laboratory Standards Institute; 2008
    [103]Eberhart R J. Management of dry cows to reduce mastitis. J Dairy Sci,1986, 69(6):1721-1732.
    [104]Gruet P, Maincent P, Berthelot X, et al. Bovine mastitis and intramammary drug delivery: review and perspectives. Adv Drug Deliv Rev,2001,50(3):245-259.
    [105]Kanke M, Simmons G H, Weiss D L, et al. Clearance of 14Ce-labeled microspheres from blood and distribution in specific organs following iv and ia administration in Beagle dogs. J Pharm Sci,1980,69(7):755-762.
    [106]Illum L, Davis S S. Targeting of colloidal particles to the bone marrow. Life Sci,1987, 40(16):1553-1560.
    [107]Rudt S, Muller R H. In vitro phagocytosis assay of nano and microparticles by chemiluminescence. Ⅱ. Effect of surface modification by coating of particles with poloxamer on the phagocytic uptake. J Contr Rel,1993,25:51-59.
    [108]Tallury P, Payton K, Santra S. Silica-based multimodal/multifunctional nanoparticles for bioimaging and biosensing applications. Nanomedicine (Lond),2008,3(4):579-592.
    [109]Smith A M, Duan H, Mohs A M, et al. Bioconjugated quantum dots for in vivo molecular and cellular imaging. Adv Drug Deliv Rev,2008,60(11):1226-1240.
    [110]Kawabata Y, Wada K, Nakatani M, et al. Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system:basic approaches and practical applications. Int J Pharm,2011,420(1):1-10.
    [111]Muller R H, Gohla S, Keck C M. State of the art of nanocrystals--special features, production, nanotoxicology aspects and intracellular delivery. Eur J Pharm Biopharm,2011, 78(1):1-9.
    [112]Merisko-Liversidge E, Liversidge G G. Nanosizing for oral and parenteral drug delivery:a perspective on formulating poorly-water soluble compounds using wet media milling technology. Adv Drug Deliv Rev,2011,63(6):427-440.
    [113]Merisko-Liversidge E M, Liversidge G G. Drug nanoparticles:formulating poorly water-soluble compounds. Toxicol Pathol,2008,36(1):43-48.
    [114]Noyes AA. Whitney WR. The rate of solution of solid substances in their own solutions. J Am Chem Soc.1897.19:930-934.
    [115]Tomazic-Jezic V J. Merritt K, Umbreit T H. Significance of the type and the size of biomaterial particles on phagocytosis and tissue distribution. J Biomed Mater Res.2001. 55(4):523-529.
    [116]Xie S. Zhu L. Dong Z, el al. Preparation, characterization and pharmacokinetics of enrofloxacin-loaded solid lipid nanoparticles:influences of fatty acids. Colloids Surf B Biointerfaces,2011,83(2):382-387.
    [117]Wang Y, Zhu L, Dong Z, et al. Preparation and stability study of norfloxacin-loaded solid lipid nanoparticle suspensions. Colloids Surf B Biointerfaces,2012,98:105-111.
    [118]Dong Z, Xie S, Zhu L, et al. Preparation and in vitro, in vivo evaluations of norfloxacin-loaded solid lipid nanopartices for oral delivery. Drug Deliv,2011,18(6):441-450.
    [119]Xie S, Zhu L, Dong Z, et al. Preparation and evaluation of ofloxacin-loaded palmitic acid solid lipid nanoparticles. Int J Nanomedicine,2011,6:547-555.
    [120]陈杖榴,杨桂香,孙永学,等.兽药残留的毒性与生态毒理研究进展.华南农业大学学报,2001(01):88-91.
    [121]Zambaux M F, Bonneaux F, Gref R, et al. Influence of experimental parameters on the characteristics of poly (lactic acid) nanoparticles prepared by a double emulsion method. J Control Release,1998,50(1-3):31-40.
    [122]Lee S C, Oh J T, Jang M H, et al. Quantitative analysis of poly vinyl alcohol on the surface of poly (D, L-lactide-co-glycolide) microparticles prepared by solvent evaporation method:effect of particle size and PVA concentration. J Control Release,1999,59(2):123-132.
    [123]Sahoo S K, Panyam J, Prabha S, et al. Residual polyvinyl alcohol associated with poly (D,L-lactide-co-glycolide) nanoparticles affects their physical properties and cellular uptake. J Control Release,2002,82(1):105-114.
    [124]Redhead H M, Davis S S, Illum L. Drug delivery in poly(lactide-co-glycolide) nanoparticles surface modified with poloxamer 407 and poloxamine 908:in vitro characterisation and in vivo evaluation. J Control Release,2001,70(3):353-363.
    [125]Misra R, Acharya S, Dilnawaz F, et al. Sustained antibacterial activity of doxycycline-loaded poly(D,L-lactide-co-glycolide) and poly(epsilon-caprolactone) nanoparticles. Nanomedicine (Lond),2009,4(5):519-530.
    [126]Ghaffari S, Varshosaz J, Saadat A, et al. Stability and antimicrobial effect of amikacin-loaded solid lipid nanoparticles. Int J Nanomedicine,2011,6:35-43.
    [127]Xie S, Pan B, Shi B, et al. Solid lipid nanoparticle suspension enhanced the therapeutic efficacy of praziquantel against tapeworm. Int J Nanomedicine,2011.6:2367-2374.
    [128]Paliwal R, Rai S, Vaidya B, et al. Effect of lipid core material on characteristics of solid lipid nanoparticles designed for oral lymphatic delivery. Nanomedicine,2009,5(2):184-191.
    [129]Shegokar R, Singh K. K, Muller R H. Production & stability of stavudine solid lipid nanoparticles--from lab to industrial scale. Int J Pharm,2011,416(2):461-470.
    [130]Venkateswarlu V, Manjunath K. Preparation, characterization and in vitro release kinetics of clozapine solid lipid nanoparticles. J Control Release,2004,95(3):627-638.
    [131]马万顺,崔燕,赵玉云,等.纳米颗粒抗菌机理的研究进展.生物物理学报,2010(08):638-648.
    [132]Schwegmann H, Feitz A J, Frimmel F H. Influence of the zeta potential on the sorption and toxicity of iron oxide nanoparticles on S. cerevisiae and E. coli. J Colloid Interface Sci,2010, 347(1):43-48.
    [133]Cho E C, Xie J, Wurm P A, et al. Understanding the role of surface charges in cellular adsorption versus internalization by selectively removing gold nanoparticles on the cell surface with a 12/KI etchant. Nano Lett,2009,9(3):1080-1084.
    [134]Pal S, Tak Y K, Song J M. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl Environ Microbiol,2007,73(6):1712-1720.
    [135]Liu H L, Dai S A, Fu K Y, et al. Antibacterial properties of silver nanoparticles in three different sizes and their nanocomposites with a new waterborne polyurethane. Int J Nanomedicine, 2010,5:1017-1028.
    [136]Gu H, Ho P L, Tong E, et al. Presenting vancomycin on nanoparticles to enhance antimicrobial activities. Nano Lett,2003,3:1261-1263.
    [137]Ahmad Z, Pandey R, Sharma S, et al. Alginate nanoparticles as antituberculosis drug carriers:formulation development, pharmacokinetics and therapeutic potential. Indian J Chest Dis Allied Sci,2006,48(3):171-176.
    [138]Jones N, Ray B, Ranjit K T, et al. Antibacterial activity of ZnO nanopartiele suspensions on a broad spectrum of microorganisms. FEMS Microbiol Lett,2008,279(1):71-76.
    [139]Chithrani B D, Ghazani A A, Chan W C. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett,2006,6(4):662-668.
    [140]Limbach L K, Wick P, Manser P, et al. Exposure of engineered nanoparticles to human lung epithelial cells:influence of chemical composition and catalytic activity on oxidative stress. Environ Sci Technol,2007,41(11):4158-4163.
    [141]Porter A E, Gass M, Muller K, et al. Visualizing the uptake of C60 to the cytoplasm and nucleus of human monocyte-derived macrophage cells using energy-filtered transmission electron microscopy and electron tomography. Environ Sci Technol,2007,41(8):3012-3017.
    [142]He C, Hu Y, Yin L, et al. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials,2010,31(13):3657-3666.
    [143]Khan M K, Nigavekar S S, Minc L D, et al. In vivo biodistribution of dendrimers and dendrimer nanocomposites-implications for cancer imaging and therapy. Technol Cancer Res Treat,2005,4(6):603-613.
    [144]Hagigit T, Abdulrazik M, Orucov F, et al. Topical and intravitreous administration of cationic nanoemulsions to deliver antisense oligonucleotides directed towards VEGF KDR receptors to the eye. J Control Release.2010.145(3):297-305.
    [145]Wilkins D J. Myers P A. Studies on the relationship between the electrophoretic properties of colloids and their blood clearance and organ distribution in the rat. Br J Exp Pathol.1966. 47(6):568-576.
    [146]Harush-Frenkel O. Bivas-Benita M, Nassar T, el al. A safety and tolerability study of differently-charged nanoparticles for local pulmonary drug delivery. Toxicol Appl Pharmacol, 2010,246(1-2):83-90.
    [147]Miglietta A, Cavalli R, Bocca C, et al. Cellular uptake and cytotoxicity of solid lipid nanospheres (SLN) incorporating doxorubicin or paclitaxel. Int J Pharm,2000,210(1-2):61-67.
    [148]Serpe L, Catalano M G, Cavalli R, et al. Cytotoxicity of anticancer drugs incorporated in solid lipid nanoparticles on HT-29 colorectal cancer cell line. Eur J Pharm Biopharm,2004, 58(3):673-680.
    [149]Mayor S, Pagano R E. Pathways of clathrin-independent endocytosis. Nat Rev Mol Cell Biol,2007,8(8):603-612.
    [150 Taylor P R, Martinez-Pomares L, Stacey M, et al. Macrophage receptors and immune recognition. Annu Rev Immunol,2005,23:901-944.
    [151]Lopez C F, Nielsen S O, Moore P B, et al. Understanding nature's design for a nanosyringe. Proc Natl Acad Sci USA,2004,101:4431-4434.
    [152]Kostarelos K, Lacerda L, Pastorin G, et al. Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nat Nanotechnol,2007,2(2):108-113.
    [153]Davda J, Labhasetwar V. Characterization of nanoparticle uptake by endothelial cells. Int J Pharm,2002,233(1-2):51-59.
    [154]Kam N W, Liu Z, Dai H. Carbon nanotubes as intracellular transporters for proteins and DNA:an investigation of the uptake mechanism and pathway. Angew Chem Int Ed Engl,2006, 45(4):577-581.
    [155]Park J S, Han T H, Lee K Y, et al. N-acetyl histidine-conjugated glycol chitosan self-assembled nanoparticles for intracytoplasmic delivery of drugs:endocytosis, exocytosis and drug release. J Control Release,2006,115(1):37-45.
    [156]Crawford R M, Leiby D A, Green S J, et al. Macrophage activation:a riddle of immunological resistance. Immunol Ser,1994,60:29-46.
    [157]Shimada O, Ishikawa H, Tosaka-Shimada H, et al. Rearrangements of actin cytoskeleton during infection with Escherichia coli O157 in macrophages. Cell Struct Funct,1999, 24(5):237-246.
    [158]Watson W C, Gordon R J. Studies on the digestion, absorption and metabolism of castor oil. Biochem Pharmacol,1962.11:229-236.
    [159]DeMerlis C C, Schoneker D R. Review of the oral toxicity of polyvinyl alcohol (PVA). Food Chem Toxicol,2003,41 (3):319-326.
    [160]Vogelman B, Craig W A. Kinetics of antimicrobial activity. J Pediatr,1986,108(5 Pt 2):835-840.
    [161]周宁,张建新,樊明涛,等.细菌药物敏感性实验方法研究进展.食品工业科技,2012(09):459-464.
    [162]Martinez-Castanon G A, Nino-Martinez N, Martinez-Gutierrez F, et al. Synthesis and antibacterial activity of silver nanoparticles with different sizes. J Nanopart Res,2008, 10:1343-1348.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700