纳米晶金属材料微结构参数、热稳定性和马氏体逆相变的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
表面机械研磨处理(SMAT),作为一种利用剧烈塑性变形制备纳米材料的新技术,被广泛用于制备各种纳米晶金属材料,以期获得与传统粗晶材料不同的性能和行为。本文利用SMAT制备出Fe-30wt.%Ni合金(fcc)、纯Fe(bcc)、纯Ni(fcc)和纯Co(hcp)不同晶体结构的纳米晶金属材料,通过光学金相(OM)、X射线衍射(XRD)、透射电镜(TEM)、扫描电镜(SEM)、能谱仪(EDS)和差示扫描量热法(DSC)等多种表征方法,研究它们的微结构参数、热稳定性以及马氏体逆相变行为,为SMAT制备的纳米金属材料的实际应用提供理论指导,而且丰富了纳米材料中马氏体相变的研究内容。
     Fe-30wt.%Ni合金、纯Ni、纯Fe和纯Co经过表面机械研磨处理后,表面均发生剧烈塑性变形,随着深度的增加,晶粒尺寸和微观应变随深度呈梯度变化,并可获得10~20μm的纳米晶表层,根据TEM观测,最表层的晶粒尺寸小于10nm。用X射线单峰傅氏分析法对表面机械研磨处理后Fe-30wt.%Ni合金、纯Ni和纯Fe的微结构参数进行定量测定,结果表明材料在表面机械研磨处理后,晶粒尺寸迅速减小到纳米级,并可得到高的微观应变、位错密度和形变储存能,其中位错密度和形变储存能的数量级为1015-1016 m-2和106-107 Jm-3,均比拉伸变形样品的位错密度和储存能高一个数量级。通过对表面机械研磨处理后纳米晶Fe-30wt.%Ni合金的HRTEM观察表明,某些纳米晶粒内部包含一些由小角晶界分隔的亚晶粒,通过对HRTEM照片的一维傅氏变换可知纳米晶界和亚晶界上分布有高密度的位错,而亚晶粒内部位错密度较低。
     对纳米晶Fe-30wt.%Ni合金和纯Ni的热稳定进行了研究,两种材料在不同的退火温度下进行等温退火处理,用X射线衍射单峰近似函数计算了不同退火温度和时间下的纳米晶粒尺寸和微观应变,两种材料具有共同的晶粒生长特征。晶粒尺寸均在退火初期(前15min)生长速率较快,退火温度越高,退火初期的生长速率越快,退火后期(15min~120min)晶粒生长的速率变慢。微观应变均在退火的前15min左右下降较快,随后基本到达一个极限值,退火温度越高,到达的极限值越低。通过对纳米晶Fe-30wt.%Ni合金马氏体的原位加热TEM观察显示,亚晶粒的合并是退火初期晶粒尺寸快速增加的原因。对纳米晶Fe-30wt.%Ni合金和纯Ni晶粒生长动力学参数进行了计算,结果表明纳米晶Fe-30wt.%Ni合金和纯Ni的晶粒生长时间指数n分别约为0.1和0.14,说明纳米晶Fe-30wt.%Ni合金具有比纯Ni更慢的晶粒生长速率。在较低的温度下退火时(纯Ni低于250℃,Fe-30wt.%Ni合金低于350℃),两者的晶粒生长激活能均在30~40kJ/mol,说明晶粒生长均受晶界的重排导致的晶粒合并所控制。在较高的温度下退火时(纯Ni为250℃~450℃,Fe-30wt.%Ni合金为350℃~550℃),Fe-30wt.%Ni合金和纯Ni的晶粒生长激活能分别为176.8kJ/mol和121.3kJ/mol,分别对应于两种材料的晶界扩散激活能,这说明晶粒生长主要由晶界扩散所控制。两种材料在较高温度下退火均会出现某些晶粒的异常生长,这种现象是由晶粒尺寸分布的不均匀造成的。
     通过对文献中纳米材料逆相变试验和理论的分析,对课题组前期工作提出的纳米晶Fe-30wt.%Ni合金和Co金属马氏体逆相变行为基于晶粒尺寸效应的解释提出置疑。本文考虑了马氏体和奥氏体两相表面能的差异,建立了纳米晶马氏体逆相变的热力学表达式,通过在热力学表达式中加入形变储存能的影响,计算和分析了表面机械研磨处理制备的纳米晶Fe-30wt.%Ni合金和Co金属的马氏体逆相变的行为,计算的结果预示出两种材料的马氏体逆相变开始温度(As)应低于或接近对应的传统粗晶材料。DSC实验结果显示,表面机械研磨处理制备的纳米晶Fe-30wt.%Ni合金的As温度高于对应的粗晶样品,而纳米晶Co的As温度低于对应的粗晶样品。该实验结果与课题组前期实验工作一致,但Fe-30wt.%Ni合金的实验结果与理论预测相反,理论分析发现可能在SMAT处理中引起成分的变化而导致化学自由能的变化,实验进一步证明了在机械研磨过程中钢球中合金元素确实扩散入Fe-30wt.%Ni合金和Co金属,并导致表层成分的变化,从而使Fe-30wt.%Ni合金和Co金属的As温度不同于传统粗晶样品。通过磨去表层的合金元素扩散层,获得不受成分影响的纳米晶Fe-30wt.%Ni合金和Co金属,DSC实验结果显示两种材料的As温度均与对应粗晶样品接近,这与热力学模型的预测结果相符。
     在表面机械研磨处理的过程中,合金元素可在钢球和被处理样品之间发生互扩散,这种互扩散使Fe-30wt.%Ni合金和Co金属纳米晶表层的饱和磁化强度和居里温度等磁性能显著不同于相应的传统粗晶样品,由此预示出表面机械研磨处理不仅是一种表面纳米化技术,还是一种有效的表面改性方法,因此具有潜在的应用价值。
Surface mechanical attrition treatment (SMAT), as a new technique producing nanocrystalline materials by severe plastic deformation, has been used to produce nanocrystalline surface layer in a variety of metallic materials, aiming at acquiring the properties and behaviors different from their coarse-grained counterparts. By means of SMAT, the different nanocrystalline surface layers of Fe-30wt.%Ni alloy(fcc), pure Ni(fcc), Fe(bcc) and Co(hcp) metals are obtained. By using optical microscopy (OM), X-ray diffraction (XRD), transmission electron microscopy (TEM) attached energy dispersive spectrometer (EDS), scanning electron microscopy (SEM) attached EDS and differential scanning calorimetry (DSC), the microstructural parameters, thermal stability and reversal martensitic transformation of nanocrystalline materials are investigated, which provides the theoretical instruction for the application of nanocrystalline materials produced by SMAT and enriches the research on reversal martensitic transformation of nanocrystalline materials.
     During SMAT, severe plastic deformation occurs in the surface layer of Fe-30wt.%Ni alloy, pure Ni, Fe and Co metals. The grain size and microstrain present the gradient distribution with the increase of the depth. Nanocrystalline surface layers are determined as 10~20μm depth. Based on the TEM observation, the average grain sizes in the top layer decrease to less than 10nm. By means of XRD single-peak fourier analysis, the microstructural parameters of Fe-30wt.%Ni alloy, pure Ni and Fe metals are quantitatively measured. The results show that the grain size drops rapidly into the nanometer scale, and high values of root mean square (r.m.s.) microstrain, dislocation density and stored elastic energy are gained after SMAT. For example, the orders of magnitude for dislocation density and stored elastic energy are as high as 1015-1016m-2 and 106-107 Jm-3, which both exceed by one order of magnitude value in the tensile-deformed counterparts. The high resolution TEM (HRTEM) images of nanocrystalline Fe-30wt.%Ni alloy show that nanosized grain consists of some subgrains separated by low-angle grain boundary, and a large number of dislocations distribute at grain and subgrain boundaries, while few dislocations distribute in the subgrain interior, which makes grain and subgrain boundaries be in high-energy and non-equilibrium state.
     The thermal stability of nanocrystalline Fe-30wt.%Ni alloy and pure Ni are studied by annealed at different temperatures for different times. By using the the single line approximation analysis, the grain size and microstrain of different samples are determined. The results show that two kinds of nanocrystalline materials have common features of grain growth as follows. The grain size increases rapidly within the early stage of annealing (~15min), while it becomes slow during sequent annealing time (15min~120min). The higher the annealing temperature is, the faster grains grow at the early stage of annealing. The microstrain decreases rapidly within the first 15nm of annealing and decreases slowly during sequent annealing time. The higher the annealing temperature is, the lower the value of microstrain drops. Through the in-situ TEM observation, the incorporation of subgrains may be the main reason for the initially rapid grain growth. By the measurement of grain growth kinetics parameters of nanocrystalline Fe-30wt%Ni alloy and pure Ni, the value of time exponent, n, of Fe-30wt%Ni alloy and pure Ni are 0.1 and 0.14, respectively, indicating that the grain growth rate of Fe-30wt%Ni alloy is slower than that of pure Ni. When annealed in the low temperature (pure Ni:~250℃, Fe-30wt.%Ni alloy:~350℃), the activation energy, Q, of Fe-30wt%Ni alloy and pure Ni are both 30~40kJ/mol, suggesting that the grain growth is governed by incorporation of subgrains undergoing the rearrangement of the grain boundaries. When annealed in the comparatively high temperature (pure Ni: 250℃~450℃, Fe-30wt.%Ni alloy: 350 ℃~550℃), the activation energy, Q, of Fe-30wt%Ni alloy and pure Ni are 176.8kJ/mol and 121.3kJ/mol, suggesting that the grain growth is governed by the grain boundary diffusion. Abnormal grain growth are both observed during annealing of Fe-30wt%Ni alloy and pure Ni, which can be attributed to the non-uniformity of the grain size distribution.
     Based on the experimental and theoretical analysis on reversal martensitic transformation of nanocrystalline materials reported in the literatures, some errors are corrected in the explanation of the reversal martensitic transformation of nanocrystalline Fe-30wt.%Ni alloy and Co previously suggested by our research group. Considering the difference of surface energies of martensite and austenite, a thermodynamic expression of the reversal martensitic transformation in nanocrystalline materials is established and is used for SMAT nanocrystalline Fe-30wt.%Ni alloy and Co by the addition of the store energy term. The theoretical calculation and analysis predict that the start temperatures of reversal martensitic transformation, As, of nanocrystalline Fe-30wt.%Ni alloy and Co are both lower than or close to those of their coarse-grained counterparts. The experimental results from DSC show that As of nanocrystalline Fe-30wt.%Ni alloy is higher than that of conventional coarse-grained alloy, while As of nanocrystalline Co metal is lower than that of coarse-grained Co, which are consistent with previous experimental results in our group. However, the experimental result of Fe-30wt.%Ni alloy is contrary to the prediction from the thermodynamic expression in this paper. The theoretical analysis suggests that the chemical free energy change resulting from the composition deviation during SMAT may be responsible for the increase of As. The further experimental results show that alloying elements do diffuse from steel balls into the Fe-30wt.%Ni alloy and Co metal during SMAT, leading to the composition deviation of surface layer from their original compositions, in turn resulting in the different As from the conventional coarse-grained samples. By removing the surface layer of nanocrystalline Fe-30wt.%Ni alloy and Co with 5μm thickness, the effect of diffusion of alloying elements on As are eliminated. The DSC results show that As temperatures of nanocrystalline Fe-30wt.%Ni alloy and Co are very close to those of their coarse-grained samples, which agree with the predicted results from the thermodynamic expressions.
     The diffusion of alloying elements can occur between steel balls and the treated sample during SMAT. The diffusion of alloying elements leads to the remarkably different saturation magnetization and Curie temperature of nanocrystalline Fe-30wt.%Ni alloy and Co from their conventional coarse-grained counterparts, suggesting that SMAT is not only a surface nanocrystallization technology, but also an effective alloying method for surface modification and thus has potential application in practice.
引文
[1] Gleiter H., Nanostructured materials. In: Hansen N. et al., eds, Proceedings of the second rise international symposium on metallurgy and materials science, Denmark, Roskilde, 1981,15-29
    [2]张立德,牟季美,纳米材料和纳米结构,北京:科学出版社,2001,6
    [3] H. Gleiter, Nanocrystalline materials, Progress in Materials Science, 1989, 33, 223-315
    [4] K. Lu, Nanocrystalline metals crystallized from amorphous solids: nanocrystallization, structure, and properties, Materials Science and Engineering:R, 1996, 16, 161-221
    [5] C. Suryanarayana, Nanocrystalline materials, International Materials Reviews, 1995, 40, 41-64
    [6] H. Gleiter, Nanostructured materials: basic concepts and microstructure, Acta Materialia, 2000, 48, 1-29
    [7] R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Bulk nanostructured materials from severe plastic deformation, Progress in Materials Science, 2000, 45, 103-189
    [8]卢柯,周飞,纳米晶体材料的研究现状,金属学报,1997,33,99-106
    [9]巩雄,张桂兰,汤国庆,陈文驹,杨宏秀,纳米晶体材料研究进展,化学进展,1997,9,349-360
    [10]文玉华,周富信,刘曰武,纳米材料的研究进展,力学进展,2001,31,47-61
    [11] C. Suryanarayana, Mechanical alloying and milling, Progress in Materials Science, 2001, 46, 1-184
    [12] U. Erb, A. M. El-Sherik, G. Palumbo, K. T. Aust, Synthesis, structure and properties of electroplated nanocrystalline materials, Nanostructured Materials, 1993, 2, 383-390
    [13] K. Lu, J. Lu, Surface nanocrystallization (SNC) of metallic materials-presentation of the concept behind a new approach, J. Mater. Sci. Technol., 1999, 15, 193-197
    [14] K. Lu, J. Lu, Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment, Mater. Sci. Eng. A, 2004, 375-377, 38-45
    [15] Geng S., Wang F., Zhu S., et al., Hot corrosion resistance of a sputtered K38G nanocrystalline coating in molten sulfate at 900℃, Oxid. Met., 2002, 57, 549
    [16] Wang F., Geng S., Zhu S., Corrosion behavior of a sputtered K38G nanocrystalline coating with a solid NaCl deposit in wet oxygen at 600 to 700℃, Oxid. Met., 2002, 58,185-195
    [17]李瑛,耿树江,王福会,磁控溅射In738涂层耐盐水腐蚀性能研究,中国腐蚀与防护学报,2002,22,349-354
    [18]李雪莉,李瑛,王福会, Fe20Cr溅射纳米涂层电化学腐蚀行为研究,中国腐蚀与防护学报,2003,23,84-88
    [19] Lu J., Proc. The 4th Int. Conf. On Residual Stresses, SEM, Baltimore, 1994, 1154
    [20] Hanus E., Ericsson T., Lu J., et al., Influence of cold-rolling and fatigue on the residual-stress state of a metal-matrix composite, Journal de Physics IV, 1993, 3,1817-1820
    [21] Kaech G.,. Epprecht W., Nouvelle forme de precipites metastables et phase amorphe dans un alliage AlCu 2.12% at irradie Au laser, Scr. Metall., 1978, 12, 493-496
    [22] Zimmermann M., Carrard M., Kurtz W., Rapid solidification of Al-Cu eutectic alloy by laser remelting, Acta Metall., 1989, 37, 3305-3313
    [23] Gill S.C., Kurz W., Laser rapid solidification of Al-Cu alloys: banded and plane front growth, Mater. Sci. Eng. A. 1993, 173, 335-338
    [24] Li R, Ferreira M G S, Almeida A., et al, Localized corrosion of laser surface melted 2024-T351 aluminium alloy, Surf and Coat Tech, 1996, 81, 290-296
    [25] N.R. Tao, Z.B. Wang, W.P. Tong, M.L. Sui, J. Lu, K. Lu, An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment, Acta Mater., 2002, 50, 4603-4616
    [26] K. Wang, N.R. Tao, G. Liu, J. Lu, K. Lu, Plastic strain-induced grain refinement at the nanometer scale in copper, Acta Mater., 2006, 54, 5281-5291
    [27] H.Q. Sun, Y.-N. Shi, M.-X. Zhang, K. Lu, Plastic strain-induced grain refinement in the nanometer scale in a Mg alloy, Acta Materialia, 2007, 55, 975-982
    [28] K.Y. Zhu, A. Vassel, F. Brisset, K. Lu, J. Lu, Nanostructure formation mechanism ofα-titanium using SMAT, Acta Materialia, 2004, 52, 4101-4110
    [29] H. W. Zhang, Z. K. Hei, G. Liu, J. Lu, K. Lu, Formation of nanostructured surface layer on AISI 304 stainless steel by means of surface mechanical attrition treatment, Acta Materialia, 2003, 51, 1871-1881
    [30] Chunsheng Wen, Wei Li, Yonghua Rong, Nanocrystallization and martensitic transformation in Fe-23.4Mn-6.5Si-5.1Cr (wt.%) alloy by surface mechanical attrition treatment, Materials Science and Engineering: A, 2008, 481-482, 484-488
    [31] Liu G., Lu J., Lu K., Surface nanocrystallization of 316L stainless steel induced by ultrasonic shot peening, Mater Sci Eng, A. 2000, 286, 91-95
    [32] C. Wen, Z. Chen, B. Huang, Y. Rong, Nanocrystallization and magnetic properties of Fe-30 weight percent Ni alloy by surface mechanical attrition treatment, Metall. Mater. Trans. A, 2006, 37, 1413-1421
    [33] X. Wu, N. Tao, Y. Hong, J. Lu, K. Lu,γ→εmartensite transformation and twinning deformation in fcc cobalt during surface mechanical attrition treatment, Scripta Materialia, 2005, 52, 547-551
    [34] T. Roland, D. Retraint, K. Lu, J. Lu, Enhanced mechanical behavior of a nanocrystallised stainless steel and its thermal stability, Materials Science and Engineering: A, 2007, 445-446, 281-288
    [35] Yong X. P., Liu G., Lu K., et al., Characterization and properties of nanostructured surface layer in a low carbon steel subjected to surface mechanical attrition, J.Mater. Sci.Technol., 2003, 19,1-4
    [36] Tao N. R., Tong W. P., Wang Z. B., et al., Mechanical and wear properties of nanostructured surface layer in iron induced by surface mechanical attrition treatment, J. Mater. Sci.Technol, 2003, 19,563-566
    [37] Lu K., Wang J. T. and Wei W. D., A new method for synthesizing nanocrystalline alloys, J. Appl. Phys., 1991, 69, 522-524
    [38]王镇波,雍兴平,陶乃镕,等,表面纳米化对低碳钢摩擦磨损性能的影响,金属学报,2001, 37,1251-1255
    [39]刘刚,雍兴平,卢柯,金属材料表面纳米化的研究现状,中国表面工程,2001,3,1-5
    [40] Guo F. A., Trannoy N., Lu J., Microstructural analysis by scanning thermal microscopy of a nanocrystalline Fe surface induced by ultrasonic shot peening, Superlattices Microstruc., 2004, 35,445-453
    [41] Guo F. A., Zhu K. Y., Trannoy N., et al., Examination of thermal properties by scanning thermal microscopy in ultrafine-grained pure titanium surface layer produced by surface mechanical attrition treatment, Thermochimica Acta, 2004, 419, 239-246
    [42] Guo F. A., Trannoy N., Lu J., Analysis of thernal properties by scanning thermal microscopy in nanocrystallized iron surface induced by ultrasonic shot peening, Mater. Sci. Eng. A, 2004, 369,36-42
    [43] Wei Y., Wang X., Zhao M., Size effect measurement and characterization in nanoindentation test, J.Mater.Res., 2004,19, 208-217
    [44] Wang X. W., Wang J. Y., Xiong L. Y., et al., Defect characteristic in the surface nanocrystallined materials treated by high energy shot peening, Mater. Sci. Forum, 2004, 445-446, 210-212
    [45] Wang X. W., Wang J. Y. Wu P., et al., The investigation of internal friction and elastic modulus in surface nanostrured materials, Mater. Sci. Eng.A, 2004, 370,158-162
    [46] Ni Z. C., Wang X. W., Wang J. Y., et.al. Characterization of the phase transformation in a nanostructured surface layer of 304 stainless steel induced by high-energy shot peening, Phisica B.,2003, 334,221-228
    [47]冯淦,石连捷,吕坚,等,低碳钢超声喷丸表面纳米化的研究,金属学报,2000,36,300-303
    [48] Zhang J. B., Liu Y. L., Zhao X. Q., et al., Characterization of nanocrystallization surface layer of 0.4C-1Cr low alloy steel prepared by ultrasonic particulate peening, Trans. Mater. Heat Treat., 2004, 25, 1257-1259
    [49] Tong W. P., Tao N. R., Wang Z. B., et al., Nitriding iron at lower temperatures, Science, 2003, 289,686-688
    [50] Gu J. F., Bei D. H., Pan J. S., et al., Improved nitrogen transport in surface nanocrystallized low-carbon steels during gaseous nitridation, Mater. Lett., 2002, 55,340-343
    [51] Wang Z. B., Tao N. R., Tong W. P., et al., Diffusion of chromium in nanocrystalline iron produced by means of surface mechanical attrition treatment, Acta Mater., 2003, 51,4319-4329
    [52] Zhang H. W., Wang L., Hei Z. K., et al., Low-temperature plasma nitriding of AISI 304 stainless steel with nanostructured surface layer, Z.Metallkd., 2003, 94,1143-1147
    [53] Tong W. P., Zhang H. W., Tao N. R., et al., Low temperature nitriding by means of SMAT, Trans. Mater. Heat Treat., 2004, 25, 301-306
    [54] X.L. Wu, N.R. Tao, Q.M. Wei, P. Jiang, J. Lu, K. Lu, Microstructural evolution and formation of nanocrystalline intermetallic compound during surface mechanical attrition treatment of cobalt, Acta Mater., 2007, 55, 5768-5779
    [55]张立德,牟季美,纳米材料和纳米结构,北京:科学出版社,2001,154
    [56] J. Gubicza, M. Kassem, G. Ribárik, T. Ungár, The microstructure of mechanically alloyed Al–Mg determined by X-ray diffraction peak profile analysis, Materials Science and Engineering A, 2004, 372, 115-122
    [57] A. P. Zhilyaev, G. V. Nurislamova, S. Suri?ach, M. D. Barò, and T. G. Langdon, Mater. Phys. Mech., 2002, 5, 23-27
    [58] Tung F, Zwui S, Wang Y. X-ray analysis of microscopic structure in deformed brass, J. Mater. Sci., 1986, 21, 3223-3226
    [59] Mitra Taheri, Hasso Weiland, Anthony Rollett, A method of measuring stored energymacroscopically using statistically stored dislocations in commercial purity aluminum, Metallurgical and Materials Transactions A, 2006, 37, 19-25
    [60] Shi-Hoon Choi, Young-Sool Jin, Evaluation of stored energy in cold-rolled steels from EBSD data, Materials Science and Engineering A, 2004, 371, 149-159
    [61] N. Rajmohan, Y. Hayakawa, J. A. Szpunar, J. H. Root, Neutron diffraction method for stored energy measurement in interstitial free steel, Acta Materialia, Volume 45, 1997, 6, 2485-2494
    [62] A.R. Stokes, A numerical Fourier analysis method for the correction of width and shapes of the lines on x-ray powder photography. Proceedings of the Physics Society of London, A 1948, 61, 382-391
    [63] B.E. Warren and B.L. Averbach, The effect of cold-work distortion on X-ray patterns, J. Appl. Phys. 1950, 21, 595-599
    [64] C.N.J. Wagner, X-Ray Study of Low-Temperature Cold-Work in Silver and Aluminum, Acta Metall, 1957, 5, 477-482
    [65] B.E. Warren, X-Ray Diffraction, Addision-Wesley, 1969, 251
    [66] A.J.C. Wilson, The diffraction of X-rays by distorted-crystal aggregates. IV. Diffraction by a crystal with an axial screw dislocation , Acta Cryst., 1952, 5, 318-322
    [67] M. Wilkens, The determination of density and distribution of dislocations in deformed single crystals from broadened X-ray diffraction profiles, Phys. Status Solidi A 1970, 2, 359-370
    [68] Wang Y, Lee S, Lee Y, X-ray Line Profile Analysis of Deformed Al, J. Appl. Cryst. 1982, 15, 35-38
    [69] S. Zwui, G. Chen and Y. Wang, The X-ray diffraction effects of dislocations and stacking faults in hcp and bcc metals, J. Mater. Sci. Lett. 1985, 4, 1434-1436
    [70] J. Mignot and D. Rondot, Methode de separation des dimensions de domains et des microdeformations a partir des coefficients de fourier d’un seul profil de raie de diffraction x, Acta Metall, 1975, 23, 1321-1324
    [71] J. Mignot and D. Rondot, Utilisation de Methodes d'Approximation pour l'Etude des Coefficients du Developpement en Serie de Fourier des Raies de Diffraction X, Acta Cryst. A ,1977, 33, 327-333
    [72] R.K. Nandi, H.K. Kuo, W. Schlosberg, G. Wissler, J.B. Cohen and B. Crist, Single-peak methods for Fourier analysis of peak shapes, J. Appl. Cryst. 1984, 17, 22-26
    [73] J. I. Langford, A rapid method for analysing the breadths of diffraction and spectral lines using the Voigt function, J. Appl. Cryst. 1978, 11, 10-14
    [74] G.K. Wertheim, M.A. Butler, K.W. West and D.N.E. Buchanan: Rev. Sci. Instrum., 1974, 45, 1369-1373
    [75] M.M. Hall, V.G. Veeraraghavan, H. Rubin and P.G. Winchell, The approximation of symmetric X-ray peaks by Pearson type VII distributions, J. Appl. Cryst., 1977, 10, 66-68
    [76] Shewmon P.G., Transformation in Metals, New York: McGraw-Hill Book CO., 1969,116
    [77] R.A. ANDRIEVSKI, Stability of nanostructured materials, JOURNAL OF MATERIALS SCIENCE, 2003, 38, 1367-1375
    [78] B.S. Murty, M.K. Datta, S.K. Pabi, Structure and thermal stability of nanocrystalline materials, Sadhana, 2003, 28, 23-45
    [79] B. Ralph, Grain growth, Materials Science and Technology, 1990, 6,1139-1144
    [80] A. Kumpmann, B. Günther, H. -D. Kunze, Thermal stability of ultrafine-grained metals and alloys, Materials Science and Engineering A, 1993, 168, 165-169
    [81]赵永好博士论文,非晶晶化、机械研磨和磁控溅射制备纳米晶体材料的结构特征[D],沈阳,中科院金属研究所,2001
    [82] Carl C. Koch, Structural nanocrystalline materials: an overiew, J. Mater. Sci., 2007, 42, 1403-1414
    [83] Mats Hillert, Solute drag in grain boundary migration and phase transformations, Acta Materialia, 2004, 52, 5289-5293
    [84] G. Gottstein, A. H. King, L. S. Shvindlerman, The effect of triple-junction drag on grain growth, Acta Materialia, 2000, 48, 397-403
    [85] V. Y. Gertsman, R. Birringer, On the room-temperature grain growth in nanocrystalline copper, Scripta Metallurgica et Materialia, 1994, 30, 577-581
    [86] J. Weissmüller, Alloy effects in nanostructures, Nanostructured Materials, 1993, 3, 261-272
    [87] Y. Estrin, G. Gottstein, E. Rabkin, L. S. Shvindlerman, On the kinetics of grain growthinhibited by vacancy generation, Scripta Materialia, 2000, 43, 141-147
    [88] P. Knauth, A. Chara?, P. Gas, Grain growth of pure nickel and of a Ni-Si solid solution studied by differential scanning calorimetry on nanometer-sized crystals, Scripta Metallurgica et Materialia, 1993, 28, 325-330
    [89] A. Michels, C. E. Krill, H. Ehrhardt, R. Birringer, D. T. Wu, Modelling the influence of grain-size-dependent solute drag on the kinetics of grain growth in nanocrystalline materials, Acta Materialia, 1999, 47, 2143-2152
    [90] Ying Chen and Christopher A. Schuh, Geometric considerations for diffusion in polycrystalline solids, J. Appl. Phys., 2007, 101, 063524
    [91] Vladimir Yu Novikov, On the influence of triple junctions on grain growth kinetics and microstructure evolution in 2D polycrystals, Scripta Materialia, 2005, 52, 857-861
    [92] U. Czubayko, V. G. Sursaeva, G. Gottstein, L. S. Shvindlerman, Influence of triple junctions on grain boundary motion, Acta Materialia, 1998, 46, 5863-5871
    [93] M. Upmanyu, D. J. Srolovitz, L. S. Shvindlerman, G. Gottstein, Molecular dynamics simulation of triple junction migration, Acta Materialia, 2002, 50, 1405-1420
    [94] H. J. H?fler, R. S. Averback, Grain growth in nanocrystalline TiO2 and its relation to vickers hardness and fracture toughness, Scripta Metallurgica et Materialia, 1990, 24, 2401-2406
    [95] Averback R. S., Hahn H., Hofler H. J., Logas J.L. and Chen T. C., in Interfaces Between Polymers, Metals and Ceramics, ed. B.M. DeKoven, et al., Mater. Res. Soc. Symp. Proc., 1989, 153, 3
    [96] Feng Liu, Reiner Kirchheim, Grain boundary saturation and grain growth, Scripta Materialia, 2004, 51, 521-525
    [97] Reiner Kirchheim, Grain coarsening inhibited by solute segregation, Acta Materialia, 2002, 50, 413-419
    [98] Y. Estrin, G. Gottstein, E. Rabkin, L. S. Shvindlerman, On the kinetics of grain growth inhibited by vacancy generation, Scripta Materialia, 2000, 43, 141-147
    [99] M. Upmanyu, D.J. Srolovitz, L.S. Shvindlerman, and G. Gottstein, Vacancy Generation During Grain Boundary Migration, Interface Science, 1998, 6, 287-298
    [100] C. E. Krill, L. Helfen, D.Michels, H. Natter, A. Fitch, Size-Dependent Grain-Growth Kinetics Observed in Nanocrystalline Fe, Phys. Rev. lett., 2001, 86, 842-845
    [101]徐祖耀,马氏体相变与马氏体,北京:科学出版社,第二版,1999,45
    [102] Bunshah R.F., Mehl R. F., Rate of propagation of martensite, J. Metals, 1953, 5,1251-1258
    [103]徐祖耀,李学敏,低碳马氏体形成时碳的扩散,金属学报,1983,19,A83-87
    [104] Wayman C.M., Shear transformation and microstructure, Metallography, 1975, 8,105
    [105] Lieberman D.S., Martensitic transformations and determination of the inhomogeneous deformation, Acta Metall., 1958, 6, 680-693
    [106] Mackenzie J. K. and Bowles J. S., The crystallography of martensite transformations II , Acta Metall., 1954, 2,138-147
    [107]徐祖耀,马氏体相变与马氏体,北京:科学出版社,第二版,1999,14
    [108] Cohen M., Nucleation of solid state transformations, Trans. Metall. SOC of AIME, 1958, 212,171-183
    [109] Kajiwara S., Ohno S., Honma K., Uda M., Martensitic transformation in ultrafine particles of Fe-Ni alloys, Proceedings of the International Conference on Martensitic Transformations, 1986, 359-364
    [110] Kajiwara S., Ohno S., and Honma K., Martensitic transformation in ultra-fine particles of metals and alloys, Philos. Mag. A, 1991, 63, 625-644
    [111] Ying-Hui Zhou, Mireille Harmelin, Jean Bigot, Martensitic transformation in ultrafine Fe-Ni powders, Materials Science and Engineering A, 1990, 124, 241-249
    [112] J.Y. Huang, Y.K. Wu, H.Q. Ye, Deformation structures in ball milled copper, Acta Materialia, 1996, 44, 1211-1221
    [113] K. Haneda, Z.X. Zhou, A.H. Morrish, T. Majima, Low-temperature stable nanometer-size fcc-Fe particles with no magnetic ordering, Phys. Rev. B, 1992, 46, 13832
    [114] Koji Asaka, Yoshihiko Hirotsu, Tsugio Tadaki, Martensitic transformation in nanometer-sized particles of Fe–Ni alloys, Materials Science and Engineering A, 1999, 273-275, 262-265
    [115] J.M. McHale, A. Auroux, A.J. Perrotta, A. Navrotsky, Surface Energies and ThermodynamicPhase Stability in Nanocrystalline Aluminas, Science, 1997, 277, 788-791
    [116] A Suresh, MJ Mayo, WD Porter, Thermodynamics of the tetragonal-to-monoclinic phase transformation in fine and nanocrystalline yttria-stabilized zirconia powders, Journal of Materials Research, 2003, 18, 2912-2921
    [117] Li W, Ni C, Lin H, Huang CP, Shah SI, Size dependence of thermal stability of TiO2 nanoparticles, Journal of applied physics, 2004, 96, 6663-6668
    [118] P. I. Gouma, P. K. Dutta, M. J. Mills, Structural stability of titania thin films, Nanostructured Materials, 1999, 11, 1231-1237
    [119] G. Skandan, C. M. Foster, H. Frase, M. N. Ali, J. C. Parker, H. Hahn, Phase characterization and stabilization due to grain size effects of nanostructured Y2O3, Nanostructured Materials, 1992, 1, 313-322
    [120] T.Y. Hsu (Xu Zuyao), An approximate approach for the calculation of Ms in iron-base alloys, J. Mayer. Sci., 1985, 20, 23-31
    [121] Tu J.B., Jiang B.H., T.Y. Hsu (Xu Zuyao), et al., The size effect of the martensitic transformation in ZrO2 containing Ceramics, J. Mater. Sci., 1994, 29,1662-1665
    [122] Zhao X.Q., Liang Y., Hu Z.Q., Investigation on the martensitic transformation inγ-Fe(n) nanoparticles, Nanostruct. Mater., 1996, 7, 313-325
    [123] Kitakami O., Sato H., Shimada Y., Size effect on the crystal phase of cobalt fine particles, Phys. Rev. B, 1997, 56, 13849
    [124] Suzuki T., Shimono M., Takeno S., Vertex on the surface of a very small crystal during martensitic transformation, Phys. Rev. Lett., 1999, 82, 1474-147
    [125] Meng Q. P., Rong Y. H., and T. Y. Hsu, Nucleation barrier for phase transformations in nanosized crystals, Physical Review B, 2002, 65, 174118
    [126] Yonghua Rong, Qingping Meng, Yulong Zhang, T.Y. Hsu (Xu Zuyao), Phase stability and its intrinsic conditions in nanocrystalline materials, Materials Science and Engineering: A, 2006, 438-440, 25, 414-419
    [127] Yonghua Rong, Phase transformations and phase stability in nanocrystalline materials, Current Opinion in Solid State and Materials Science, 2005, 9, 287-295
    [128]徐祖耀,马氏体相变与马氏体,北京:科学出版社,第一版,1981,479
    [129]潘晓燕,马学鸣,球磨纳米TiO2的结构转变,热处理,2003,18,5-7
    [130] Kositic E, Kiss S, Boskovic S, Zec S, Mechanical activation of the gamma to alpha transition in Al2O3, Powder Technology, 1997, 91, 49-54
    [131] Liu S., Zhang L., An L., Phase Transformation of Mechanically Milled Nano-Sizedγ-Alumina, J. Am. Ceram. Soc., 2005, 88, 2559-2563
    [132] D. Martínez-Blanco, P. Gorria, M.J. Pérez, J.A. Blanco, R.I. Smith, Martensite–austenite transformation in Fe80Ni20 ball-milled powder, Journal of Magnetism and Magnetic Materials, 2007, 316, 328-331
    [1] N.R. Tao, Z.B. Wang, W.P. Tong, M.L. Sui, J. Lu, K. Lu, An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment, Acta Materialia, 2002, 50, 4603-4616
    [2] Th.H. De Keijser, J.I. Langford, E.J. Mittemeijer, A.B.P. Vogels, Use of the Voigt function in a single-line method for the analysis of X-ray diffraction line broadening, 1982, 15, 308-314
    [3]桂立丰,唐汝钧,机械工程材料测试手册-物理金相卷,沈阳:辽宁科学科技出版社,1999
    [4]戎咏华,分析电子显微学导论,北京:高等教育出版社,2006,65-67
    [1] K. Lu, J. Lu, Surface nanocrystallization (SNC) of metallic materials-presentation of the concept behind a new approach, J. Mater. Sci. Technol., 1999, 15, 193-197
    [2] K. Lu, J. Lu, Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment, Mater. Sci. Eng. A, 2004, 375-377, 38-45
    [3] N.R. Tao, Z.B. Wang, W.P. Tong, M.L. Sui, J. Lu, K. Lu, An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment, Acta Mater., 2002, 50, 4603-4616
    [4] K. Wang, N.R. Tao, G. Liu, J. Lu, K. Lu, Plastic strain-induced grain refinement at the nanometer scale in copper, Acta Mater., 2006, 54, 5281-5291
    [5] L. Lu, L. B. Wang, B. Z. Ding, K. Lu, Comparison of the thermal stability between electro-deposited and cold-rolled nanocrystalline copper samples, Materials Science and Engineering A, 2000, 286, 125-129
    [6] C. E. Krill, L. Helfen, D.Michels, H. Natter, A. Fitch, Size-Dependent Grain-Growth Kinetics Observed in Nanocrystalline Fe, Phys. Rev. lett., 2001, 86, 842-845
    [7] Yonghua Rong, Phase transformations and phase stability in nanocrystalline materials, Current Opinion in Solid State and Materials Science, 2005, 9, 287-295
    [8]张立德,牟季美,纳米材料和纳米结构,北京:科学出版社,2001,154
    [9] J. Gubicza, M. Kassem, G. Ribárik, T. Ungár, The microstructure of mechanically alloyed Al–Mg determined by X-ray diffraction peak profile analysis, Materials Science and Engineering A, 2004, 372, 115-122
    [10] A. P. Zhilyaev, G. V. Nurislamova, S. Suri?ach, M. D. Barò, and T. G. Langdon, Mater. Phys. Mech., 2002, 5, 23-27
    [11] Tung F, Zwui S, Wang Y. X-ray analysis of microscopic structure in deformed brass, J. Mater. Sci., 1986, 21, 3223-3226
    [12] Mitra Taheri, Hasso Weiland, Anthony Rollett, A method of measuring stored energy macroscopically using statistically stored dislocations in commercial purity aluminum, Metallurgical and Materials Transactions A, 2006, 37, 19-25
    [13] Shi-Hoon Choi, Young-Sool Jin, Evaluation of stored energy in cold-rolled steels from EBSD data, Materials Science and Engineering A, 2004, 371, 149-159
    [14] N. Rajmohan, Y. Hayakawa, J. A. Szpunar, J. H. Root, Neutron diffraction method for stored energy measurement in interstitial free steel, Acta Materialia, Volume 45, 1997, 6, 2485-2494
    [15]桂立丰,机械工程材料测试手册(物理金相卷),辽宁科学技术出版社,1999
    [16]滕凤恩,王煜明,姜小龙,X射线结构分析与材料性能表征,北京:科学出版社,1990
    [17] D. Fatay, E. Bastarash, K. Nyilas, S. Dobatkin, J. Gubicza, T. Ungar, X-ray diffraction study on the microstructure of an AI-Mg-Sc-Zr alloy deformed by high pressure torion, Z. Metallkd., 2003, 94, 842-847
    [18] A.P. Zhilyaev, J. Gubicza, G. Nurislamova, A. Revesz, S. Surinach, M.D. Baro, T. Ungar, Microstructural characterization of ultrafine-grained nickel, Phys. Stat. Sol. A, 2003, 198, 263-271
    [19]莫志深,张宏放,晶态聚合物结构和X射线衍射,北京:科学出版社,2003,236
    [20] R.K. Nandi, H.K. Kuo, W. Schlosberg, G. Wissler, Single-peak methods for Fourier analysis of peak shapes, J. Appl. Cryst., 1984, 17, 22-26
    [21] Wang Y.M., Lee S.S., Lee Y.C., X-ray line profile analysis of deformed Al, J. Appl. Cryst., 1982, 15, 35-38.
    [22] Zwui S., Chen G., Wang Y., The X-ray diffraction effects of dislocations and stacking faults in hcp and bcc metals, J. Mater. Sci. Lett., 1985, 4,1434-1436
    [23] Wilkens M., The determination of density and distribution of dislocations in deformed single crystals from broadened X-ray diffraction profiles, Phys. Stat. Sol. A, 1970, 2, 359-370.
    [24] L.J. Swartzendruber, V.P. Itkin, C.B. Alcock, The Fe-Ni (iron-nickel) system, Journal of Phase Equilibria, 1991, 12, 288-311
    [25] H. W. Zhang, Z. K. Hei, G. Liu, J. Lu, K. Lu, Formation of nanostructured surface layer on AISI 304 stainless steel by means of surface mechanical attrition treatment, Acta Materialia, 2003, 51, 1871-1881
    [26] Chunsheng Wen, Wei Li, Yonghua Rong, Nanocrystallization and martensitic transformation in Fe–23.4Mn–6.5Si–5.1Cr (wt.%) alloy by surface mechanical attrition treatment, Materials Science and Engineering: A, 2008, 481-482, 484-488
    [27] K. Zhang, I. V. Alexandrov, K. Lu, The X-ray diffraction study on a nanocrystalline Cu processed by equal-channel angular pressing, Nanostructured Materials, 1997, 9, 347-350
    [28] N.R. Tao, Z.B. Wang, W.P. Tong, M.L. Sui, J. Lu, K. Lu, An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment, Acta Mater., 2002, 50, 4603-4616
    [29] Ungar T, Gubicza J. Nanocrystalline materials studied by powder diffraction line profile analysis, Kristallogr Z, 2007, 222, 114-128
    [30] Gubicza J, Balogh L, Hellmig R J, et al. Dislocation structure and crystallite size in severely deformed copper by X-ray peak profile analysis, Mater Sci Eng A, 2005, 400-401, 334-338
    [31] Gubicza J, Chinh N Q, Krallics G, et al. Microstructure of ultrafine-grained fcc metals produced by severe plastic deformation, Current Applied Physics, 2006, 6,194-199
    [32]胡赓祥,蔡珣,戎咏华,材料科学基础(第二版),上海:上海交通大学出版社,2006,171
    [33] Ungar T, Tichy G, Gubicza J, et al., Correlation between subgrains and coherently scatteringdomains, Powder Diffraction, 2005, 20, 366-374
    [34] Ungar T, Gubicza J. Nanocrystalline materials studied by powder diffraction line profile analysis, Kristallogr Z, 2007, 222,114-128
    [35] TH.H. DE KEIJSER, J.I. LANGFORD, E.J. MITTEMEIJER AND A.B.P. VOGELS, Use of the Voigt Function in a Single-Line Method for the Analysis of X-ray Diffraction Line Broadening, J Appl Cryst, 1982, 15, 308-314
    [36] H.G. Jiang, M. Ruhle, E.J. Lavernia, On the applicability of the x-ray diffraction line profile analysis in extracting grain size and microstrain in nanocrystalline materials, J. Mater. Res., 1999, 14, 549-559
    [37] R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Bulk nanostructured materials from severe plastic deformation, Prog. Mater. Sci., 2000, 45, 103-189
    [38] Zhu Y.T., Huang J Y, Gubicza J, et al., Nanostructures in Ti processed by severe plastic deformation, J. Mater. Res., 2003, 18, 1908-1917
    [39] Chatterjee P., Gupta S.P.S., An X-ray diffraction study of strain localization and anisotropic dislocation contrast in nanocrystalline Titanium, Phil. Mag. A, 2001, 81, 49-60
    [40] Yu. R. Kolobov, G. P. Grabovetskaya, M. B. Ivanov, A. P. Zhilyaev, R. Z. Valiev, Grain boundary diffusion characteristics of nanostructured nickel, Scripta Materialia, 2001, 44, 873-878
    [41] Huang J Y, Zhu Y T, Jiang H, et al., Microstructures and dislocation configurations in nanostructured Cu processed by repetitive corrugation and straightening, Acta Mater, 2001, 49,1497-1505
    [42] B. Baretzky, M.D. Baro, G.P. Grabovetskaya, J. Gubicza, et al., FUNDAMENTALS OF INTERFACE PHENOMENA IN ADVANCED BULK NANOSCALE MATERIALS, Reviews on Advanced Materials Science, 2005, 9, 45-108
    [1] R.A. Andrievski, Stability of nanostructured materials, Journal of Materials Science, 2003, 38, 1367-1375
    [2] Shewmon P.G., Transformation in Metals, New York: McGraw-Hill Book CO., 1969,116
    [3]张立德,解思深,纳米材料和纳米结构,北京:化学工业出版社,2005,334
    [4] A. Michels, C. E. Krill, H. Ehrhardt, R. Birringer, D. T. Wu, Modelling the influence of grain-size-dependent solute drag on the kinetics of grain growth in nanocrystalline materials, Acta Materialia, 1999, 47, 2143-2152
    [5] G. Gottstein, A. H. King, L. S. Shvindlerman, The effect of triple-junction drag on grain growth, Acta Materialia, 2000, 48, 397-403
    [6] V. Y. Gertsman, R. Birringer, On the room-temperature grain growth in nanocrystalline copper, Scripta Metallurgica et Materialia, 1994, 30, 577-581
    [7] J. Weissmüller, Alloy effects in nanostructures, Nanostructured Materials, 1993, 3, 261-272
    [8] Y. Estrin, G. Gottstein, E. Rabkin, L. S. Shvindlerman, On the kinetics of grain growth inhibited by vacancy generation, Scripta Materialia, 2000, 43, 141-147
    [9] K. Zhang, I. V. Alexandrov, K. Lu, The X-ray diffraction study on a nanocrystalline Cu processed by equal-channel angular pressing, Nanostructured Materials, 1997, 9, 347-350
    [10] N.R. Tao, Z.B. Wang, W.P. Tong, M.L. Sui, J. Lu, K. Lu, An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment, Acta Mater., 2002, 50, 4603-4616
    [11] C. E. Krill, L. Helfen, D.Michels, H. Natter, A. Fitch, Size-Dependent Grain-Growth Kinetics Observed in Nanocrystalline Fe, Phys. Rev. lett., 2001, 86, 842-845
    [12] C. Wen, Z. Chen, B. Huang, Y. Rong, Nanocrystallization and magnetic properties of Fe-30 weight percent Ni alloy by surface mechanical attrition treatment, Metall. Mater. Trans. A, 2006, 37, 1413-1421
    [13] Ning Wang, Zhirui Wang, K.T. Aust, U. Erb, Isokinetic analysis of nanocrystalline nickel electrodeposits upon annealing, Acta Mater. 1997, 45, 1655-1669
    [14] G. Palasantzas, T. Vystavel, S.A. Koch, J.T.M. De Hosson, Coalescence aspects of cobalt nanoparticles during in situ high-temperature annealing, Journal of Applied Physics, 2006, 99, 024307
    [15] H.P. Ng, A.H.W. Ngan, An in situ transmission electron microscope investigation into grain growth and ordering of sputter-deposited nanocrystalline Ni3Al thin films, Journal of Materials Research, 2002, 17, 2085-2094
    [16] Y. Ding, S. Yamamuro, D. Farrell, S.A. Majetich, Phase transformation and magnetic moment in FePt nanoparticles, Journal of Applied Physics, 2003, 93, 7411-7413
    [17] P.A. Beck, J.C. Kremer, L.J. Demer and M.L. Holzmorth, Grain Growth in High-Purity Aluminum-Magnesium Alloy, Trans AIME, 1948, 175, 372-394
    [18] Farghalli A. Mohameda, Shen-Ann Sheia and Terence G. Langdon, The activation energies associated with superplastic flow Energies, Acta Metallurgica, 1975, 1443-1450
    [19] F.J. Humphrey and M. Hatherly, Recrystallization and Related Annealing Phenomena, Pergamon Press, Oxford, 1996, 281-325
    [20] S. Kawanishi, K. Isonoshi and K. Okazaki, Grain growth and its kinetics of nanophase niobium aluminide produced by mechanical alloying, Mater. Trans. JIM, 1993, 34, 49-53
    [21] S. Kobayashi and Y. Kashikura, Grain growth and mechanical properties of electrodeposited nanocrystalline nickel–4.4mass% phosphorus alloy, Materials Science and Engineering A, 2003, 358, 76-83
    [22] T.R. Malow and C.C. Koch, Grain growth in nanocrystalline iron prepared by mechanical attrition, Acta Materialia, 1997, 45, 2177-2186
    [23] T. Spassov and U. Koster, Grain-growth in nanocrystalline zirconium-based alloys, J. Mater. Sci., 1993, 28, 2789-2794
    [24] E.A. Brandes and G.B. Brook, Smithells Metals Reference Book (seventh ed.), Butterworth-Heinemann, Boston, MA, 1992, Chapter 13,117
    [25] L.J. Swartzendruber, V.P. Itkin, C.B. Alcock, The Fe-Ni (iron-nickel) system, Journal of Phase Equilibria, 1991, 12, 288-311
    [26] R. Klemm, E. Thiele, C. Holste, J. Eckert, N. Schell, Thermal stability of grain structure and defects in submicrocrystalline and nanocrystalline nickel, Scripta Mater. 2002, 46, 685-690
    [27] J. Wang, Y. Iwahashi, Z. Horita, M. Furukawa, M. Nemoto, R. Z. Valiev, T. G. Langdon, An investigation of microstructural stability in an Al-Mg alloy with submicrometer grain size, Acta Materialia, 1996, 44, 2973-2982
    [28] V.L. Tellkamp, S. Dallek, D. Cheng and E.J. Lavernia, Grain growth behavior of a nanostructured 5083 Al-Mg alloy, J. Mater. Res., 2001, 16, 938-944
    [29] H. Natter, M. Schmelzer, M.S. Loffler, C.E. Krill, A. Fitch and R. Hempelmann, Grain-Growth Kinetics of Nanocrystalline Iron Studied in Situ by Synchrotron Real-Time X-ray Diffraction, J. Phys. Chem. B, 2000, 104, 2467-2476
    [30] H.Q. Li, F. Ebrahimi, An investigation of thermal stability and microhardness of electrodeposited nanocrystalline nickel-21% iron alloys, Acta Materialia, 2003, 51, 3905-3913
    [31] Manish Chauhan, Farghalli A. Mohamed, Investigation of low temperature thermal stability in bulk nanocrystalline Ni, Materials Science and Engineering: A, 2006, 427, 7-15
    [32] E. Bonetti, E. G. Campari, L. Pasquini, and E. Sampaolesi, Microstructure-related anelastic and magnetoelastic behavior of nanocrystalline nickel, Journal of Applied Physics, 1998, 84, 4219-4226
    [33] E. Bonetti, L. Del Bianco, L. Pasquini, E. Sampaolesi, Thermal evolution of ball milled nanocrystalline iron, Nanostructured Materials, 1999, 12, 685-688
    [34] L. Lu, L. B. Wang, B. Z. Ding, K. Lu, Comparison of the thermal stability between electro-deposited and cold-rolled nanocrystalline copper samples, Materials Science and Engineering A, 2000, 286, 125-129
    [35] A. Kumpmann, B. Günther, H.-D. Kunze, Thermal stability of ultrafine-grained metals and alloys, 1993, 168, 165-169
    [36] Xing-zhao Ding, Xiang-huai Liu, Grain growth enhanced by anatase-to-rutile transformation in gel-derived nanocrystalline titania powders, Journal of Alloys and Compounds, 1997, 248,143-145
    [37]沙健,叶锡生,汪壮兵,陈斌,焦正宽,彭子飞,张立德,纳米晶Fe2O3和TiO2结构相变的尺寸效应,材料研究学报,1999,13,244-248
    [38] M. K. Datta, S. K. Pabi, B. S. Murty, Thermal stability of nanocrystalline Ni silicides synthesized by mechanical alloying, Materials Science and Engineering A, 2000, 284, 219-225
    [39] H. Gleiter, Nanostructured materials: basic concepts and microstructure, Acta Materialia, 2000, 48, 1-29
    [40]胡赓祥,蔡珣,戎咏华,材料科学基础(第二版),上海:上海交通大学出版社,2006,207
    [41] Thuvander M., Abraham M., Cerezo A., Smith G.D.W., Thermal stability of electrodeposited nanocrystalline nickel and iron-nickel alloys, Materials Science and Technology, 2001, 17, 961-970
    [42] Fereshteh Ebrahimi, Hongqi Li, Grain growth in electrodeposited nanocrystalline fcc Ni–Fe alloys, Scripta Materialia, 2006, 55, 263-266
    [43] H.I. Frost and M.F. Ashby, Deformation Mechanism Maps, Pergamon, New York, 1982
    [44] M. C. Iordache, S. H. Whang, Z. Jiao, Z. M. Wang, Grain growth kinetics in nanostructured nickel, Nanostructured Materials, 1999, 11, 1343-1349
    [45] A.P. Zhilyaev, G.V. Nurislamova, M.D. Baró, R.Z. Valiev and T.G. Langdon, Thermal stability and microstructural evolution in ultrafine-grained nickel after equal-channel angular pressing (ECAP), Metallurgical and Materials Transactions A, 2002, 33, 1865-1868
    [46] J. Lee, F. Zhou, K.H. Chung, N.J. Kim and E.J. Lavernia, Grain growth of nanocrystalline Ni powders prepared by cryomilling Grain growth of nanocrystalline Ni powders prepared by cryomilling, Metallurgical and Materials Transactions A, 2001, 32, 3109-3115
    [47] Mats Hillert, Solute drag in grain boundary migration and phase transformations, Acta Materialia, 2004, 52, 5289-5293
    [48] Feng Liu, Reiner Kirchheim, Grain boundary saturation and grain growth, Scripta Materialia, 2004, 51, 521-525
    [49] K. LU, W.D. WEI, J.T. WANG, Grain growth kinetics and interfacial energies in nanocrystalline Ni-P alloys, Journal of Applied Physics, 1991, 69, 7345-7347
    [50] L. Z. Zhou, J. T. Guo, Grain growth and kinetics for nanocrystalline Ni-Al, ScriptaMaterialia, 1998, 40, 139-144
    [51] Peng Cao, Li Lu, M.O. Lai, Grain growth and kinetics for nanocrystalline magnesium alloy produced by mechanical alloying, Materials Research Bulletin, 2001, 36, 981-988
    [1] Kajiwara S., Ohno S., Honma K., Uda M., Martensitic transformation in ultrafine particles of Fe-Ni alloys, Proceedings of the International Conference on Martensitic Transformations, 1986, 359-364.
    [2] S.H. Tolbert, A.P. Alivisatos, Size Dependence of a First Order Solid-Solid Phase Transition: The Wurtzite to Rock Salt Transformation in CdSe Nanocrystals , Science, 1994, 265, 373 - 376
    [3] P. I. Gouma, P. K. Dutta, M. J. Mills, Structural stability of titania thin films, Nanostructured Materials, 1999, 11, 1231-1237
    [4] G. Skandan, C. M. Foster, H. Frase, M. N. Ali, J. C. Parker, H. Hahn, Phase characterization and stabilization due to grain size effects of nanostructured Y2O3, Nanostructured Materials, 1992, 1, 313-322
    [5] S. Li, W.T. Zheng, Q. Jiang, Size and pressure effects on solid transition temperatures of ZrO2, Scripta Materialia, 2006, 54, 2091-2094
    [6] J. M. McHale, A. Auroux, A. J. Perrotta, A. Navrotsky, Surface Energies and Thermodynamic Phase Stability in Nanocrystalline Aluminas, Science, 1997, 277, 788-791
    [7] M.J. Mayo, A. Suresh, W.D. Porter, Thermodynamics For Nanosystems: Grain And Particle-Size Dependent Phase Diagrams, Reviews on Advanced Materials Science, 2003, 5, 100-109
    [8] Ying-Hui Zhou, Mireille Harmelin, Jean Bigot, Martensitic transformation in ultrafine Fe-Ni powders, Materials Science and Engineering A, 1990, 124, 241-249
    [9] K. Asaka, E. Kitahata, Y. Hirotsu, K. Kifune, Y. Kubota, T. Tadaki, structure and displacive phase transformations of small particles of In-Pb alloys, Scripta Materialia, 2001, 44, 2043-2046
    [10] Chunsheng Wen, Baoxu Huang, Zi Chen, Yonghua Rong, Martensite and its reverse transformation in nanocrystalline bulk Co, Materials Science and Engineering: A, 2006, 438-440, 420-426
    [11] Li W, Ni C, Lin H, Huang CP, Shah SI, Size dependence of thermal stability of TiO2nanoparticles, Journal of applied physics, 2004, 96, 6663-6668
    [12] Kositic E, Kiss S, Boskovic S, Zec S, Mechanical Activation of the Gamma-Transition to Alpha-Transition in Al2O3, Powder Technology, 1997, 91, 49-54
    [13] Yonghua Rong, Phase transformations and phase stability in nanocrystalline materials, Current Opinion in Solid State and Materials Science, 2005, 9, 287-295
    [14] X.L. Wu, N.R. Tao, Q.M. Wei, P. Jiang, J. Lu, K. Lu, Microstructural evolution and formation of nanocrystalline intermetallic compound during surface mechanical attrition treatment of cobalt, Acta Mater., 2007, 55, 5768-5779
    [15] Koji Asaka, Yoshihiko Hirotsu, Tsugio Tadaki, Martensitic transformation in nanometer-sized particles of Fe–Ni alloys, Materials Science and Engineering A, 1999, 273-275, 262-265
    [16] Tsugio Tadaki, Yasuyuki Murai, Atsuo Koreeda, Structure and phase transformation of nano-scale particles of Fe-Ni alloys, Materials Science and Engineering A, 1996, 217-218, 235-238
    [17] Meng Q. P., Rong Y. H., and T. Y. Hsu, Nucleation barrier for phase transformations in nanosized crystals, Physical Review B, 2002, 65, 174118
    [18] T. Suzuki, M. Shimono, M. Wuttig, Martensitic transformation in micrometer crystals compared with that in nanocrystals, Scripta Materialia, 2001, 44, 1979-1982
    [19] Honggang Jiang, Y. Theodore Zhu, Darryl P. Butt, Igor V. Alexandrov, Terry C. Lowe, Microstructural evolution, microhardness and thermal stability of HPT-processed Cu, Materials Science and Engineering A, 2000, 290, 128-138
    [20] L.J. Swartzendruber, V.P. Itkin, C.B. Alcock, The Fe-Ni (iron-nickel) system, Journal of Phase Equilibria, 1991, 12, 288-311
    [21] H. Sato, O. Kitakami, T. Sakurai, Y. Shimada, Structure and magnetism of hcp-Co fine particles, J. Appl. Phys. 1997, 81, 1858-1862
    [22] R Wurschum, S Herth, U Brossmann, Diffusion in nanocrystalline metals and alloys- a status report, Advanced Engineering Materials, 2003, 5, 365-372
    [23] Yu. R. Kolobov, G. P. Grabovetskaya, M. B. Ivanov, A. P. Zhilyaev, R. Z. Valiev, Grain boundary diffusion characteristics of nanostructured nickel, Scripta Materialia, 2001, 44, 873-878
    [24] M.D. Baro, Yu. R. Kolobov, I.A. Ovidko, et al. Diffusion and related phenomena in bulk nanostructured materials, Rev. Adv. Mater. Sci., 2001, 2, 1-43
    [25] C. Suryanarayana, D. Mukhopadhyay, S.N. Patankar, Grain Size Effects in Nanocrystalline Materials, Journal of Materials Research, 1992, 7, 2114-2118
    [26] B. Bokstein, V. Ivanov, O. Oreshina, A. Peteline, S. Peteline, Direct experimental observation of accelerated Zn diffusion along triple junctions in Al, Materials Science and Engineering A, 2001, 302, 151-153
    [27] Ying Chen, Christopher A. Schuh, Contribution of triple junctions to the diffusion anomaly in nanocrystalline materials, Scripta Materialia, 2007, 57, 253-256
    [28] Ying Chen and Christopher A. Schuh, Geometric considerations for diffusion in polycrystalline solids, J. Appl. Phys., 2007, 101, 063524
    [29] Y.Y. Chuang, Y.A. Chang, A Thermodynamic Analysis and Calculation of the Fe--Ni--Cr Phase Diagram, Metallurgical Transaction A, 1987, 18, 733-745
    [30] Xing-zhao Ding, Xiang-huai Liu, Grain growth enhanced by anatase-to-rutile transformation in gel-derived nanocrystalline titania powders, Journal of Alloys and Compounds, 1997, 248, 143-145
    [31] M. K. Datta, S. K. Pabi, B. S. Murty, Thermal stability of nanocrystalline Ni silicides synthesized by mechanical alloying, Materials Science and Engineering A, 2000, 284, 219-225
    [32] S Halas and T Durakiewicz, Temperature dependence of the surface energy of mercury from 0 to 250℃, J. Phys.: Condens. Matter, 2002, 14, L735–L737
    [33] Wolfgang Bergermaye, Isao Tanaka, Reduced SnO2 surfaces by first-principles calculations,Applied physics letters, 2004, 84, 909-911
    [34] M.J. Aus, C. Cheung, B. Szpunar, U. Erb, J. Szpunar, Saturation Magnetization of Porosity-free Nanocrystalline Cobalt, J. Mater. Sci. Lett., 1998, 17, 1949-1952
    [35]徐祖耀,相变原理,北京:科学出版社,2000,5
    [36]长崎诚三,二元合金状态图集,北京:冶金工业出版社,2004
    [37] H.M. Lu, W.T. Zheng, Q. Jiang, Saturation magnetization of ferromagnetic and ferrimagnetic nanocrystals at room temperature, J. Phys. D: Appl. Phys., 2007, 40, 320-325
    [38] R. S. Sundar and S. C. Deevi, Soft magnetic FeCo alloys: alloy development, processing, and properties, International Materials Reviews, 2005, 50, 157-192
    [39] H.P. Myers, W. Sucksmith, The Spontaneous Magnetization of Cobalt, Proc. Roy. Soc. A 1951, 207, 427-446

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700