长寿命高锰钢辙叉的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文首先对我国实际铁路线路上使用失效的158组高锰钢辙叉进行统计,分析高锰钢辙叉失效规律;对10棵高锰钢辙叉的实际使用情况进行跟踪测试,研究辙叉工作表面断面相貌、表面硬度和外形尺寸在服役过程中的变化过程;解剖失效高锰钢辙叉,研究其亚表层的硬度分布、微观组织结构以及微观纳米力学性能的演变规律。在实验室高温管式炉中,利用吹氮和变质复合处理方法对高锰钢钢液进行精炼处理,在此结果的基础上,研究纯净致密高锰钢辙叉的制造工艺技术。同时,对模拟高锰钢辙叉心轨的小试样进行爆炸硬化试验,研究高锰钢爆炸硬化工艺参数及其材料行为,由此,对高锰钢辙叉进行爆炸硬化处理。将纯净致密高锰钢辙叉和爆炸硬化处理的高锰钢辙叉分别上道试验,并得到了广泛的应用。
     结果表明:高锰钢辙叉失效分为三个阶段,变形磨损、摩擦磨损和疲劳磨损。疲劳辙叉亚表层内存在与踏面平行的裂纹群,裂纹群形成位置在亚表层深度2~3.5mm范围内。提高高锰钢辙叉使用寿命的途径是提高其内在质量、增加其初始硬度以及改善其加工硬化能力。高锰钢辙叉在服役过程中,表面形成纳米晶层,其形成机理是,高锰钢辙叉在滚动接触应力反复作用过程中,当其中的变形储存能达到一定程度后,纳米晶粒直接从变形组织中通过应变诱发动态再结晶形成。高锰钢辙叉表面由粗晶到非晶转变的吉布斯自由能差为7.3 kJ/mol,而粗晶到纳米晶转变的吉布斯自由能差总是正值,这意味着这种转变不可能自发形成,必须有外界作用才可以发生,并且是由粗晶到细晶再到纳米晶的细化过程。高锰钢辙叉在服役过程中表面温升越小越容易形成纳米晶组织。辙叉亚表面变形组织没有形成白亮蚀层(WEL),其原因是,高锰钢在变形过程中不存在碳化物的回溶过程。
     高锰钢的微观弹性模量主要决定于其内部的空位密度,与位错等其它缺陷关系不大。高锰钢辙叉承受滚动接触应力作用下,疲劳裂纹的形成机制是大量的空位聚集、合并形成微孔,大量的微孔连接形成裂纹。利用原子直径较大的重金属对钢铁材料进行再合金化处理,其抗滚动接触疲劳性能应该较高。
     利用专用变质剂和底吹氮精炼技术处理高锰钢钢液,结合V法真空造型工艺技术制造纯净致密高锰钢辙叉,致使其中的P、S、[H]和[O]分别降低2.7、5.2、2.5和4倍,而[N]含量增高23倍。变质剂的最佳成分为(wt%):CaO25%,CaF2 25%,Re-Mg合金50%组成的粉末状混合物,粉末的平均粒度为50~100目,其加入量为1wt%。吹氮净化处理时,氮气的平均压力为0.6MPa,流量为1 m3/t?h,吹氮处理时间为15min。纯净致密化处理提高了高锰钢辙叉的屈服强度、抗拉强度和冲击韧度等力学性能,使高锰钢辙叉使用寿命提高30%以上。
     利用厚度为3 mm的RDX炸药对高锰钢辙叉工作表面爆炸预硬化2次,并且两次起爆点错位20 mm以上,可获得表面硬度为380HV、硬化层深度为40mm,而且硬度梯度平缓过渡的理想硬化效果,从而使高锰钢辙叉的实际使用寿命提高30%以上。高锰钢辙叉表面爆炸硬化的机理是表层变形量较大的区域为形变孪晶和位错强化、内部变形量较小的区域主要为位错强化,高锰钢爆炸硬化表面变形机理是原位塑性变形。
158 groups of failed Hadfield steel crossings used in the railway system of China were analyzed statistically to study the failure mechanism of the crossing. 10 Hadfield steel crossings were undertaken tracking test to research the change processes of the morphologies of cross-section, the hardness and the size of the working crossing surface during their services processes. Thus, the failed Hadfield steel crossings were anatomized to study the hardness distribution, the microstructures and the properties of micro/nano-mechanical behavior of their subsurface. In the laboratory a high-temperature tube furnace was used to study the experimental parameters of pure Hadfield steel, the Hadfield steel liquid was refined by blowing nitrogen and compound modification approach. Based on the results, the manufacturing technology of the pure Hadfield steel crossing was studied. Besides, the pure Hadfield steel crossing was tested in the actual railway. At the same time, explosion hardening experiment was carried out with simulated point Hadfield steel crossing small samples to study the technical parameters of the explosion hardening. Based on the results of the research in laboratory, explosion hardening of the Hadfield steel crossing was undertaken. Furthermore, the Hadfield steel crossing subjected to explosion hardening was used in actual railway system.
     The results show three stages for the Hadfield steel crossing failure including deformation wear, friction wear, and fatigue wear. There are crack groups existing in the subsurface of the fatigue crossing in parallel with the tread base. The location of the crack groups’formation is in the range of 2~3.5 mm depth of the subsurface. The way to improve the lifetime of the Hadfield steel crossing is to improve its intrinsic quality, to increase its initial hardness and to improve its work-hardening ability. During the service process of the Hadfield steel crossing, the nanocrystalline layer is formed in the surface. Its formation mechanism is that the nanograins are formed directly through the dynamic recrystallization in the deformation structures when the stored deformation energy reaches certain degree in the repeated process of the rolling contact. The difference of the Gibbs free energy is 7.3 kJ/mol for the transformation from coarse-grain to amorphous in the surface of the Hadfield steel crossing. However, the difference of the Gibbs free energy is always positive for the transformation from coarse-grain to nanocrystalline. This means that such transformation can not be formed spontaneously and the external power must be included. The refined process is from coarse-grain to fine-grain and finally to nanocrystalline step by step. The smaller the surface temperature raises the easier formation of the nanostructure during the service process of the Hadfield steel crossing. The deformation structures do not form white etching layer (WEL) in the subsurface of the crossing. The reason is that there is no re-dissolution carbide process during the deformation process of the Hadfield steel.
     The micro elastic modulus of the Hadfield steel mainly depends on the vacancy density and has little to do with other defects, such as dislocation. Under the rolling contact stress for the Hadfield steel crossing, the formation mechanism for the fatigue crack is a lot of vacancy gathering and combining to form microporous. Then a large number of microporous connect to form cracks. The anti-rolling contact fatigue performance of the steel materials should be higher through alloying process treatment with larger diameter atom heavy metal.
     Using the special modifier and the refining technology of bottom blowing nitrogen to deal with the Hadfield steel liquid combining with V process of vacuum sealed molding technology, the high-purity-compact Hadfield steel crossing is made, which results in the content of P, S, [H] and [O] decreasing by 2.7, 5.2, 2.5 and 4 times respectively, whereas, the content of [N] increasing by 23 times. The best component(wt%)of the special modifier is CaO 25%,CaF2 25%, and Re-Mg alloy powder mixture 50%. The average particle size of the powder is 50~ 100 meshes with addition of 1wt%. During the process of the purification treatment with nitrogen blowing, the average nitrogen pressure is 0.6 MPa, the flow rate is 1 m3/t?h, and the nitrogen blowing processing time is 15 min. The pure-dense treatment improves the yield strength, tensile strength, impact toughness and other mechanical properties of the Hadfield steel crossing, which increases the lifetime of the Hadfield steel crossing more than 30%.
     The work surface of the Hadfield steel crossing is treated with two pre-hardening explosions by using a thickness of 3 mm of RDX explosive. Moreover, the point dislocation for the two initial-explosion is above 20 mm, which is available for the 380HB surface hardness, 40mm hardened layer depth, and the ideal explosion hardening effect of the hardness gradient smooth transition. Thus, the actual lifetime of the Hadfield steel crossing is increased by more than 30%. The surface explosion hardening mechanism of the Hadfield steel crossing is that there are the deformation twinning and dislocation strengthening in the region of larger surface deformation, whereas the dislocation strengthening mainly in the internal region of smaller deformation. The explosion hardening surface deformation mechanism of the Hadfield steel is the plastic deformation in-situ.
引文
1ГлюзбергБ.Э.ОсобенностиНакЛепавпутисеречниковкрестовинизвысокомарганцовистойстали110Г13ЛВестникВниижт, 1984(7) : 50.
    2ТитаренкоМ.Н.ДфектостойкостикрастовинстрелочныхпереводовнапутяхметроколитониВестникВниижт, 1986(7): 48.
    3КрасиковК.И.Зернограничноеразрудениекакфакторизносасердечниковкрестовинизстали110Г13ЛВестникВниижт, 1985(1) : 50.
    4ГлюзбергБ.Э.Определениеконтактно-устлостниххарактеристикМеталлакрестовинВестникВниижт, 1985(1): 39.
    5КрвысановЛ.Г.ВлияниесреднихстатическифосевыхнагрузоквагоновнасрокслужбыкрестовинВестникВниижт, 1987(1) : 52.
    6解丰智.确定车轮沿辙叉叉心滚动区的应力.铁道文摘,1980.11。
    7沼田富,铁道线路, 1963(11):17-21.
    8刘语冰.道岔构造和设计(上册).北京:中国铁道出版社,1983(修订版):67.
    9西蒙·B·И.道岔的使用.北京:交通出版社,1983:256.
    10 Armstrong John. Turning Point for Turnouts. Railway Age , 1986, 187(3): 37-38, 40-41.
    11戈留斯别尔克·Б·Э.道岔磨损的特性.ВНИИЖТ学报,1984(3):39-42.
    12侯传基,赵春阳,康振海等.高锰钢整铸造辙叉横裂失效分析.铁道学报,1988(1):68-75.
    13侯德杰.锰钢辙叉伤损情况的调查分析和改进建议.铁道建筑,1993(5):8-10.
    14铁信数据中心.美国铁路的道岔辙叉.中国铁路,2006(2):78.
    15郭凤德.铸造高锰钢辙叉产生裂纹的原因分析.金属加工热加工,2008(3):67-68.
    16刘敬龙,金恒阁,刘世坚等.浅谈炉外精炼技术,河南冶金,2004,12(2):7-9.
    17冯聚和.铁水预处理与钢水炉外精炼.北京:冶金工业出版社,2006.
    18葛志远,高锰钢吹氩喂线技术的开发与改进.铁道技术监督,2008,36(10):41-42.
    19陈绍春,陈希杰.氮碳锰对介稳奥氏体锰钢加工硬化性能的影响.特殊钢,2003,24(2):21-23.
    20何平,张莱平.吹氮条件下电炉钢增氮的模拟实验.特殊钢,1996,17(4):11-14.
    21 M. Kawakami, Y. Kitazawa, T. Nakamura, et al. Dispersion of Bubbles in Molten Iron and the Nitrogen Transfer in the Bubble Dispersion done at 1250°C. Ito: Trans. Iron Steel Inst. Jpn., 1985(25):394-402.
    22 Kumar Balan.喷丸强化技术的应用,金属加工(热加工),2008(19):33.
    23 X.Y. Wang, D.Y. Li..Mechanical and electrochemical behavior of nanocrystalline surface of 304stainless stee1.Electrochimica Acta,2002(47):3939-3947.
    24 L.C. Wang,D.Y. Li. Mechanical electrochemical and tribological properties of nanocrystalline surface of brass produced by sandblasting and annealing.Surface and Coating Technology,2003,l67(2/3):88-196.
    25王天生,于金库,董冰峰等.1Cr18Ni9Ti不锈钢的喷丸表面纳米化及其耐蚀性的影响,机械工程学报,2005,41(9):51-54.
    26 Siswosuwarno Mardjono, Kusalamwardi Hirman, Kusuma Gunawan.Influence of shot peening on the surface microstructure of leaf spring, Proceedings - Society of Automotive Engineers, 1985:421-424.
    27韩旭.棒形件滚压塑性表面精密加工装备及表面质量的研究,长春:吉林工业大学,2000.
    28薛隆泉,刘荣昌.曲轴圆角滚压运动及结构参数的优化设计,机械工程学报,2002(1):147-148.
    29 A.M. Norman. Method of hardening manganese steel: US, 2703297. 1955-03-1.
    30 P.G. Shewmon, V.F. Zackay. Metallurgical Society Conferences Volume 9: Response of Metals to High Velocity Deformation. Interscience publishers New York, London, 1960.
    31 P. Du. Surface hardening of metals:UK, 910076. 1962-11-7.
    32蒙肇斌,胡光立.热处理工艺和爆炸预硬化对高锰钢ZGMn13VTiMoRE组织和耐磨性的影响,钢铁,1997, 32(9):45-47.
    33 M. So, H. Nagahiro.High manganese cast steel: JP, 61157657. 1986-07-17.
    34 R.Z. Kats, N. Putrya, K.I. Krasikov, et al. Method of explosive hardening a cast portion of acute angle frogs of railroad switches: UK, 2172234. 1986-09-17.
    35小田明,宮川英明.爆発硬化した高マンガンオーステナイト鑄鋼テーパ付き長尺ブロックの残留応力.材料, 1984, 34(384):1 019-1 024.
    36 A.A. Deribas. Treatment of materials by explosive energy. Combustion, Explosion and Shock Waves, 1987, 23(5): 639-648.
    37陈勇富,洪有秋.高锰钢的爆炸硬化工艺:中国,85103847,1986-11-05.
    38刘媛,王华.高锰钢爆炸预硬化技术综述,中国材料科技与设备,2008,5(4):13-15.
    39张福成,吕博,刘辉等.高锰钢辙叉爆炸硬化工艺:中国,200710061422.X,2007-01-13.
    40 G.A. Stone, G.T.Gray, A.R. Orava, et al. An investigation of the influence of shock-wave profile on the mechanical and thermal responses of polycrystalline iron. Final technical rept. ,1978, P146.
    41 A.R. Champioin, R.W. Rohde. Hugoniot Equation of State and the Effect of Shock Stress Amplitude and Duration on the Hardness of Hadfield Steel.Journal of Applied Physics, 1970, 41(5):2213-2223.
    42 D. Kuhlmann-Wilsdorf,N.R Comins, Dislocation cell formation and work hardening in theunidirectional glide of f.c.c. metals I: Basic theoretical analysis of cell walls parallel to the primary glide plane in early stage II, Materials Science and Engineering, 1983,60(1): 7-24.
    43 L.E. Murr, D. Kuhlmann-Wilsdorf, Experimental and theoretical observations on the relationship between dislocation cell size, dislocaion density, residual hardeness, peak pressure and pulse duration in shock-loaded nickel. Acta metallurgica.1978,26(5):847-857.
    44 D.E. Mikkola. On the concept of a time-dependent theoretical strength for materials,1983,17(10): 1227-1230.
    45 L.E. Murr, In Shock waves in condensed matter, eds. S.C. Schmidt and N.C.Holmes, Elsevier, Amsterdam, 1988, 315-320,324.
    46 F.A. Khalid, D.V. Edmonds, B.D. Goldthorpe. A TEM study of deformation substructure in high strain rate and explosively shock-loaded polycrystalline iron, Journal of Materials Engineering and Performance,1996,5(1):23-26.
    47 Jorq Kaspar, A. Luft, W. Shrotzki, Deformation modes and structure evolution in laser-shock-loaded molybdenum single crystals of high purity, Crystal Research and Technology, 2000, 35(4):437-448.
    48 M. K. Koul, and J.F. Breedis, Strengthening of Titanium Alloys by Shock Deformation, Science, Technology, and Application of Titanium, 1970, 817-828.
    49 J.M. Galbraith, L.E. Murr, The Shock loading of polycrystalline beryllium:residual microstructure and the effects of microstructure in internal spallation, Journal of Materials Science,1975,10(12): 2025-2034.
    50 G. T. Gray III, in Shock-Wave and High-Strain-Rate Phenomena in Materials, edited by M. A. Meyers, L. E. Murr, and K. P. Standhammer (Marcel Decker, New York, 1992), 899–911.
    51 R. L. Nolder and G. Thomas, The Substructure of Plastically Deformed Nickel, Acta Metallurgica, 1964(12): 227-240.
    52 R. J. DeAngelis, J. B. Cohen. Some crystallographic techniques for the study of mechanical twinning and their application to shock-induced twinning in copper. J. Metals, 1963,15: 681-731.
    53 F. Greulich and L. E. Murr. Effect of Grain Size, Dislocation Cell Size and Deformation Twin Spacing on the Residual Strengthening of Shock-Loaded Nickel. Materials Science and Engineering,1979(39):81-93.
    54 A.S. Appleton,J.S. Waddington. The importance of shock wave profile in explosive loading experiments, Acta Metallurgica, 1964, 12(8):956-957.
    55 K.P. Staudammer, L.E. Murr. Effect of Strain and Strain Rate on Deformation-Induced Transformation in 304 Stainless Steel: Part II. Microstructural Study.Metallurgical Transactions A,1983, 13(4):627-635.
    56 R.W. Rohde, W.C. Leslie, R.C. Glenn. Dynamic yield behavior of annealed and cold- worked Fe- 0.17 pct Ti alloy. Met .Trans., 1972, 3(1):323-328.
    57 F.D.S. Marquis, A. Mahajan, A.G. Mamalis. Shock synthesis and densification of tungsten based heavy alloys,J .Mater. Process. Technol., 2005, 161(1-2):113-120.
    58 K. Wongwiwat, L.E. Murr. Shock-induced cracks in molybdenum sheet, J. Appl. Phys., 1979, 50(2):813-817.
    59 L.E. Murr, M.A. Meyers, C.S. Niou, et al. Shock-induced deformation twinning in tantalum, Acta Mater., 1997, 45(1):157-175.
    60 M.A. Meyers, L.E. Murr. Shock waves and high-strain-rate phenomena in materials, Plenum, New York, 1981, 487.
    61 Ishioka Shunya, Dynamic formation of a twin in a BCCcrystal, J .Appl .Phys. 1975, 46(10):4271-4274.
    62 J.A. Venables. On dislocation pole models for twinning, Philos. Mag., 1974, 30(5): 1165-1169.
    63 K. LU, J. Lv. Surface nanocrystallization ( SNC) of metallic materials-presentation of t he concept behind a new approach. J Mater Sci Technol , 1999,15 (3) :193 - 197.
    64 Y. Iwahashi, Z. Horita, M. Nemoto,et al. The Process of Grain Refinement in ECAP, Acta mater. 1998(46):3317-3331.
    65 T.R. Malow, C.C. Koch. Mechanical properties, ductility, and grain size of nanocrystalline iron produced by mechanical attrition.Metall Mater Trans A,1998,29(9):2285-2295.
    66 J.A. Hines, K.S. Vecchio, S. Ahzi. A model for microstructure evolution in adiabatic shear bands. Metall Mater Trans A,1998,29(1):191-203.
    67 B.N. Mordyuk, G.I. Prokopenko, M.A. Vasylyev, et al. Effect of structure evolution induced by ultrasonic peening on the corrosion behavior of AISI-321 stainless steel. Materials Science and Engineering A ,2007,458:253–261.
    68 H.W. Zhang, Z.K. Hei, G. Liu,et al. Formation of nanostructured surface layer on AISI 304 stainless steel by means of surface mechanical attrition treatment , Acta Materialia 2003,51: 1871–1881.
    69 W. LI, X.D. WANG, Q.P.MENG, et al. Interdiffusion of alloying elements in nanocrystalline Fe–30 wt.% Ni alloy during surface mechanical attrition treatment and its effect onα→γtransformation, Scripta Materialia, 2008, 59(3): 344-347.
    70徐滨士.纳米表面工程,化学工业出版社,2004,北京:352-388.
    71 X.P. Yong, G. Liu, J. Lu, et al. Characterization and Properties of Nanostructured Surface Layer ina Low Carbon Steel Subjected to Surface Mechanical Attrition. JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY,2003,19(1):1-4.
    72 N.R. Tao, Z.B. Wang, W.P. Tong, et al. An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment, Acta Materialia 2002, 50:4603–4616.
    73 B. Bay, N. Hansen, D.A. Hughes, et al. Evolution of f.c.c. deformation structures in polyslip. Acta Metall Mater, 1992,40:205-219.
    74 N. Hansen. Cold deformation microstructure. Mater Sci Tech. 1990(6):1039-1047.
    75 Y.H. Wei, B.S. Liu, L.F. Hou,et al.Characterization and properties of nanocrystalline surface layer in Mg alloy induced by surface mechinical attrition treatment, Journal of Alloys and Compounds, 2008,452: 336-342.
    76 J.A. Venables. In: Reed–Hill R E, Hirth J P, Rogers H C, eds. Deformation Twinning. New York: Gordon and Breach, 1964: 7.
    77 K. Lu, J. Lu. Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment, Materials Science and Engineering A , 2004, 375–377 :38–45.
    78 X. Wu, N. Tao, Y. Hong, et al. Strain-induced grain refinement of cobalt during surface mechanical attrition treatment, Acta Materialia , 2005, 53:681–691.
    79张洪旺,刘刚,黑祖昆等.表面机械研磨诱导不锈钢表层纳米化-Ⅱ晶粒细化机理.金属学报,2003,39(4):347-350.
    80 Y.S. Zhang, Z. Han, K. Wang, et al. Friction and wear behaviors of nanocrystalline surface layer of pure copper, Wear, 2006, 260: 942–948.
    81张力.浅析表面纳米化对金属疲劳性能的影响.中国科技信息,2006,9:302-303.
    82王镇波,雍兴平,陶乃镕等,表面纳米化对低碳钢摩擦磨损性能的影响.金属学报,2002,37(12):1251-1255.
    83 T.S. Wang, J.K. Yu, B.F. Dong. Surface nanocrystallization induced by shot peening and its effect on corrosion resistance of 1Cr18Ni9Ti stainless steel, Surface & Coatings Technology , 2006, 200:4777– 4781.
    84葛利玲,刘忠良,井晓天等. 0Cr18Ni9不锈钢表面纳米化对耐蚀性的影响,2009,34(1):72-74.
    85 L. Zhou, G. Liu, X.L. Ma, et al. Strain-induced refinement in a steel with spheroidal cementite subjected to surface mechanical attrition treatment. Acta Materialia, 2008, 56:78–87.
    86 Y. Jiraskova′, J. Svoboda, O. Schneeweiss, et al..Microscopic investigation of surface layers on rails, Applied Surface Science, 2005, 239:132–141.
    87 B.J. Griffiths. Mechanisms of white layer generation with reference to machining and deformationprocesses, J. Tribol., 1987,109:525-530.
    88 G. Baumann. Formation of white-etching layers on rail treads, Wear, 1996, 191(1-2):133-140.
    89 L. E. Samuels, Metallographic Polishing By Mechanical Methods, Pitman, London, 2nd edn., 1971,p 53.
    90 D. M. Turley, E.D. Doyle and L. E. Samuels. The structure of the damaged layer on metals. Proc. Int. Conf. On Production Engineering, Tokyo, 1974, PartⅡ, CIRP, Paris,1974.
    91 S.B. Newcomb and W.M. Stobbs,A transmission electron microscopy study of the white-etching layer on a rail head, Mater. Sci. Eng., 1984, 66:195-204.
    92 W. Osterle, H. Rooch, A. Pyzalla,et al.. Investigation of white etching layers on rails by optical microscopy, electron microscopy, X-ray and synchrotron X-ray diffractionMater. Sci. Eng. A, 2001,303:150-157.
    93 G. Kurdjumov, E. Kaminsky, Nature 1928, 122: 475.
    94 X. Liu, F. Zhong, J.X. Zhang, et al..Lattice-parameter variation with carbon content of martensite. I. X-ray-diffraction experimental study, Phys. Rev. B 52, 1995,52(14):9970-9978.
    95 C. Scott, N. Guelton, Y. Ivanisenko,et al.. Applying the latest microscopy techniques to study phase transformations at rail surfaces, Revue de Metallurgie/Cahiers D'Informations Techniques, 2006,103(10):458-464.
    96 Y.V. Ivanisenko, G. Baumann, H. Fecht,et al.. Nanostructured and hardness of white layer at the surface of railroad rails. Phys. Metal. Metallogr. 1997, 83(3):303-309.
    97 A.V. Korznikov, Y.V. Ivanisenko, D.V. Laptionok,et al.. Influence of severe plastic deformation on structure and phase composition of carbon steel.Nanostruct. Mater. 1994, 4(2): 159-167.
    98 V.N. Gridnev, V.G. Gavriluk, Cementite decomposite in steel under plastic deformation, Phys. Metals, 1982, 4:531-551.
    99 A. Pyzalla,Changes in microstructure, texture and residual stresses on the surface of a rail resulting from friction and wear,Wear , 2001, 251 : 901–907.
    100 M. Djahanbakhsh, W. Lojkowski, G. Burkle, et al., Nanostructure formation and mechanical alloying in the wheelrail contact area of high speed trains in comparison with other synthesis routes, Materials Science Forum, 2001,360-362:175-182.
    101 W. Lojkowski, M. Djahanbakhsh, G. Burkle,et al.. Nanostructure formation on the surface of railway tracks, Materials Science and Engineering A, 2001, 303:197-208.
    102 L. Wang, A. Pyzalla, W. Stadlbauer, et al.. Microstructure features on rolling surfaces of railway rails subjected to heavy loading, Materials and Engineering A, 2003, 359:31-43.
    103 H.W. Zhang, S. Ohsaki, S. Mitao, et al. Microstructural investigation of white etching layer onpearlite steel rail,Materials Science and Engineering A, 2006,421:191–199.
    104 Y. Jiraskova, C. Blawert, O. Schneeweiss, et al. Defects and Magnetic Phases at Nitrided Iron Surfaces. Phys. Stat. Sol. (a), 2002,189 (3):971-977.
    105 J.R. Rice, J.S. Wang. Embrittlement of interfaces by solute segregation. Materials Science and Engineering: A,1989,107:23-40.
    106 X. Sauvage, F. Wetscher, P. Pareige, Mechanical alloying of Cu and Fe induced by severe plastic deformation of a Cu-Fe composite, Acta Mater., 2005, 53:2127-2135.
    107 P. Pochet, E. Tominez, L. Chaffrn, et al. Order-disorder tranformation in Fe-Al under ball milling, Phts. Rev. B, 1995,52:4006-4016.
    108 L. Battezzati, M. Baricca, S. Curitto. Non-stoichiometric cementite by rapid solidfication of cast iron, Acta Mater., 2005,53:1849-1856.
    109 N.T. Medveseva, L.E. Kar’kina, A.L. Ivanovskii. Effects of atomic disordering and nonstoichiometry cementite, Phys. Of Met. And Metall., 2003, 96:452-456.
    110 X. Sauvage, J. Copreaux, F. Danoix,et al. Atomic-scale observation and modelling of cementite dissolution in heavily deformed pearlitic steels, Phil. Mag., 2000, A80:781-796.
    111 T. S. Eyre, A. Baxter. The Formation of White Layers at Rubbing Surfaces. Tribology Intermational,1972,5:256-261.
    112 E. Magel and J. Kalousek, Martensite and contact fatigue initiated wheel defects, Proceedings of the 12th International Wheelset Congress Quingdao, China, 1998, 100–111.
    113 F.D. Fischer, E.A. Werner, K. Knothe, The surface temperature of a halfplane heated by friction and cooled by convection. Z. Angew. Math. Mech., 2001, 81:75-81.
    114 F.D. Fischer, W. Daves, E.A. Werner, On the temperature in the wheel/rail rolling contact. Fat. Fract. Eng. Mater.Struct. , 2003, 26:999-1006.
    115 F.D. Fischer, E.A. Werner, K. Knothe. The Surface Temperature of a Half-Plane Subjected to Rolling/Sliding Contact With Convection. J. Tribol. , 2000, 122(4): 864-866.
    116 L. Wang, Dr.-Ing. Dissertation, Technische Universitat Berlin, 2002.
    117 J.F. Archard. The Temperature of Rubbing Surface. Wear, 1958, 2:438-455.
    118 M. Tanvir, BR Res. Rep. CR51,1971(British Rail, Derby).
    119 J. S. C. Jang, C. C. Koch, Amorphization and disordering of the Ni3Al ordered intermetallic by mechanical milling, Journal of Materials Research, 1990, 5: 498-510.
    120 W. Lojkowski, S.I. Chugunova, Y. Millman,et al.. The mechanical properties of the nanocrystalline layer on the surface of railway tracks,Materials Science and Engineering A, 2001,303:209–215.
    121 B.S. Murty, S. Ranganathan, Novel materials synthesis by mechanical alloying/milling. International Materials Reviews, 1988, 43(3):101-141.
    122 J. Languillaume, G. Kapelski, and B. Baudeler, Cementite dissolution in heavily cold drawn pearlitic steel wires. Acta mater. 1997,45:1201-1212.
    123 J. Fliigge, W. Heller and R. Schweitzer. Gefiige und mechanische Eigenschaften von Schienenstalen, Stahl und Eisen.1979, 99:841-845.
    124 H.J. Fecht, Nanophase materials by mechanical attrition: Synthesis and characterization, Nanophase Materials, 1994, 260:125-144.
    125 G. Langford. Deformation of Pearlite. Metal. Trans., 1977, A8:861-875.
    126 S.L. Rice, H. Nowotny, S.F. Wayne, Characteristics of metallic subsurface zones in sliding and impact wear. ASME Proc. Wear Mater.1981: 47–52.
    127 E. Hombogen. Gefiige and Festigkeit von Metallen. Z. Metall- kunde, 1977,68:455-469.
    128 K. Knothe and S. Liebelt, Determination of temperatures for sliding contact with applications for wheel-rail systems. Wear, 1995, 189: 91-99.
    129 V. Dikshit, P. Clayton, D. Christensen. Investigation of rolling contact fatigue in a head-hardened rail, Wear, 1991, 144:89-102.
    130张敏,王为波,周永欣等.加工硬化对1.14C-12.72Mn钢铁路辙叉表面剥落的影响.特殊钢,2005,26:45-47.
    131 Emin Bayraktar, Fazal A. Khalid, Christophe Levaillant. Deformation and fracture behaviour of high manganese austenitic steel. Journal of Materials Processing Technology, 2004, 147 : 145–154.
    132 B.F. Zhang, W.C. Shen, Y.J. Liu, et al. Some factors influencing adiabatic shear banding in impact wear. Wear, 1998, 214: 259-263.
    133章建华,朱金华.贝氏体钢在多次冲击接触载荷下的反常磨损行为研究.摩擦学学报,2006,26(3):198-202.
    134 G. L. Kehl, The Principles of Metallographic Laboratory Practice,McGraw-Hill Book Company, Inc., 1949.
    135 W. Egger, G. K?gela, P. Sperra et al. Vacancy clusters close to a fatigue crack observed with the München scanning positron microscope,Applied Surface Science2002, 194: 214–217.
    136 A.R. Miedema, P.F. de Chatel, F.R. de Boer. Cohesion in alloys - fundamentals of a semi-empirical model. Physica B 1980,100:1–28.
    137 A.K. Niessen, A.R. Miedema. Enthalpy effect on forming diluted sold solutions of two 4d and 5dtransition metals. Phys. Chem.1983, 87 (9):717–725.
    138 J.M. Lopez, J.A. Alonso, L.J. Gallego. Determination of the glass-forming concentration range in binary alloys from a semiempirical theory: Application to Zr-based alloys.Phys. Rev. B.1987, 36 (7):3716–3722.
    139 G. Nicolis, I. Pringogine, Self-organization in Nonequilibrium System, John Wiley & Sons, New York, 1977, p. 49.
    140 W.Kurz, D.J. Fisher, Fundamentals of solidification. Adermannsdorf,Trans.Tech Publications Ltd., Switzerland, 1984, p. 211.
    141 J.D. Verhoven, Fundamentals of Physical Metallurgy, John Wiley & Sons, New York, 1975, p. 176.
    142 F.R. de Boer, R. Boom,W.C. Mattens, et al.. Cohesion in Metals, Amsterdam, North-holland, 1988, p. 71–74.
    143 T.H. Fang, W.J. Chang, C.M. Lin. Nanoindentation and nanoscratch characteristics of Si and GaAs. Microelectronic Engineering, 2005, 77(3-4): 389-398.
    144 Y.C. Wu, Z.Z. Tian, X.R. Chang,et al.. Positron annihilation study on deformation of high purity iron under different strain rate.Scripta Met Mater. 1992; 27: 811-814.
    145 A.S. Argon. Plastic deformation in metallic glasses.Acta Met. 197927 (1): 47-58.
    146 H. Brooks. Impurities and imperfections, Cleveland: American society for metals, 1955.
    147 S. M. Kim and W. J. L. Buyers, Vacancy formation energies in bcc and fcc stainless by positron annihilation, Can. J. Phys. 1983, 61: 140-145.
    148 J. Cannara Rachel, J. Brukman Matthew, Cimatu Katherine, et al. Nanoscale friction varied by isotopic shifting of surface vibrational frequencies, Science, 2007, 318:80-783.
    149谢明师,铸造手册[M].北京:机械工业出版社,1992.
    150 A.H. SatirKolorz,H.K. Feichtinger.On the solubility of nitrog en in liquid iton and stel alloys using elevated pressure.ZeitschHftfurMetallkunde,1991,82(9):689-697.
    151 J. Chipman,D.A. Corrigan. Prediction of the solubility of nitrogen in molten steel.Trans Met Soc AIM E.1965, 233:1249-1252.
    152 R.D. Pehlke,J. F. Elliott.Solubility of nitrogen in liquid iron alloys thermodynamics.Trans Met Soc AIME,1960,218:1088-1101.
    153 J.C. Rawers , N.A. Gokcen. High temperature high pressure nitrogen concentration in Fe-Cr-Mn-Ni alloys. Steel Research,1993,64(2):l10-l13.
    154邓美珍.高锰钢脱磷方法的热力学研究.华东冶金学院学报,1989, 6(3):15-24.
    155何力,李志浩,卢锦德等.稀土变质处理及合金化对高锰钢组织结构的影响.金属热处理学报,2000,2l(3):5l-54.
    156耿文范.铁水炉外脱硫技术的发展概况,钢铁,1991,10(10):69-71.
    157刘守平,文光远.铁水用镁脱硫的热力学分析.钢铁钒钛,1998,19(1):16-19,57.
    158李尚兵,王谦,何生平.镁合金对钢液脱氧脱硫的作用.钢铁钒钛,2007,28(2):74-77.
    159杜挺.稀土元素在金属材料中的一些物理化学作用.金属学报.1997,33(1):67-77.
    160李明山,史国顺.高锰钢爆炸硬化的微观机制.金属学报,1990,26(6):B391-B394.
    161 W. N. Roberts. Direct evidence of cementite dissolution in drawn pearlitic steel observed by tomographic atom probe. TMS-AIME, 1964, 230(10):372-380.
    162 Y.N. Dastur, W.C. Leslie. Mechanism of work hardening in Hoodfield manganese steel. Metall. Trans. 1981 (12A):749-759.
    163 F.C. Zhang, T.Q. LEI.Study of friction-induced martensite transformation for manganese steels. Wear, 1997, 212:195-198.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700