用户名: 密码: 验证码:
激光陀螺捷联惯导系统若干关键技术及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
先进的惯性技术水平是衡量一个国家军事实力的重要标志,可以说没有先进的惯性技术就没有先进的军事装备。惯性导航系统具有完全自主、不受干扰、实时输出载体姿态、位置、速度等各种导航信息的优点,因此在军民用领域得到各国高度重视和广泛应用。
     进入二十一世纪后,国外激光陀螺捷联惯性导航系统(Ring Laser Gyro Inertial Navigation System,LINS)已进入产品工程化阶段。而在国内,LINS与国际水平还存在一定差距,在一些领域还处于工程化研制应用的初期,我国已通过引进生产线等解决了激光陀螺的生产问题,但如何从器件级(激光陀螺,加速度计等)到系统级,如何解决LINS工程应用中所面临的恶劣环境条件的影响,提高其应用精度,推进其在我国的工程化应用进程,具有重要的学术价值和现实意义。
     论文的研究与试验正是基于航天预研项目(编号为:618020704),以及与此相关的LINS的工程应用要求进行的。
     论文依据项目技术指标要求,设计了系统总体方案,在完成LINS样机基础上,主要围绕如何解决其在高动态、不同温度条件下的工程应用精度问题,通过理论研究和大量工程试验,对该系统中若干关键技术进行了深入研究,并对各项研究成果逐项进行了试验验证,精度指标满足背景要求。
     论文主要研究内容如下:
     ①依据预研项目提出的指标,设计了系统总体方案。
     首先从系统的角度对技术指标进行了论证、计算并完成系统总体方案的设计,提出了设计实现的技术难点与关键点,并完成了工程样机,为关键技术的研究提供了硬件基础和研究方向。
     ②高频采样与圆锥误差补偿研究。
     从理论上分析了圆锥误差的产生机理、并重点研究了转动矢量的姿态算法和三子样算法;分析了激光陀螺输出信号的特性及对系统误差的影响,指出了要解决高动态问题,首先必须从根本上解决由于整周期采样导致的信号不同步、采样频率低引入的误差,研究了LMS算法自适应滤波器,设计了硬件高频读出电路和滤波补偿软件,在此基础上进行圆锥误差补偿,基座摇摆条件下获得满意的静、动态精度。
     ③LINS的动态特性与减振研究
     研究了LINS在高动态振动条件下的误差,研究表明系统重心配置、刚度设计、减振器的选取是影响系统高动态条件下应用精度的关键,提出了通过陀螺输出判断重心偏移的方法,并通过重新设计和微调大大改善了其动态性能。最后通过实验检验,其在振动条件下定位精度达到120米(6分钟,10.8g),各种路面跑车试验定位精度小于1.5海里/小时(CEP)。
     ④系统温度补偿
     针对指标快速反应的要求,研究了系统对温度的敏感特性及由其导致的漂移误差,着重研究了系统的温度补偿模型、拟合方法,同时设计了多个温度感测点,将陀螺和加速度计的转换过程看作为一个“黑匣子”,做整体补偿;并利用神经网络强大的非线性映射能力对输出参数进行拟合,使不同温度下初始对准姿态精度达到8"以内,并将准备与对准时间由原来的15分钟提高到2分钟,并从理论和试验中指出了温度点的选取是实现有效温度补偿的关键之一。设计的实现提高了系统快速反应能力和机动能力。
     ⑤标定与试验考核
     样机经过标定与测试,指标满足预研研制目标;于2006年9月~12月,分别参加了在河北廊坊地区、北京云岗地区的跑车试验,指标达到:3小时航向精度高于9′(1σ),水平定位误差小于0.15D%(CEP),航向保持精度名列前茅。
The advanced inertial measurement level of a country is an important symbol of military strength, it can be said that there is no advanced inertial technology there will be no advanced military equipments. The inertial navigation system attracted wide attentions and applications in various fields of attitude measurement, navigation and positioning with it’s excellence of completely independent, free from any interference, output informative, and good real-time.
     Entering the 21st century, foreign laser gyro strapdown inertial navigation system (LINS) has being in the engineering stage. Compared with the international level, there are still certain gaps and LINS is still in the the early stage of development and application in some sensitive areas. China has adopted to introduce production lines to resolved laser gyro production problems, but how to from the device-level (laser gyroscopes, accelerometers, etc.) to the system-level, how to solve LINS’s engineering applications facing the bad environmental conditions, and promote its application process in China, improve its accuracy to replace the imported products. There will be important academic value and practical significance to resolve these problems.
     Based on the aerospace preliminary research project NO:618020704 and the related LINS’s engineering applications .
     According to the demands, this papers has designed the system scheme, complete the LINS hardware, done deeply research of key technology and test verification mainly centered on how to solve its high dynamic application precision and fast reaction ability under different conditions application.
     The main research works in this paper are as follows:
     ①Based on the research projects index, design the overall system scheme. In system aspect, analyzed, demonstrated and calculated the index ,completed the overall program design of the systems, proposed the technical difficulties and the key point, and completed the prototype.This work provide the research base and research direction for the following key technologies.
     ②Cone and high-frequency sampling error compensation study.
     Analysis the production of the cone error theoretically and studied the attitude algorithm of rotation vector; Analysis the characteristics of laser gyro output signal and its impact to the system error, pointed that to solve the problem ultimately of high dynamic precision ,the first step is to solve the asynchronism of system sampling and the low sampling frequency .The LMS adaptive filter is studied and the DSP sampling card is made . The sampling frequency reaches 5 KHz, much higher than 400 Hz sampling frequency in a whole cycle, also higher than HOLLEWELL 2. 4 KHz. The satisfying effect is achieve after high frequency and cone error compensated.
     ③Dynamic characteristics and vibration reduction study of LINS
     Studied the error and characteristics of LINS under the high dynamic conditions especially the high vibration conditions.Study showed that the configuration of system barycentre, stiffness design and the selection of vibration absorber are the key factors which affect the system dynamic error,developed the way to adjust the system barycentre by the output of laser gyro. improved its dynamic performance through re-designed. The system position accuracy reached 120 meters (6 minutes,10.8g vibration)and 1.5 nm/h (CEP)through road car test.
     ④System temperature compensation
     Focused on the system temperature compensation ,the temperature sensitive characteristics and the relativity between the output and the multi - temperature sensing pointed is studied ,tests showed that to achieve effective compensation the choose of the sensing points is one of the key, by using the nonlinear approach of neural network system realized the high precision compensation,the attitude precision reached 8" and the preparing time is shortened from 15 minutes to 2 minutes .The realization enhanced the vehicle weapon system’s fast reaction ability.
     ⑤Calibration and test
     The achieved performance has meet the demands after calibration and test , in Sept. 2006, an experimental prototype of the project has been made in Langfang and YunGang regional ,results showed that the LINS achieved the following performance indicators: the azimuth accuracy higher than 9' ( 1σ,3h ), the horizontal positioning error less than 0.15D% (CEP), the attitude maintain accuracy is among the best ones.
引文
[1]《惯性技术手册》编辑委员会.惯性技术手册,北京:宇航出版社,1995.
    [2]陆元九.陀螺及惯性导航原理[M],北京:科学出版社,1964.
    [3]秦永元.惯性导航[M],北京:科学出版社,2006.
    [4]陈哲.捷联惯性导航系统原理[M].北京:宇航出版社,1986.
    [5]袁信,郑谔.捷联式惯性导航原理[M].航空专业教材编审组,1985.
    [6]以光衢.惯性导航原理[M].北京:航空工业出版社,1987.
    [7]朱绍箕,李立新,张绍武.从西欧三国考察看惯性技术的发展,飞航导弹,1999(1):34-37.
    [8]董绪荣,张守信,华仲春. GPS/INS组合导航定位及其应用[M].长沙:国防科技大学出版社,1998.
    [9]张宗麟.惯性导航与组合导航[M].北京:航空工业出版社,2000.
    [10]华菊仙.国外陆军陆地导航系统装备与发展动向(上)[J].外军炮兵,1997(11):21-24 .
    [11]曾庆化,刘建业,赖际舟,熊智.环形激光陀螺的最新发展,传感器技术,2004,23(11):1-4.
    [12] Lück T , Kreye C , Eissfeller B. Status and Indoor Use of Mems Inertial Technology[C] . INDOORNAV 2001 Munich Germany :Institute of Geodesy and Navigation ,2001.
    [13] Bjones. Monolithic Ring Laser Gyros (MRLG) Manufacturing Project successfully Transitioned to Production [ N ] . ECO NewsFlash ,2002 - 01 - 02 (V2 :N3).
    [14] Kozo Taguchi ,Kaname Fukushima ,Atsuyuki Ishitani , et al . Selfdetection characteristics of the sagnac frequency shift in a mechanically rotated semiconductor ring laser [ J ] . Department of Electrical Engineering , Fukuyama University , Gakuencho , Hiroshima ,Japan,Measuerment ,2000 ,27 :251 - 256.
    [15] Sankar ,Ravi. ASIC Implementation of Real2Time Adaptive Noise Cancellation in Space based RL G Systems [ R] . Sanford Florda :University of South Florida Projects , Aviation & Aerospace“Research Summary”,Annual Report ,2001 - 2002.
    [16] Melkoumian B V. Optodynamics effects [ J ] . Proceedings of SPIE ,2001 ,4348 :11- 16.
    [17] Nassar S. Improving the Inertial Navigation System ( INS) Error Model for INS and INS/ DGPS Applications[D] . Alberta ,Canada :the University of Calgary ,2003.
    [18] Shin Eun2hwan ,Accuracy Improvement of Low Cost INS/ GPS for Land pplications[D] . Alberta :The University Of Calgary ,2001.
    [19] Gupalov V I ,Mochalov A V ,Boronachin A M. Application of a ring laser for measurement of the track geometrical parameters[J] . Proceedings of PIE ,2000 ,4316 :13 - 20.
    [20] M.L.Dennis,J.-C.Diels,M.Lai.The femto-second ring dye laser:apotential new laser gyro. Optics Lett. 16,529-531(1991).
    [21] Mcleod D P ,King B T ,Stedman G E. Autoregressive analysis for the detection of earthquakes with a ring laser gyroscope[J ] . Fluctuation and Noise Letters ,2001 ,1 (1) :41 - 50.
    [22] Mochalov A V , Kazantsev A V. Use of the ring laser units for measurement of the moving object deformations[J ] . Proceedings of SPIE ,2002 ,4680 :85 - 92.
    [23] Stirling R , Collin J , Fyfe K, et al. An Innovative ShoeMounted Pedestrian Navigation System [ C] . GNSS 2003 , Graz ,Austria ,2003. 1 - 15.
    [24] Mark G. Petovello. RealTime Integration of a Tacticalrade IMU and GPS for High Accuracy Positioning and Navigation[D] . Alberta : The University Of Calgary ,2003.
    [25] Kumpel A. A Conceptual Study of the Space Launch Capability of the Peacekeeper ICBM[ R] . US Aerospace Systems Design Laboratory school of Aerospace Engineering Georgia Institute of Technology Atlanta ,2002.
    [26]任思聪.实用惯导系统原理[M],北京:宇航出版社,1986.
    [27]章燕申,郭美凤,滕云鹤.激光陀螺技术报告与论文集.清华大学. 1999. 60-62.
    [28]袁信,俞济祥,陈哲.导航系统[M].北京:航空工业出版社,1993.
    [29]崔中兴.惯性导航系统[M].北京:国防工业出版社,1982.
    [30] Lee JG,Yoon YJ,Mark JG. Extension of strap-down attitude algorithm for high-frequency base motion[J]. IEEE Transactions on Aerospace and Electronic Systems,1994,30(4):306-310.
    [31]黄昊,邓正隆.旋转矢量航姿算法的一种新的表达式[J]。宇航学报,2001,22(3):92-98.
    [32] Robin B. Miller. A New Strapdown Attitude Algorithm[J]. Journal of Guidance, 1983, 6(4):287-291.
    [33] Jang G. Lee and Yong J. Yoon. Extension of Strapdown Attitude Algorithm for High-Frequency Base Motion [J]. Journal of Guidance,1990,13(4):738-743.
    [34] Miller R B. A new strap_down attitude algoithm[J],Journal of Guidance,Control and Dynamics,1983,6(4):287-291.
    [35] Bortz JE. A new mathematical formulation for strap-down inertial navigfation[J],IEEE Transactions on Aerospace and Electronic Systems,1971,7(1):61-66.
    [36] Jiang Y F, Lin Y P. Improved strap-down coning algorithms [J].IEEE Transaction on Acrospace and Electronic Systems,1992,28(2):484-490.
    [37] ROSCOE K M. Equivalency between strap-down inertial navigation coning and sculling Integrals/Algorithms[J]. Journal of Guidance, Control and Dynamics.2001,24(2):201~205.
    [38]练军想,胡德文,胡小平,吴文启.捷联惯导姿态算法中的圆锥误差与量化误差,航空学报,2006,l(27):98-101.
    [39] Musoff,H. & J.H. Murphy. Study of Strapdown Navigation Attitude Algorithms[J]. Journal of Guidance, Control and Dynamics, 1995,18(2):287-290.
    [40]刘巧光,杨海军,郭美凤,滕云鹤,等.捷联惯性导航系统得姿态算法优化设计[J].中国惯性技术学报,1999,7(2):1-5.
    [41] Savage P G. Strap-down inertial navigation integration algorithm design, Part 1: attitude algorithms [J].J. of Guidance and Dynamics.1998,21(1):19-28.
    [42] Miller, R.B. A New Strapdown Attitude Algorithm[J]. Journal of Guidance, Control and Dynamics, 1983, 6(4):287-291.
    [43]腾云鹤.激光陀螺输出电路[J].清华大学报.Vol.12.No.l.1996.410-415.
    [44]赵天鹏,谢家纯,易波.激光陀螺信号处理专用集成电路.中国科技大学学报. Vol.26.NO.3.SEP.1996. 353-355.
    [45] DAMIEL.SOLOMON.Conariance Matrix forα-β-γFirtering.IEEE Trans on Aerospace and Electronic systemz. 1985.VoL.AES-21 No.1.738-747.
    [46] Y,G.Martynenko,S.I.Gubarenko,S.F.杨海军,郭美凤,刘巧光,滕云鹤,章燕申. Ring Laser Gyro Applications. high Accuracy-pointing and Tracking in Space. Gyro Technology. stuffgart. 1993. Germany.63-92.
    [47] C.C.SCHOOLER.Optimalα-βFilters for Systems With Modeling Inaccuracies.IEEE Trans on Acrospace and Electronic Systems. 1975.VOL.NO. 6.115-143.
    [48]张贤达.“现代信号处理”第一版,清华大学出版社1995.5 pp.150-186.
    [49] Simon Haykin. ADAPTIVE FILTER THEORY.Third Edition.1999.pp194-236.
    [50]张雄伟曹铁勇. DSP的原理与开发应用.第一版.电子工业出版社.2000.9.1-7.
    [51]汪安民. TMS320VC54XX DSP实用技术.北京:清华大学出版社,2002.
    [52] Texas Instruments TMS320VC3x DSP CPU and Peripherals,1997.
    [53]阎石.数字电子技术基础高等教育出版社第3版1989.3 PP638-641.
    [54]张明友,吕幼新.信号与系统分析电子科技大学出版社第1版2000.1 PP1~157.
    [55]姜常珍.“信号分析与处理”,第一版,天津大学出版社,2000 pp.145-195.
    [56]郭磊. MATLAB分析.第一版.机械工业出版社.2000.9.45-86.
    [57]范鉴青.测试技术同济大学出版社第一版1988.8 PP.120-142.
    [58]吕妍红.环形激光陀螺随机误差分析[J].传感器技术,2004,23(2):40-43.
    [59] GJB 2427-95.激光陀螺仪测试方法[S],1995.
    [60] Gupalov V I, Mochalov A V, Boronachin A M. Application of a ring laser for measurement of the track geometrical parameters[C]//Proceedings of SPIE, 2000, 4316: 13-20.
    [61] Lahham J I, Brazell J R. Acoustic noise reduction in the MK 49 ship's inertial navigation system (SINS)[C]//Proceedings of the IEEE Position Location and Navigation Symposium,1992. 32-39.
    [62]葛健全,唐乾刚,雷勇军.减振支架结构随机响应的灵敏度分析.首届全国航空航天问题研讨会,19990. 34-37.
    [63]吴斌,王海峰,曲涛,李春朴.弹载激光陀螺惯导系统安装支架设计,中国惯性技术学报,2007,15(2):33-37.
    [64]黄金威,杨朋君,于云峰,王佳民.惯性平台橡胶减振器弹性特性的有限元分析,机械设计,2006,23(11)pp51-54.
    [65]王贵一.橡胶减振器的设计原理和测试[J].特种橡胶制品,1998,6(2):59-62.
    [66]王佳民,裴听国.惯性平台新型金属橡胶减振器理论与实验研究,宇航学报,2003,24(1)pp92-96.
    [67]赵明,王轲,苏域.激光陀螺抖动系统振动特性的有限元分析,中国惯性技术学报,2004,12(4):40-43.
    [68]王可东,顾启泰,钟德贵,田海峰.机抖式激光陀螺基础振动消除研究[J].中国惯性技术学报,2002,10(6):62-67.
    [69]谢燕,雷勇军,周建平,唐国金.惯导减振系统结构参数的优化[J].强度与环境,2005,32(4):39-45.
    [70] Rivin E I. Passive Vibration Isolation[M]. New York: ASME Press, 2003.
    [71] Rivin E I. Interrelation of stiffenss and damping in machine tool dynamics[R]. In: Transaction of the North American Manufacturing research Institution of SME, 2001: 137-143.
    [72] [俄]B·B·谢列金,Р.М.库库利耶夫著,刘迎晖译.激光陀螺及其应用[M],北京:航空工业出版社,1981.
    [73]谢燕,雷永军,周建平,唐国金.惯导减振系统结构参数的优化,强度与环境,2005,32(4)pp39-45.
    [74]李俊峰,刘进江,唐献林.激光陀螺捷联惯性组合的系统结构抗振控制[J].中国惯性技术学报,2006,14(1):21-26.
    [75]于大泳,丛大成,韩俊伟.特种重型车辆质心测试平台的运动学标定[J ] .兵工学报,2006,l(27):917-920.
    [76]赵新通,韩俊伟,徐洋.质心测量平台结构刚度的计算[J ] .黑龙江科技学院学报, 2004 ,14 (3) :167– 170.
    [77]刘一谦,王世振,李红.捷联惯导系统中的减振技术,飞航导弹,1990,8(4)pp23-26.
    [78]王淑娟,吴广玉.惯性器件温度补偿方法综述[J].中国惯性技术学报,1998,6(3),pp44-47.
    [79]张鹏飞,龙兴武,汤建勋,王宇,李革,许光明.机抖激光陀螺的零偏的实时温度补偿方法研究,传感技术学报,2007,6(20):pp1279-1282.
    [80]赵小宁,李县洛,雷宝权.激光陀螺零偏温度补偿研究,中国惯性技术学报,2004,6:55-57.
    [81]贺海鸥,赵忠,邵玉梅,王璐,徐晓东.激光陀螺温度误差的多因素BP网络模型,压电与声光,2007,2(29),pp222-223.
    [82]吴国勇,顾启泰,郑辛,田海峰,白长川.环形激光陀螺温度模型,清华大学学报(自然科学版),2003,43(2):pp180-183.
    [83]张鹏飞,龙兴武.石英挠性加速度计误差补偿模型的研究,传感技术学报, 2006, Vol . 19,No. 4,pp1100-1103.
    [84]苏中,李擎.基于仿真技术的加速度计标度因数温度补偿.电子测量与仪器学报,2004,Vol.18,No14,pp25-28.
    [85]李清梅,胡小平,吴美平.高精度加速度计A/D转换电路的温漂补偿,中国惯性技术学报, 2005,13(5):45-48.
    [86] Blackwell, William J. A neural network technique for atmospheric compensation and temperature/emissivity separation using LWIR/MWIR hyperspectral data . Algorithms and Technologies for MultiSpectral. 2004, pp604-615.
    [87] Stephen Marsland, Jonathan Shapiro, and Ulrich Nehmzow. A self-organising network that grows when required. Neural Networks, 2002,15(8-9):pp1041-1058.
    [88]张目.激光陀螺零偏误差补偿技术研究硕士论文2007.5.
    [89] Rober A.Chechile.Thousand Oaks;Agop H.Cherbertchian,Santa Monica;Sampson spry,ⅢThousand Oaks,Khalig.“TEMPERATURE COMPENSATED MOUNT FOR SUPPORTING A RING LASER GYRO”.Aii of Calif Parent 4890812 Jan.2 1990.
    [90] Bernard.G.Fidric.“RING LASER GYRO FRAME DESISTANT TO THERMAL GRADLENT EFFECTS”.Woodland Hills Calif Patent Number 4867567 Sep.19.1989.
    [91] Theodor A.Toth.“MIRROR TRANSDUCER ASSEMBLY WITH SELECTED THERMAL COMPEN SATION”.1533 Trapp Ct.Fridley.minn.55432 Patenr Number 49 15492 Apr.10 1990.
    [92] J.D.Coccoli S. Helfant.“RLG EVALUATION COMPLEMENTARY MODELING AND TESTING”.The Charles Stark Draper Laboratory.Inc.Cambridge.Massachusetts 02139.
    [93]王洋,商顺昌.石英挠性加速度计的温场分析,传感器技术,1996,3:8-11.
    [94]顾英.惯导加速度计技术综述,飞航导弹,2001,6:78-83.
    [95]焦李成著.神经网络系统理论[M],西安电子科技大学出版社.
    [96]李孝安,张晓缋著.神经网络与神经计算机导论[M],西北工业大学出版社.
    [97] Bogdan M. Wilamowski, Serdar Iplikci, Okyay Kaynak,etal. An Algorithm for Fast Convergence in Training Neural Networks, IEEE Trans. on Neural Networks, 2001,vol 3,pp1778-178.
    [98]邱建勋,潘英俊等.基于神经网络的压电陀螺的温漂补偿,仪器仪表学报(增刊),2006(6),27(6),pp842-84.
    [99]邱电伟,何顺利,李中锋,门成全.改进的B - P神经网络系统在储层敏感性伤害预测中的应用,特种油气藏,2005,1(12):65-68.
    [100] Vogl,TP,Mangis,JK,Rigler,JK,Zink,WT,Alkon,DL. Accelerating the convergence of the backpropagation method.Biological Cybernetics,1988,59:257-263.
    [101] Chan,LW,&Fallside,F. An adaptive training algorithm for back-propagation networks.Computers,Speech and Language,1987,2:205-218.
    [102] Jacobs RA. Increased rates of convergence through learing rate adaptation.Neutral Networks,1988,1(4):295-307.
    [103] Silva,F,Almeida,L. Acceleration techniques for the back-propagation algorithm.Lecture Notes in Computer Science,1990,412:110-119.
    [104]龚安,张敏.网络自适应学习率研究,科学技术与工程,2006,6(1):64-67.
    [105]焦李成.神经网络计算,西安电子科技大学出版社,1993:41-42.
    [106]“GG1342 Evaluation”.Symposium Gyro Technology.1982.Stuttgart.
    [107]张卫东,刘恒春.捷联惯性测量组合标定的仿真研究[J].中国惯性技术学报,2000,8(2):10-15.
    [108]林玉荣,邓正荣.激光陀螺捷联惯导系统中惯性器件误差的系统级标定[J].哈尔滨工业大学学报.2001,33(1):112-115.
    [109] Camberlein, L., Mazzananti. F. Calibration Technology for Laser Gyro Strapdown Inertial Navigation Systems[A]. Symposium Gyro Technology[C], Stuttgart, Germany, 1985.
    [110]梅硕基.惯性仪器测试与数据分析[M].西安:西北工业大学出版社,1991.
    [111]缪玲娟,田海.车载激光捷联惯导系统的快速初始对准及误差分析[J].北京理工大学学报, 2002,20(2):205-209.
    [112]王新龙,申功勋.一种快速精确的捷联惯导系统初始对准方法研究.中国惯性技术学报,2003,11(5):19-23.
    [113]万德钧,房建成.惯性导航初始对准[M].南京:东南大学出版社. 1998.
    [114]王艳东,范跃祖.捷联惯导系统多位置对准研究[J],中国惯性技术学报,2000,8(3):17-19.
    [115]王立冬,蔡玲,鲁军.车载捷联惯导系统静止条件下的初始对准方法研究[J].中国惯性技术学报,2004,12(2):1-4.
    [116]吕小红,张玲翔.飞航导弹发射车自动定位定向技术[J].飞航导弹.1995,5:55-62.
    [117] Hadfield Michael J. Leiser Kenneth E. Application, Integration an d Operational Aspects of an Inertial Navigation/Survey/ Pointing System[C]. First Vehicle Navigation and InformationSystems Conference, Toronto, Ont, Canada, 1989, 11-13.
    [118] Kubo Yukihiro, Kindo Tsuyoshi, Ito Akihiko, et al. DGPS/INS/WheelSensor Integration for High Accuracy Land-vehicle Positioning[C].Proceedings of the 12th International Technical Meeting of the Satellite Division of the Institute of Navigation, Nashville,1999,9, 14-17.
    [119] Kadron DG, Younkin CR. Land Vehicle Navigation System[C].Westinghouse Electric Corp Baltimore Md Systems Development Div.15 Apr 1974. 129p. Report: LWLCR-04P72.
    [120]严恭敏,秦永元.车载激光陀螺SINS/DR导航系统研究[J].弹箭与制导学报,2005,25(4):20-23.
    [121] Yu Jiacheng, Chen Jiabin, et al. Multi-position Observability Analysis of Strapdown Inertial Navigation System. Journal of Beijing Institute of Technology, 2004, 24 (2) :150-153.
    [122]熊剑.车载组合导航系统里程仪标定方法的研究[J].导航,2005:24-28[91]Lin, D, Keck Voon, L, Guo Rong, H, et al. GPS-based AttitudeDetermination for Microsatellite using Three-antenna Technology.IEEE Aerospace Conference Proceedings, 2004:1024-1029.
    [123]兰春云,缪玲娟,沈军.陆用捷联惯导系统中里程计刻度因子的在线辨识[J].北京理工大学学报,2003,23(2):198-201.
    [124] GJB 2785-96.地地导弹惯性定位定向系统通用规范[S],1996.
    [125]滕云鹤,毛献辉,章燕申.移动卫星通信捷联式天线稳定系统[J].宇航学报, 2002,l(5):72-76.
    [126] Teng Yunhe, Guo Meifeng, Liu Qiaoguang etc. A New Attitude Algorithm for the INS Using Ring Laser Gyros, Proceedings of the ION 57th Annual Meeting/CIGTF 20th Biennial Guidance Test Symposium, 11-13 June 2001, Albuquerque, New Mexico, pp765-769.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700