青西油田深层复杂岩性裂缝性油藏储层改造关键技术研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
青西油田主力油藏下白垩统下沟组,平均埋深4500m左右;储集层岩性复杂,碳酸盐岩、碎屑岩(石英和长石)以及粘土矿物含量既不同于常规的碳酸盐岩,又有别于常规砂岩,岩石矿物组份复杂,岩心的基质孔隙度和渗透率都很低,无裂缝的岩心很难测到渗透率,属于高温、高压、低孔、低渗复杂岩性裂缝性断块油藏,开发难度很大。
     由于储层岩性和矿物组份变化很快,平面上井与井对应层不同,同一口井的剖面上岩性互异:存在较强的水敏和应力敏感,而且天然裂缝在钻井和完井过程中易遭受污染,同时天然裂缝内往往还伴生了一定数量的黄铁矿、菱铁矿、方解石等矿物,这些矿物使得裂缝之间的连通程度大大下降,甚至形成了一些孤立缝隙,只有通过酸压等油藏改造措施解除裂缝污染和恢复、提高裂缝系统的导流能力才能使油井获得高产和稳产。然而常规的酸化(压)工艺技术和酸液体系对青西复杂岩性裂缝性油藏不适应,储层改造效果差,因此根据油田上产的要求及勘探的需要,必须研究针对该类储层的增产工艺技术。本文针对青西深层复杂岩性裂缝性油藏储层改造的一些关键酸化压裂技术进行了较系统研究,取得了如下的成果。
     1、通过对青西油田深层复杂岩性裂缝性油藏的工程地质、录井、测井、测试、x衍射、室内测试结果等各种资料的研究分析,对工程地质特征有了较为全面的认识,提出了储层工程地质特征对酸化压裂工艺技术的技术难点和要求。
     2、在岩心观察、成像测井资料分析的基础上,从测井响应机理分析入手,分别提取了溶蚀孔洞、水平裂缝、高角度裂缝的测井响应特征,提出了水平张开裂缝与水平潜在裂缝及层理面的识别技术,建立了泥质白云岩裂缝性油藏有效储层的识别方法。依据测井响应机理推导,根据常规测井资料计算裂缝孔隙度和裂缝渗透率的方法,对13口井进行了精细解释。
     3、针对青西油田具体的岩石类型,分别对白云质泥岩、泥质白云岩和砾岩三类岩石的力学性质进行了测试,获取了相关力学参数,为酸压设计提供了基础数据。
     4、分别采用粘滞剩磁分析、热弹性应变恢复二种实验室综合测试方法,并结合测井资料中井孔崩落、钻井诱导裂缝等方法,较准确地确定出了青西油田地应力方向;分别利用差应变地应力数值测试及井孔崩落特征、酸压资料统计等方法对地应力数值大小进行了研究;并在测井资料解释获得参数值的基础上,利用实测数据进行修正计算值,获得了综合柱状应力剖面。
     5、综合考虑压裂液沿缝高方向的压降、流体重力、地应力梯度、地应力差等因素对裂缝延伸的综合影响,建立起了三维裂缝延伸模型来模拟酸压施工中动态裂缝延伸;同时在考虑酸液纵向传递的基础上,建立了三维酸液流动反应数学模型,该模型能模拟酸液浓度在裂缝长度、宽度及高度方向的变化,适应性更好;
     6、针对青西油田高温高压复杂岩性裂缝性断块油藏,通过大量室内实验和现场总结,研究成功了针对这类岩性复杂、地层温度高、裂缝性油藏酸压的以胶凝酸和乳化酸有机结合的组合酸液体系。
     7、通过酸岩导流能力实验,系统评价了几种主要的酸液体系和酸压工艺对青西油田储层岩性的适应性,提出了针对这些岩性储层的酸液类型和酸压工艺模式:研究成功了一套适应青西油田深井酸压施工的井下工具和管柱组合等配套工艺措施,较好地满足了深井高温储层深度酸压的工艺需要。
     8、通过多年的实践,形成了针对不同岩性、不同裂缝发育程度储层的7种典型酸压工艺技术模式,并在现场实践中成功运用,取得了显著的经济和社会效益,为青西油田增储上产做出了贡献。
The average buried depth of Xiagou group in the major reservoir of Qingxi oil field is at about 4500m.The reservoir lithology is complex,carbonatite,clasolite(quartz and feldspar) and clay mineral content are different from conventional carbonatite and sandstone,the mineral composition of rock is complex,the matrix porosity and permeability of the rock core are considerably low,the permeability of the untracked rock core is hard to measure.It is difficult to explore such fault block oil reservoir which have characters of high temperature、high voltage、low porosity and low permeability.
     Because of the reservoir lithology and mineral composition change too fast the corresponding layers of each well are different,furthermore the lithologies are mutual conductance on the profile of the same well.The water-sensitive and stress sesitivity conditions are strong,the natural fracture is prone to be polluted in the process of drilling and completion.Meanwhile some extent of mineral such as pyrite,siderite and calcite which will decline the connectivity conditions of fractures are existing in the natural fracture.The worse thing is that it will forms some isolation apertures which only could be reformed by fracture acidizing to release the fracture polluting and improve the conductivity of network of fracture. But the conventional acidification and acidizing fluid are not suit to the Qingxi fractured reservoir.According to the requirement of production of exploration,we have to study the enhanced recovery techinique aimed at this kind of reservoir.This paper do some research on the key fracturing technology of Qingxi deep complex lithology fractured reservoir and get the fruits as follows.
     1.Analyse a lot of data such as indoor test result and,a comprehensive recognition of engineering geology characteristic and present the technology difficulties and requirements of reservoir engineering geology to acid fracturing.
     2.On the basis of analysis of rock core observation and imaging well-log information, get the log response characteristics of corrosion holes,horizontal fracture and high angle fracture,present the recognition technology of the horizontal open fracture,potential horizontal fracture and bedding plane,establish recognition technology of the effective reservoir of argillaceous dolomite fractured reservoir,calculate fracture porosity and permeability according to conventinal log data and interpret the 13 wells.
     3.Test the mechanical properties of dolomitic mudstone,argillaceous dolomite and conglomerate aiming at the specific rock type of Qingxi oil field,get the related mechanical parameters which provide data base for fracture acidizing design.
     4.Finding the stress direction of Qingxi oil field according to the analysis of viscous remanent magnetization,the restoration of thermal elastic strain,borehole avalanche and drilling-induced fracture.Study the value of stress on the basis of test of stress value, characteristics of borehole avalanche,data of fracture acidizing.Obtain integrated styloid profile using the measured data to correct and calculate the value on the basis of get parameter by the interpreting of well-log information.
     5.By considering the combined influences to crack propagation form the influential factors such as pressure drawdown alone the fracture,fluid gravity,crustal stress gradient, stress contrast and so on,built the triaxial fracture extension model to simulate the dynamical fracture extension during the acid fracturing,at the same time by considering the acid longitudinal mass transfer,built the triaxial acid flowing reaction model which can simulate the alteration of acid concentration by the change of length,width,height and orientation of fracture and has a better performance in accommodation.
     6.Aiming at HTHP complex lithology fault block oil reservoir of Qingxi oil field, develop combination of acidizing fluid system which is organic synthetised by Gelled acid and emulsified acid,this kind of system is helpful to Qingxi oil field.
     7.Through acid rock conductivity experiments,has accessed adaptability of several major acid system and the process of acid pressure for the lithology of Qingxi oil field,then the type of acid and acid fracturing process model which aimed at the lithology have been proposed; underground construction tools and string combination Which adapt to acid and facture in deep well of Qingxi oil field has been Studied successfully,the supporting measures better meet the needs of the deep well and high-temperature reservoir acid fracutre.
     8.Through practice for years,the seven kinds of typical acid pressure technology modes that aimed at the formation of a different lithology and different degree of fracture are built up and have been applied successfully in the field,have achieved remarkable economic and social benefits.The technologies have made good help to add the production of Qingxi oil field.
引文
[1]张黎明等,“用旋转圆盘仪研究酸岩表面反应动力学”,化学反应工程与工艺,1996,12(3).238-246.
    [2]Hoefner,M.l.,et al:" Reaction Rate vs Transport Limited Dissolution during Carbonate Acidizing:Application of Network Model".SPE 15573.
    [3]Yan.Li,and Sullivan,R.B.:"An Overview of Current Acid Fracturing Technology with Recent Implication Of Emulsified Acid".SPE 26581.
    [4]Roberts L.C.and Guin J.A:"A New Method for Predicting Acid Penetration Distance" SPEJ (Aug.1975)p.277-286.
    [5]Williams B.B and Nierode D.E:"Design of Acid Fracturing Treatments." JPT(July 1972 ) p.849-859.
    [6]Robert,L.D:"The Effect of Surfacd Kinetics in Fracture Acidizing".SPEJ(Aug.1974) p.385-395.
    [7]Mumallah,N.A.:"Factors Influencing the Reaction Rate of Hydrochloric Acid and Carbonate Rock".SPE 21036.
    [8]John de Rozieres et al:"Measuring Diffusion Coefficients in Acid Fracturing Fluids and Their Application to Gelled and Emulsified Acids".SPE 28552.
    [9]Anderson,M.S.:"Reactivity of San Andres Dolomite".SPE 20115.
    [15]Mohamed Sharaf,et al.:"A Novel Approach to Acidizing of Carbonates:Case History From the Gulf of Suez in Egypt".SPE 63182.
    [10]Frank Chang,et al.:"A Novel Self-Diverting-Acid Developed for Matrix Simulation of Carbonate Reservoirs".SPE 65033.
    [11]Mohamed Sharaf,et al.:"A Novel Approach to Acidizing of Carbonates:Case History From the Gulf of Suez in Egypt".SPE 63182.
    [12]Bartko,K.M and Conway,M.W.:"field and laboratory experience in closed acidizing the lisburne field,prudhoe bay,Alaska".SPE 24855.
    [13]Tinker,S.J.:"Equilibrium Acid Fracturing:A New Fracture Acidizing Technology for Carbonate Formations".SPEPE(Feb,1991),p.25-32.
    [14]Yao,C.Y.et al:"Optimization of Stimulation Treatments for Improved Oil Recovery in Complex Lithological Reservoir".SPE37461.
    [15]Aud,W.W.et al:"Acid Refracturing Program Increases Reserves,Cottonwood Creekunit,Washakie County,Wyoming".SPE21821.
    [16]McLeod,H.O.et al:"The Planning Execution,and Evaluation of Acid Treatments in Sandstone Formations".SPE 11931.
    [17]Martin Clkes.et al:"Fracturing of High-temperature,Naturally Fissured,Gas-condensate Reservoirs".SPE PE(May,1992),p.226-232.
    [18]Fredrickson,S.E.:"Stimulating Carbonate Formations Using a Closed Fracture Acidizing Technique". SPE14654.
    [18]Van Domelen,M.S.et al:"The Application of Core and Well Testing to Fracture Acidizing Treatment Design:A Case Study".SPE27621.
    [19]Morgenthaler,L.M.:"Application of A Three Dimensional Hydraulic Fracturing Simulation for Design of Acid Fracturing Treatments".SPE25413.
    [20]Sinson,C.M.,et al:"Optimization of Well Stimulation Strategies in Oil and Gas Fields".SPE17792.
    [21]Van Domelen,M.S.:"Optimizing Fracture Acidizing Treatment Design by Integrating Core Testing,Field testing,and Computer Simulation".SPE22393.
    [22]Wehunt,C.D.,et al:"Evaluation of Alternating Phase Fracture Acidizing Treatment Using Mesured Bottomhole Pressure".SPE20137.
    [23]Kamel Ben-Naceur,et al:"Design and Evaluation of Acid Fracturing Treatments".SPE18978.
    [24]Pearson,C.M.et al:Optimal Fracture Stimulation of a Moderate-Permeability Reservoir-Kupark River Unit Alaska".SPE PE(Aug.1992),p.259-266.
    [25]Hartley,R.,et al:"fracturing in chalk completions".SPE11901.Harri,P.C and Penny,G.C:"Influence of Temperature and Shear History on Fracturing Fluid Efficiency".SPE 14258.
    [26]B.E.Hornby.Fracture evaluation using reflected Stoneley-wave arrivals.GEOPHYSICS,1989;54(10):1274-1288.
    [27]S.M.Luthi.Fracture apertures from electrical borehole scans.GEOPHYSICS,1990;55(7):821-833.
    [28]Sait Ismail Ozkaya.Fracture Length Estimation from Borehole Image Logs Mathematical Geology,2003;35(6):737-753.
    [29]Gracjan Lambert.Attenuation and dispersion of P-waves in porous rocks with planar fractures.Comparison of theory and numerical simulations.GEOPHYSICS,2006;71(3):N41-N45.
    [30]陈钢花,吴文圣等.利用地层微电阻率成像测井识别裂缝.测井技术,1999,23(4):279-281.
    [31]安丰全,李志明等.利用测井资料进行裂缝的定量识别.石油物探,1998,37(3):119-123.
    [32]杨唐斌.用斯通利波评价裂缝的有效性.测井技术,1998,22(2):132-136.
    [33]余春昊,李长文.利用斯通利波信息进行裂缝评价.测井技术,1998,22(4):273-277.
    [34]周继红.探测井附近裂缝和流体性质的实验初探.测井技术,1999,23(1).
    [35]李素杰,李喜海等.测井技术在曙光低潜山带碳酸岩裂缝性储层评价中的应用.特种油气藏,2000,7(3):8-10.
    [36]吴文圣,陈钢花,雍世和.利用双侧向测井方法判别裂缝的有效性.石油大学学报,2001,25(1):87-89.
    [37]邵维志,王晓杰等.用PP波识别井旁裂缝技术在碳酸盐岩地层中的应用.测井技术,2001,25(5):369-372.
    [38]赵军,付海成等.横波各向异性在碳酸盐岩裂缝性储集层评价中的应用.石油勘探与开发,2005,32(5):74-77.
    [39]曹毅民,章成广等.裂缝性储层电成像测井孔隙度定量评价方法研究.测井技术,2006,30 (3):237-239.
    [40]金燕,张旭等.测井裂缝参数估算与储层裂缝评价方法研究.2002,22(增刊):64-67
    [41]江同文等.灰色综合评判法在裂缝预测中的应用.石油勘探与开发,1996,23(2):35-37.
    [42]罗利等.碳酸盐岩裂缝测井识别方法.石油学报,2001,22(3):32-35.
    [43]W K Miller et al:In-stiu stress profiling and prediction of hydraulic fracture azimuth for the Canyon sands formation,Sonora and sawyer Field,Sutton county,Texas,SPE 21848.
    [44]N R Warpinski,L W Teufel:In-situ stress measurement at Rainier Mesa,Nevada test site-Influene of topography and lithology on stress state in Tuff..Int.J.Rock Mech.,Min,Sci&Geomech.Abstract,V.28.No.213,10.
    [45]N R Warpinski,L W Teufel:In-situ stresses in low permeability,Non-marine rocks.SPE 16402.
    [46]B M Robinson et al:The Gas Research Institute second staged field experiment:A study of hydraulic fracturing.SPE 21459.
    [47]P R Sheorey:A theory for in-situ stress in isotropic and transversely isotropic rock.。 Int.J.Rock Mech.,Min,Sci.&Geomech,.Abstract,V.28.No.2/3.
    [48]J.Geertsma:The effect of fluid pressure decline on volumetric changes of porous rocks。RIME.210.1957,P331-340.
    [49]L W Teufel,D W Rhett&H E Farell:Effect of Reservoir Depletion and Pore Pressure Drowdown on In-situ Stress and Deformation in the Ekoffisk Field,North Sea,Rock Mechanics as a Multidisplianary Science,Roegiers,Balkerma,Roffordan.
    [50]Lesage Marc et al:Pore-pressure and Fracture-gradient Prediction.SPE 21607.W Thiercelin,1991.
    [51]李志明、张金珠:地应力与油气勘探开发,石油工业出版社.北京1998.
    [52]Yale:In-situ Stress Orientation and the Effects of Local Structure-Sott Field,North Sea.SPE 28146,1994.
    [53]R.I.Keda:In-situ Stress Heterogeneity and Crack Density Distribution.Int.J.Rock Mech.Min.Sci.&Geomech.Abstract.Vo!.30No.7,1013-1018,1993.
    [54]Peska P,Zoback M D:Stress and Failure of Inclined Borehole.Published 1996 by Stanford University Department of Geophysics.
    [55]Perkins T K,Kern L R.Withs of hydraulic fracture.JPT,Sept,1961:937-949
    [56]Geertsma J,Clerk F A.A rapid method of predicting width and extent of hydraulically induced fractures.JPT,Dec,1969:1571-1581
    [57]Williams B B,Gidley J L.and Schechter R S.Acidizing Fundamentals.Monograph Series,Richardson,Texas,USA,Society of Petroleum Engineer(1979) 6.
    [58]Li Y,Sullivan,R B de Rozieres,etc.An overview of current acid fracturing technology with recent implications for emulsified acids,paper SPE 26581 presented at the SPE Annual Technical Conference and Exhibition,Houston,Texas,USA(Oct.3-6,1993).
    [59]Van Eekelen.Hrdyaulic Fracture Geometry:Fractur Containment in Layed Formation.SPEJ,june,1982.
    [60]Advani,S H,Ganggerao,H V S,Chang,H Y,Komar,C A,Khan,S.Hydraulic Fracture Modeling for the Eadtern Gas Shales Project.Proceeding DOE Second Eastern Gas Shales ymposium,Morgantown 1978.
    [61]Settari,A,Cleary,M P.Development and Testing of a seudo-Three-Dimensional Model of Hydraulic Fracture Gesmetry.SPE 10505.
    [62]Cleary,M P.Keek,R G,Mear,M E,Microcomputer Models for the Design of Hydraulic Fractures.SPE/DOE 11628.
    [63]Palmer,I D,Craig,H R.Modeling of Asymetric Vertical Growth in Eongated Hydraulic Fracture and Appdication to First MWX Stimulation,SPE 12879.
    [64]郭大立,纪禄军,赵金洲等.煤层压裂裂缝三维延伸数值模拟研究.应用数学和力学,22(4),2001.
    [65]张平,赵金洲,郭大立.水力压裂裂缝三维延伸数值模拟研究.石油钻采工艺,1997.19(3):53-59
    [66]Zhao Jinzhou,Hu Yongquan,Guo Dali et al.Hydraulic Fracturing Technique for Low Permeability Coalbed Methane Gas Reservoir.SPE 38095.
    [67]Zhao Jinzhou,Guo Dali,Hu Yongquan et al.Moving and Distribution of Proppant-laden Sluuy in the Fracture,27~(th) Annual Meeting of the Fine Particle Society,1997.
    [68]郭大立等.识别水力裂缝参数的自动拟合模型和方法.石油钻采工艺,2003.25(1):49-52.
    [69]李勇明,纪禄军,郭建春.压裂液滤失的二维数值模拟.西南石油学院学报,2000.22(2):43-45.
    [70]蒋阗等.压裂压力分析与应用。SPE 1988.
    [71]Clifton,R J,Abou-Sayed,A S.A Variational Approach to the Prediction of the Three-Dimensional Geometry of Hydraulic Fracture.SPE 9879.
    [72]Cleary,M.P and Lam,K.Y.:"Development of a fully three-dimensional stimulator for analysis and design of hydraulic fracturing",SPE 11631
    [73]Settari,A.Modeling of Acid Fracturing Treatment.SPEPF,Feb.,1993:30-38
    [74]D.E.Nierode,Member AIME,and K.F.Kruk.An Evaluation of Acid Fluid Loss Additives,Retarded Acids,and "Acidized Fracture Conductivity.SPE 4549,1973
    [75]D.ROBERTS,J.A.GLUN.A New Method for Predicting Acid Penetration Distance.SPE 5155,1974
    [76]FredricksonS E.Stimulating carbonate formation using a closed fracture acidizing technique[R].SPE 14654,1986
    [77]A,Settari.Modelling of Acid Fracturing Treatment.SPE 21870,1991
    [78]T.Huang,D.Zhu,and A.D.Hill.Prediction of Wormhole Population Density in Carbonate Matrix Acidizing.SPE 54723,1999
    [79]Brigitte Bazin,Claude Roque,* G.A.Chauveteau,and M.J.Boute' ca.Acid Filtration Under Dynamic Conditions To Evaluate Gelled Acid Efficiency in Acid Fracturing.SPE58356,1999
    [80]Hoefner,M.L.,and Fogler,H.S."Reaction Rate vs Transport Limited Dissolution During Carbonate Acidizing:Application of Network Model," SPE15573,presented at the 61st Fall Technical Conference and Exhibition of the Society of Petroleum Engineers,New Orleans,Louisiana,1986
    [81]T.Huang,L.Ostensen,and A.D.Hill.Carbonate Matrix Acidizing with Acetic Acid.SPE,SPE 58715,2000
    [82]Nierode.D.E and Kruk.K.F.:"An Evaluation of Acid Fliud Loss Additives,Retarded Acid,and Acidized Fracture Conductivity".SPE 4549.
    [83]Malik,M.A.and Hill,A.D.:"A New Technique for Laboratory Measurement of Acid Fracture Conductivity".Proc.SPE Annual Technical Conference and Exhibition,San Antonio.TX,1989.
    [84]Mirza,S.Beg.and Ming Gong:"A Systematic Experimental Study of Acid Fracture Conductivity".SPE31098.
    [85]Pope,D.S.and Janet Gulbis:"Effects of Viscous Fingering on Fracture Conductivity".SPE28511.
    [86]McDaniel,B.W.and parker,M.A.:"Accurate Design and Fracturing Treatment Requires Conductivity Measurement at Reservoir Condition".SPE 17541.
    [87]Hawkin,G.W.:"Laboratory Study of Proppant-Pack Permeability Reduction Caused by Fracturing Fliuds During Closure".SPE 18261.
    [88]Nierode.D.E and Kruk.K.F.:"An Evaluation of Acid Fliud Loss Additives,Retarded Acid,and Acidized Fracture Conductivity".SPE 4549.
    [89]胥云.碳酸盐岩储层酸压工艺技术综述[J].油田化学,1997,14(2):175-179,196
    [90]李平.前置液酸压缝中酸浓度分布的全隐式数值计算方法.天然气工业,1988,4
    [91]沈建国,王素兵.四川压裂酸化技术新发展[J].天然气工业,2001,21(5):70-73[92]Rowan,G,and Clegg,M.W:"An Approximate Method for Non-darcy Radial Gas Flow,"Trans.AIME(1964),231,96
    [93]Bijeljic,B.R.et al.:"Effect of Composition on Waterblocking for Multicomponent Gasfloods," paper SPE 77697 presented at the SPE Annual Technical Conference and Exhibition held in San Antonio,Texas,29 Sept-2 Oct.2002
    [94]黄黎明,陈赓良,杜国滨.CT降滤失酸的研制与应用[J].天然气工业,2004,23(S1):95-97

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700