砂泥岩地层岩石声学实验及研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
岩石物理学主要是研究在地下高温高压特殊的环境下岩石所表现的基本性质和运动的普遍形式。它作为连接地震数据与油藏特性和参数之间的桥梁,近些年来发挥了重要作用,如4D地震油藏监测,地震储层岩性预测,以及“亮点”和反射系数随入射角变化的分析等油气直接检测技术等。
     随着现今油气勘探力度的加大,所面临的研究对象及亟待解决的地质问题愈来愈复杂,针对多勘探区的多复杂地质特征,应从基础性的岩石物理实验出发,研究各弹性参数的变化规律与理论机制模型,从而能更好地认识复杂储层的规律,进一步有效地指导储层预测与孔隙流体的识别。
     岩石物理学的研究方法主要是实验方法,而声学实验研究是岩石物理学的重点内容。本论文主要依托由中国地质大学(北京)与北京大学合作的科研项目《WXS凹陷岩石物理参数实验及研究》和“斯伦贝谢大学生课外科技研究计划”重点项目(SLBX0908),针对WXS凹陷储层开展了岩石声学实验研究。通过模拟高温高压条件下岩石声学实验,获取岩样的孔隙度、渗透率和密度的基本物性数据,以及饱气样、饱水样与饱油样的纵横波速度和岩石薄片鉴定报告的基础性资料。从而建立岩性、物性、含流体性与弹性参数的关系,同时针对不同的弹性参数进行储层与流体敏感性的效果分析,优选出对研究区储层、流体敏感性参数。
     通过对研究区的实验研究,取得的成果与认识主要有:(1)研究区中饱气、饱水、饱油(石脑油,ρo=0.691g/cm~3)岩样纵、横波速度的总体规律是:岩样在饱水、饱油、饱气三种状态下V_(pw)>V_(po)>V_(pg);三者的横波速度差别不大。实测纵横波速度与Biot-Gassmann理论计算结果相符。(2)通过实验物性数据分析,建立了波速与物性参数之间的经验关系模型,同时也建立了研究区的纵横波速度的经验关系模型,进一步开展叠前地震弹性参数反演及利用V_p预测V_s提供了依据。(3)通过对不同层段的孔隙流体敏感性分析,提出了储层流体检测的敏感参数优选建议:各层段气水敏感弹性参数7个,分别为:F、σ_(HSFIF)、λ_ρ、λ、σ、Kρ和K ;油水敏感弹性参数包括4个,依次为:F、σ_(HSFIF)、λρ和λ。实验与测井资料得出的敏感参数的结果进行了对比,认为是可靠的。
     研究获得的创新性成果主要有:在国内首次开展的变油密度变饱和度实验研究中,发现低密度油实验结果符合Biot-Gassmann理论,高密度油的结果在中、低孔隙度时与Biot-Gassmann理论预测不符。
Rock physics research mainly the fundamental nature and the general form of movements in the ground under high temperature and high pressure. As a bridge linked seismic data and reservoir characteristics and parameters, it has played an important role, such as 4D seismic reservoir monitoring, reservoir lithology prediction of seismic and the direct detection technologies of oil and gas that include "bright spots" and analysis of the change of the reflection coefficient with the change of angle of incidence, etc..
     With the increase of the intensity of the current oil and gas exploration, these facing research objects and geological problems that are demanding solution have become more complicated. For many exploration areas with complex geological features, we should base on the basic rock physics experiments, and then study change laws of elastic parameters and theoretical mechanism models, so these ways can be better to recognize laws of complex reservoir and can further guide effectively reservoir prediction and pore fluid identification.
     Rock physics research methods are mainly experimental methods, and the acoustic experimental research is the focus content of rock physics. In this text, based on a Key Project of Students Extra-curricular Science and Technology Research Program of Schlumberger (Grant No. SLBX0908) and a cooperative research project between China University of Geosciences (Beijing) and Peking University, which is called rock physics parameters experiment and research in WXS Depression, acoustic experimental study on WXS Depression reservoir has been done. The high temperature and pressure conditions in rock acoustic experiments are simulated, the basic properties data of core samples is obtained, including porosity, permeability, density, wave velocities of samples saturated with gas, water and oil and the report of rock thin identification. Therefore, the relationships between parameters and lithology, physical properties and fluid properties are built, meanwhile, the effect of sensitivity including reservoirs sensitivity and fluid sensitivity is analyzed, both fluid sensitivity parameters and reservoirs sensitivity parameters in the study area are elected.
     The following cognitions and conclusions are obtained through experimental study on the study area. (1) The general law of wave velocity of samples saturated with gas, water and oil is as follows: V_(pw)>V_(po)>V_(pg); the values of their S wave velocity are nearly equal. The measured wave velocity is consistent with theoretical calculation wave velocity of Biot-Gassmann theory. (2) Through the experimental material data analysis, the empirical relationship models between wave velocity and physical parameters are gained, while the empirical relationship model between P wave velocity and S wave velocity is built, these results provide a basis for the further pre-stack seismic inversion of elastic parameters and the prediction of Vs by the use of V_p. (3) Through the pore fluid sensitivity analysis of different strata, optimization recommendations of the reservoir fluid sensitivity parameters are proposed. In stratums, the number of sensitivity elastic parameters on gas-water is 7, including F,σ_(HSFIF),λρ,λ,σ, Kρand K ; while the number of sensitivity elastic parameters on oil-water is 4, including F,σ_(HSFIF),λρandλ. Compared the experimental results of fluid sensitivity with the logging results of fluid sensitivity, we believe these are reliable.
     The main innovative results of this research are as follows. In the first undertaken experimental study of velocity on different oil density saturated samples, we can draw a conclusion that experimental results with samples saturated light oil are content with Biot-Gassmann theory and the experimental results with low-medium porosity samples saturated heavy oil are inconsistent with Biot-Gassmann theory.
引文
[1] Biot M A. Theory of propagation of elastic waves in a fluid saturated porous solid. I Low frequency range and II Higher-frequecy range. J acoust Soc Am, 1956, 28: 168~191.
    [2] Castagna J P, Batzle M L, Eastwood R L., Relationships between compression-wave and shear-wave velocities in clastic silicate rocks [J]. Geophysics, 1985, 50(4): 571~581.
    [3] Castagna J P, Batzle M L, Kan T K. Rock physics—The link between rock properties and AVO response [A]: in Castagna JP, Backus M, eds. Offset Dependent Reflectivity—Theory and Practice of AVO Analysis, Investigations in Geophysics [C]. Society of Exploration Geophysicists, Tulsa, Oklahoma, 1993, (8): 135~171.
    [4] Cleary M P, Chen I, Lee S M. Self-consistent techniques for heterogeneous media, Am. Soc. Civil Eng. J. Eng. Mech, 1980, 106(5): 861~887.
    [5] Dillon L, Schwedersky G, Guilherme V, et al.. A multiscale DHI elastic attributes evaluation. The Leading Edge, 2003, 22(10): 1024~1029.
    [6] Domenico S N. Effects of water saturation on seismic reflectivity of sand reservoirs encased in shale. Geophysics, 1974, 39(6): 759~769.
    [7] Domenico S N. Effect of brine-gas mixture on velocity in an unconsolidated sand reservoir. Geophysics, 1976, 41: 882~894.
    [8] Gardner G. H. F., Gardner L. W., Gregory A. R., Formation velocity and density- The diagnostic basics for stratigraphic traps [J]. Geophysics, 1974, 39(6), 770~780.
    [9] Gary Mavko, Tspan Mukerji, Jack Dvorkin. The Rock Physics Handbook. New York: Cambridge University Press, 1998.
    [10] Gassmann F. Elatic waves through a packing of spheres. Geophysics, 1951, 16: 673~685.
    [11] Goertz D and Knight R J. Elastic wave velocities during evaporative drying. Geophysics, 1998, 63: 171~183.
    [12] Goodway W, Chen T, Downton J. Improved AVO fluid detection and lithology discrimination using Lame petrophysical parameters from P and S inversion. Expanded Abstracts of 68th Annual Internet SEG Mtg, 1997, 183~186.
    [13] Gregory A. R.. Fluid saturation effects on dynamic elastic properties of sedimentary rocks [J]. Geophysics, 1976, 5: 895~921.
    [14] Han D H, Nur A, Morgan D. Effects of porosity and clay content on Wave velocities in sandstones [J]. Geophysics, 1986, 51(11): 2093~2107.
    [15] Han D.. Effects of porosity and clay content on acoustic properties of sandstones and unconsolidated sediments [D]: Ph.D. dissertation, Standford University, 1986.
    [16] Hedlin. K. Pore space modulus and extraction using AVO. SEG Annual Meeting Expanded Technical Program Abstract with Biographies (2000), 70 170~173.
    [17] Hill R. The elastic be haviour of crystalline aggregate Proc. Physical Soc., London, 1952, A65(5): 349~354.
    [18] Horngy B E. Experimental Laboratory Determination of the Dynamic Elastic Properties of Wet, Drained Shales. J Geophys Res, 1998, 103(B12):29 945~29 964.
    [19] Hornby B E. Experimental laboratory determination of the dynamic elastic properties of shales. Geophysics. Res., 1998, 103(B12): 29 945~29 964.
    [20] Johnson D L. Theory of frequency dependent acoustics in patchy-saturated porous media. J. Acoust. Soc. Am, 2001, 111(2): 682~694.
    [21] Knigh R, Nolen-Hoeksema R. A laboratory study of the dependence of elastic wave velocities on pore scale fluid distribution. Geophysical Research Letters , 1990, 17(10): 1529~1532.
    [22] Kuster G. T. and Toksoz M. N., Velocity and attenuation of seismic waves in two- Phase media. Part l: Theoretical formulations [J]. Geophysics, 1974, 39(3): 587~606
    [23] Kuster G. T. and Toksoz M. N., Velocity and attenuation of seismic waves in two- Phase media. Part 2 [J]. Geophysics, 1974, 39(3): 607~618
    [24] M. Batzle, D. Han and R. Hofmann. Optimal hydrocarbon indicators. SEG Annual Meeting Expanded Technical Program Abstract with Biographies (2001), 71 1697~1700.
    [25] Mavko M G and Mukerji T. Bounds on low-frequency seismic velocities in partial saturated rocks. Geophysics, 1995, 63: 918~924.
    [26] Mavko M G and Nolen-Hoeksema R. Estimating seismic velocities at ultrasonic frequencies in partially saturated rocks. Geophysics, 1994, 59: 252~258.
    [27] Murphy W, Reischer A, Hsu K. Modulus decomposition of compressional and shear velocities in sand bodies [J]. Geo-physics, 1993, 58(2): 227~239.
    [28] Norris A N, Sheng P, Callegari A J. Effective-medium theories for two-phase dielectric media. J. Appl. Phys., 1985, 57(6): 1990~1996.
    [29] Pei Fagen, Zou Changchun, He Tao, et al.. Fluid sensitivity study of elastic parameters in low-medium porosity and permeability reservoir rocks. Applied Geophysics, 2010, 7(1): 1~9.
    [30] Qiao Yuedong and An Hongwei. Study of petrophysical parameter sensitivity from well log data. Applied Geophysics, 2007, 4(4): 282~287.
    [31] Russell B H, Hedlin K, Hilterman F J, et al.. Fluid-property discrimination with AVO: A Biot-Gassmann perspective. Geophysics, 2003, 68(1): 29~39.
    [32] Smith G. C, Gidlow P M. Weighted stacking for rock property estimation and detection of gas [J]. Geophysical Prospecting, 1987, 35(9): 993~1014.
    [33] Tosaya C, Nur A. Effect of diagenesis and clays on compressional velocities in rocks [J]. Geophysics. Res. Lett., 1982, 9: 5~8.
    [34] Wang Z., Fundamentals of seismic rock physics [J]. Geophysics, 2001, 66(2): 398~412.
    [35] Wang Z and Nur A. Dispersion analysis of acoustic velocity in rocks. J. Acoust. Soc. Am, 1990, 87(6): 2384~2395.
    [36] Winkler K W. Disperion Analysis of Velocity and Attenuation in Berea Sandstone. J Geophys. Res, 1985, 90: 6793~6800.
    [37] Wyllie M R, Gregory A R, Gardner L W. Elastic wave velocities in heterogeneous and porous media. Geophysics, 1956, 21(1): 41~70.
    [38] Wyllie M R J, Gregory A R, Gardner G H F. An experimental investigation of factors affecting elastic wave velocities in porous media. Geophysics, 1958, 23(3): 459~493.
    [39] Zhijing(Zee) Wang..地震岩石物理学基本准则(王炳章,译者).石油物探译丛.2001(4): 1~20.
    [40] Zimmerman R W. Compressibility of sandstones, Elsevier, New York, 1991: 10~40.
    [41]邓继新.泥、页岩及储集层砂岩岩石物理性质实验与理论研究:[博士学位论文].北京:北京大学, 2003.
    [42]邓继新,王尚旭,李生杰等.砂岩储层地震属性参数对孔隙流体的敏感性评价.石油学报, 2006, 27(6): 55~59.
    [43]邓继新,王尚旭,俞军.不同压力条件下部分饱和砂岩速度实验结果及理论解释.石油地球物理勘探, 2005, 40(5): 530~534.
    [44]邓启才,汤丽娜,张立志.海上下第三系储层预测地震岩石物理参数特征. 2007, 31(6): 592~595.
    [45]方勇,贺振华,黄德济.利用声波阻抗信息识别裂隙流体异常.物探化探计算技术, 2005, 27(2): 102~106.
    [46]甘利灯.四维地震技术及其在水驱油藏监测中的应用:[博士学位论文].北京:中国地质大学, 2002.
    [47]葛瑞·马沃可,塔潘·木克基,杰克·德沃金.岩石物理手册:孔隙介质中地震分析工具(徐海滨,戴建春,译者).安徽:中国科学技术大学出版社, 2008.
    [48]黄凯,徐群洲,杨晓梅等.用岩心模拟测试参数做模型正演预测储层油、气、水边界.地球物理学报, 1998, 41,增刊: 414~421.
    [49]黄绪德.油气预测与油气藏描述:地震勘探直接找油气[M].南京:江苏科学技术出版, 2003
    [50]胡学红,李长文,李新等.低孔隙度低渗透砂岩的声波特征实验研究.测井技术, 2004, 28(4): 273~276.
    [51]蒋立新,施行觉.高频条件下砂岩波速与多孔隙介质流体含量关系的研究.石油地球物理勘探, 1998, 33(3): 355~362.
    [52]江万哲,章成广,黄文新等.高温高压下岩心的声学性质研究.江汉石油学院学报, 2004, 26(1): 51~53.
    [53]李景叶,陈小宏.基于地震资料的储层流体识别.石油学报, 2008, 29(2): 235~238.
    [54]李亚林,谢贤鹏,贺振华等.岩石孔隙流体对纵横波速度影响的实验研究及意义.矿物岩石. 1998, 18(增刊): 188~191.
    [55]刘瑞文,李春山,管加强.孔隙流体类型对地层声波速度的影响.石油钻探技术. 2007, 35(4): 32~34.
    [56]刘祝萍,吴小薇,楚泽涵.岩石声学参数的实验测量及研究.地球物理学报, 1994, 37(5): 659~666.
    [57]李维新,史謌,王红等.岩石物理弹性参数规律研究.地球物理学进展. 2007, 22(5): 1380~1385.
    [58]李潮洋,李小双.高温后粗砂岩弹性纵波波速的试验研究.矿业快报, 2008, 468: 34~36.
    [59]马中高,解吉高.岩石的纵、横波速度与密度的规律研究.地球物理学进展, 2005, 20(4): 905~910.
    [60]宁忠华,贺振华,黄德济.基于地震资料的高灵敏度流体识别因子.石油物探, 2006, 45(3): 239~241.
    [61]沈洪涛,基于纵波资料的流体识别[硕士学位论文].成都:成都理工大学, 2007.
    [62]沈联蒂,史謌.岩性、含油气性、有效覆盖压力对纵、横波速度的影响.地球物理学报, 1994, 37(3): 391-398.
    [63]史謌,沈联蒂.灰岩含水饱和度对纵、横波速度变化影响的实验研究.石油地球物理勘探, 1990, 25: 469-479.
    [64]史謌,沈文略,杨东全.岩石弹性波速度和饱和度、孔隙流体分布的关系.地球物理学报, 2003, 46(1): 138~142.
    [65]史謌,杨东全.上覆压力变化时孔隙岩层弹性波速度的确定及其普遍意义.中国科学(D辑), 2001, 31(11): 896~901.
    [66]史謌,杨东全.岩石波速和孔隙度、泥质含量之间的关系研究[J].北京大学学报(自然科学版), 2001, 37(3): 379~384.
    [67]施行觉,夏从俊,吴永钢.储层条件下波速的变化规律及其影响因素的实验研究.地球物理学报, 1998, 41(2): 234~241.
    [68]施行觉,徐果明,靳平等.岩石的含水饱和度对纵、横波速及衰减影响的实验研究.地球物理学报, 1995, 38(增刊1): 281~287.
    [69]孙家振,李兰斌.多信息储层预测和油气判别[M].武汉:中国地质大学出版社, 1997.
    [70]王炳章.地震岩石物理学及其应用研究[博士学位论文].成都:成都理工大学, 2008.
    [71]王大兴,辛可锋,李幼铭等.地层条件下砂岩含水饱和度对波速及衰减影响的实验研究.地球物理学报, 2006, 49(3): 908~914.
    [72]王大兴,于波,张盟勃等.地震叠前储层预测方法.天然气工业, 2007, 27(增刊A): 314~317.
    [73]王栋,贺振华,黄德济.含气含水砂岩的高灵敏感度流体识别因子的研究.长江大学学报(自然科学版), 2008, 5(3): 45~47.
    [74]谢进庄,楚泽涵,刘祝萍.饱和油砂岩水洗过程中声学特征研究.测井技术, 1997, 21(6): 401~404.
    [75]徐群洲,伍菁华,张露菲.地层条件下流体驱排时岩石波速和电阻率的实验研究.石油物探, 2000(1): 124~126.
    [76]云美厚,管志宁.储层条件下砂岩纵波和横波速度的理念计算.石油物探, 2002, 41(3): 289~292.
    [77]张小庆,桂志先.岩石中纵横波速度关系研究.石油天然气学报, 2006, 28(4): 255~257.
    [78]张银海,胡学红,李长文.声波参数识别含气砂岩地层实验研究.测井技术, 2000, 24(3): 194~197.
    [79]张银海,李长文.纵波特征与岩石含水饱和度关系的实验研究.测井技术, 1995, 19(1): 6~10.
    [80]赵发展,蔡敏龙,赛飞雅.高温高压下岩石声波及电阻率实验研究.测井技术, 1998, 22(增刊): 3~5.
    [81]朱广生,桂志先,熊新斌等.密度与纵横波速度关系.地球物理学报, 1995, 38(增刊1): 260~264.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700