超空泡航行体结构动力学仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以超空泡航行体为研究对象,以非线性有限元理论为基础,建立了超空泡航行体结构有限元模型,采用理论分析与流固耦合仿真相结合的方法,分析得到超空泡航行体结构的载荷特性,对复杂力学环境下的超空泡航行体结构动力学特性进行了系统深入的研究,为超空泡航行体结构设计提供了理论基础。
     结合水冲压发动机与水下航行体设计理论,提出了超空泡航行体的推进系统夹层结构布局,确定了超空泡航行体总体结构;针对超空泡航行体的滑行运动方式,对超空泡航行体进行受力分析,为开展超空泡航行体结构动力学研究提供了重要基础。
     采用相对自由度壳单元和等参实体单元建立超空泡航行体单层舱段有限元模型,推导了基于更新拉格朗日格式的航行体结构非线性有限元方程;采用单层等效模型、双层壳体模型和考虑流体影响的充液双层模型,建立了超空泡航行体夹层舱段有限元模型;基于间隙单元接触理论,建立了超空泡航行体轴向盘式连接和径向螺钉连接形式的舱段连接有限元模型。通过算例对航行体结构有限元模型进行了验证,为超空泡航行体结构动力学仿真提供了理论和方法基础。
     将结构入水理论与ALE有限元仿真方法相结合,建立超空泡航行体尾部流体动力载荷的理论模型和流固耦合仿真模型,计算得到航行速度和扰动角速度对超空泡航行体尾部载荷的影响规律,通过对比计算得到适用于超空泡航行体结构动力响应计算分析的载荷理论模型。
     基于更新拉格朗日格式的超空泡航行体结构有限元模型,将结构动力屈曲理论与非线性有限元方法相结合,开展了超空泡航行体结构动力屈曲研究。分析了航行速度和尾部沾湿面变化频率对结构动力失稳区域的影响,得到了舱段壳体厚度、夹层舱段结构参数和加强肋骨对超空泡航行体结构动力稳定性的影响规律,分析了舱段连接方式对结构动力稳定性的影响,为超空泡航行体结构动力学仿真研究提供了技术支撑。
     采用协同转动有限元理论与非保守系统稳定性理论相结合的方法,开展了超空泡航行体结构动力响应研究。分析了航行速度和扰动角速度对航行体结构动力响应的影响,获得了结构壳体厚度、夹层结构参数和加强肋骨对超空泡航行体结构动力响应的影响规律,为超空泡航行体结构减振设计提供了理论依据。
     本文研究成果将促进超空泡航行体技术发展,推动超空泡航行体结构动力学仿真技术进步,对超空泡航行体研制具有重要理论意义和工程应用价值。
Under the background of the advance of the undewater vehicle technologies, aseries of structural dynamic problems are found during the development of thesupercavitating vehicle. In this paper, the finite element model was established for thesupercavitating vehicle based on the nonlinear finite element method. Systematical anddeep research was carried out on the structural dynamic characteristics of thesupercavitating vehilce, as well as on the interactions between the cavity and the vehiclebody, revealing the development process and the mechanisms of structural dynamicbuckling and dynamic response for the supercavitating vehicle, providing the theoreticalbasis for the structural design of the supercavitating vehicle.
     Based on the design theories of the water ramjet motor and the underwater vehicle,the structural configuration of double shells for the propulsive system of thesupercavitating vehicle was proposed and the general structural layout for thesupercavitating vehicle was confirmed. According to the planing motion configurationof the supercavitating vehicle the forces applied on the vehicle body were analyzed,providing the important basis for the numerical research on the structural dynamiccharacteristics of supercavitating vehicles.
     The plain shell structures of supercavitaiting vehicles were simulated by the shellelements of relative degrees of freedom and isoparameter solid elements, and thenonlinear finite element formulation based on the Updated Lagrange framework wasderived. The double shells structures of supercavitating vehicles were developed withthe equivalent monolayer model, the double layer model and the double liquid-filledmodel. Based on the gap element contact theory the finite element model of connectingstiffness was developed for the axial and radial connection configurations. The finiteelement model for the supercavitating vehicle was verifed by computing cases, and theabove research set the theoretical and method basis for the simulation on structuraldynamics of the supercaviting vehicle.
     The theoretical and numerical models of the hydrodynamic loads during theplaning of the supecavitating vehicle on the cavity were developed according to thetheory of water entry impact of the structure and the ALE finite element method. Theeffects of the velocity and the disturbance angular velocity of the supercavitatingvehicle on the hydrodynamic loads were analyzed and the theoretical model of thehydrodynamic loads for the structural dynamic response of supercavitating vehicles wasobtained by the comparison of the numerical results.
     Based on the finite element model of Updated Lagrange formulation, the numericalresearch on the structural dynamic buckling of supercavitating vehicles was performedusing the theory of structural buckling and nonlinear finite elemet method. The effects of velocity of the vehilce and the frequency of the wetted surface on the dynamicinstable regions were analyzed, and the thickness of the shell structures, the physicaldimensions of the double shells and the stiffeners configurations were investigated forthe mechanisms of structual dynamic stability, and the effects of the axial and radialconnection configurations on the structural dynamics was analyzed, providing technicalsupport for the development of numerical dynamics of structures of supercavitatingvehicles.
     The research on the structural dynamic response of supercavitating vehicles wascarried out using of the co-rotational formulation and non-conservative system stabilitytheory. The effect of velocity on the dynamic response was analyzed, and the thicknessof the shell structures, the physical dimensions of the double shells and the stiffenersconfigurations were investigated for the mechanisms of structual dynamic response. Theobained numerical results provide the theorical basis for the design of the structures forsupercavitating vehicles.
     The research achievements in this thesis will surely promote the develoment ofsupercavitating vehicles, as well as providing support for the advancement of thesimulation techniques for the structures of supercavitating vehicles. The research will beof great theoretical value as well as engineering practice meaning for the futuresupercavitatng vehicle design.
引文
[1]张宇文.空化理论与应用[M].西安:西北工业大学出版社.2007
    [2] Stinebring D P, Billet M L, Lindau J W, et al. Developed Cavitation-CavityDynamics[C]. Van Den Braembussche, ed. VKI Special Course onSupercavitating Flows, Brussels,2001,02,12-16. Brussels: RTO-AVT andVKI,2001. RTO-EN-010(9).
    [3] Savchenko Y N. Experimental Investigation of Supercavitating Motion ofBodies[C]. Van Den Braembussche, ed. VKI Special Course on SupercavitatingFlows, Brussels,2001,02,12-16. Brussels: RTO-AVT and VKI,2001.RTO-EN-010(4).
    [4] Justin Hargrove. Supercavitation and Aerospace Technology in the Develop--ment of High-speed Underwater Vehicles[C]. AIAA Aerospace SciencesMeeting and Exhibit,5-8January2004,Reno,Nevada.
    [5] Kam W. Ng. Overview of the ONR Supercavitating HighSpeed Bodies Program
    [C]. AIAA Guidance, Navigation, and Control Conference and Exhibit,21-24August2006,Keystone, Colorado.
    [6]曹伟,魏英杰,王聪等.超空泡技术现状、问题与应用[J].力学进展,2006,11:571-579.
    [7]杨莉,张庆明.超空泡技术的应用现状和发展趋势[J].战术导弹技术,2006,9(5):06-10.
    [8]王鹏,王树宗.应用在鱼雷上的超空泡技术分析[J].舰船科学技术,2005,4:77-80.
    [9]赵卫.超空泡高速鱼雷技术综合分析[D].哈尔滨:哈尔滨工程大学,2005.
    [10] David R. Stinebring, Robert B. Cook, John E. Dzielski, et al. High-SpeedSupercavitating Vehicles[C]. AIAA Guidance, Navigation, and ControlConference and Exhibit,21-24August2006,Keystone, Colorado.
    [11]王改娣.超空泡鱼雷技术特点分析[J].鱼雷技术,2007,10:1-4.
    [12]赵新华.水下超高速航行体动力学建模与控制研究[D].哈尔滨工程大学,2008.
    [13]王茂励.超空泡航行体的数学建模与控制方法研究[D].哈尔滨工程大学,2008.
    [14]吕瑞.超空泡航行体动力学建模与姿态机动鲁棒控制方法研究[D].哈尔滨工业大学,2010.
    [15]陈伟政,张宇文,李斌.轴对称超空泡流稳定性分析[J].船舶力学,2006,2:1-6.
    [16]陈鑫,鲁传敬.绕二维对称水翼的通气空泡流数值研究[J].水动力学研究与进展,2006,1:62-68.
    [17]张学伟,张嘉钟,王聪等.通气超空泡形态及其稳定性实验研究[J].哈尔滨工程大学学报,2007,4:381-387.
    [18]张学伟,张嘉钟,魏英杰等.通气超空泡自激振荡和受迫振荡的数值仿真研究[J].振动与冲击,2008,10:51-55.
    [19]张学伟,张亮,张嘉钟等.通气超空泡稳定性分析的一种数值算法[J].力学学报,2008,11:820-825.
    [20] Norman F. Knight Jr, James H. Starnes Jr. Development in Cylindrical ShellStability Analysis. AIAA Journal,1997,1076:1933~1948.
    [21]克拉夫R.,彭津J.结构动力学[M].北京:高等教育出版社.2006:13-49.
    [22] Ruzzene M. Dynamic Buckling of Periodically Stiffened Shells: Application toSupercavitating Vehicles[J]. International Journal of Solids and Structures,2004,41:1039-1059.
    [23] Ruzzene M. Non-Axisymmetric Buckling of Stiffened Supercavitating Shells:Static and Dynamic Analysis[J]. Computers and Structures,2004,82:257-269.
    [24] Ahn S S, Ruzzene M. Optimal Design of Cylindrical Shells for EnhancedBuckling Stability: Application to Supercavitation Underwater Vehicles[J].Finite Elements in Analysis and Design,2006,42:967-976.
    [25] Ruzzene M, Soranna F. Impact Dynamics of Elastic Supercavitating Under--water Vehicles[C].9th AIAA/ISSMO Symposium on MultidisciplinaryAnalysis and Optimization,4-6September,2002, Atlanta, Georgia:1-11.
    [26] Choi J Y, Ruzzene M. Stability Analysis of Supercavitating UnderwaterVehicles with Adaptive Cavitator[J]. International Journal of MechanicalSciences,2006,48:1360-1370.
    [27] Edward Alyanak, Vipperla Venkayya, Ramana Grandhi, et al. Structural Re--sponse of a Supercavitating Torpedo Shell[C].45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics&Materials Conference,19-22April2004, Palm Springs, California.
    [28] Edward Alyanak, Vipperla Venkayya, Ramana Gramdhi, et al. StructualResponse and Optimization of a Supercavitating Torpedo[J]. Finite Elements inAnalysis and Design,2005,41:563-582.
    [29] Edward Alyanak, Ramana Gramdhi, Ravi Penmetsa. Optimum Design of aSupercavitating Torpedo Considering Overall Size, Shape, and StructuralConfiguration [J]. International Journal of Solids and Structures,2006,43:642-657.
    [30]周凌,安伟光,安海.超空泡运动体强度与稳定性的非概率可靠性分析[J].哈尔滨工程大学学报,2009,4:362-367.
    [31]周凌,安伟光,安海.水下通气超空泡航行体结构屈曲可靠性分析[J].工程力学,2010,9:248-256.
    [32]周凌.可靠性算法与超空泡航行体结构屈曲可靠性研究[D].哈尔滨:哈尔滨工程大学,2010.
    [33]田广平.超空泡运动体壳体结构稳定可靠性分析与优化[D].哈尔滨:哈尔滨工程大学,2009.
    [34]许勇.超空泡航行结构屈曲可靠性分析[D].哈尔滨:哈尔滨工程大学,2011.
    [35]林健.水下高速航行体结构振动可靠性分析[D].哈尔滨:哈尔滨工程大学,2011.
    [36]陈丽华.带有沙漏控制的有限元冲击动力问题并行计算[D].中国农业大学,2001.
    [37]陈丽华,程建钢,黄文彬.基于相对自由度壳的非线性动态分析[J].清华大学学报(自然科学版),2002,(02):228-231.
    [38]陈丽华,程建钢,黄文彬.带有沙漏控制的相对自由度壳元非线性动力分析[J].固体力学学报,2002,(02):237-242.
    [39]陈丽华,程建钢,黄文彬,等.带有沙漏控制的相对自由度壳元[J].工程力学,2002,(03):122-127.
    [40]戴大农,王勖成.海洋平台管接头应力的有限元分析[J].海洋工程,1986,(04):11-22.
    [41]林艳,杨合.一种可应用于板壳成形过程模拟的绝对-相对自由度壳单元[J].机械科学与技术,2003,(01):121-123.
    [42] Ahn S S. An Integrated Approach to the Design of Supercavitating UnderwaterVehicles[D]. Georgia Institute of Technology, August2007.
    [43]陈小宁.双层壳潜艇舱段结构静动力性能分析[D].武汉:华中科技大学,2004.
    [44]夏贤坤.大深度潜艇结构形式研究[D].镇江:华东船舶工业学院,2004.
    [45]陈美霞,骆东平,杨叔子.壳间连接形式对双层壳声辐射性能的影响[J].振动与冲击,2005,5:77-80.
    [46]姚熊亮,计方,钱德进等.壳间连接介质对双层壳声辐射性能的影响[J].声学技术,2009,6:312-317.
    [47]段婕.液体火箭发动机推力室总承载能力分析[J].火箭推进,2001,2:13-18.
    [48]陶瑞峰,吴建军.某液体火箭发动机组合结构模态分析[J].试验技术与试验机,2008,6:24-27.
    [49]张延珍.战术导弹连接刚度的研究[J].强度与环境,1992,2:28-34.
    [50]杨炳渊,宋伟力,陆国民.小直径舱段连接刚度的模态实验研究[J].飞航导弹,1997
    [51]杨海波飞机连接接头的细节应力分析与优化设计研究.[D]西北工业大学2007年
    [52]郑晓亚,张铎,姜晋庆.连接刚度对导弹固有特性的影响[J].弹箭与制导学报,2005,4:667-669.
    [53]毛文哲,雷勇军.结构动力学特性分析中连接刚度的有限元建模对比研究[J].试验技术与试验机,2007,6:4-7.
    [54]张琪,刘莉.弹体连接刚度对导弹模态的影响分析[J].弹箭与制导学报,2008,6:38-40.
    [55]吴元东.考虑连接刚度和阻尼的整机振动设计技术研究[D].南京:南京航空航天大学,2010.
    [56]马伍元.导弹柔性总装系统的研究[D].哈尔滨:哈尔滨工业大学,2011.
    [57]尤天庆,王聪,曹伟等.考虑接触非线性的航行体出水结构动力学分析[J].振动与冲击,2011,8:28-31.
    [58]邓飞,张宇文,袁绪龙,等.水下超空泡航行体流体动力设计原理研究[J].西北工业大学学报,2004,(06):806-810.
    [59]邹启明,王改娣,张西建等.超空泡航行器流体动力仿真分析[J].鱼雷技术,2008,8:1-4.
    [60]邹启明,张西建.超空泡航行器流体动力仿真[J].舰船科学技术,2008,10:106-109.
    [61] Salil S. Kulkarni, Rudra Pratap. Studies on the Dynamics of a SupercavitatingProjectile [J]. Applied Mathematical Modelling,2000,24:113-129.
    [62]孟庆昌,张志宏,顾建农等.超空泡射弹尾拍分析与计算[J].爆炸与冲击,2009,1:56-60.
    [63] Sweger J, Kamada R, Ruzzene M. Optimization of Trimmed Flight Configura--tions for Supercavitating Vehicles[C].45thAIAA/ASME/ASCE/AHS/ASCStructures, Structural Dynamics&Materials Conference,19-22April2004,Palm Springs, California.
    [64] Kamada R, Ruzzene M, Bottasso C L. Trajectory Optimization Strategies forSupercavitating Underwater Vehicels[C].45thAIAA/ASME/ASCE/AHS/ASCStructures, Structural Dynamics&Materials Conference,19-22April2004,Palm Springs, California.
    [65] Paryshev E V. Approximate Mathematical Models in High-speed Hydro--dynamics [J]. Journal of Engineering Mathematics,2006,55:41-64.
    [66] Nguyen V, Balachandran B, Varghese A N. Supercavitating Vehicle Dynamicswith Non-cylinderical, Non-symmetric Cavities[C]. ASME InternationalMechanical Engineering Congress and Exposition November11-15,2007,Seattle, Washington, USA.
    [67] Nguyen V, Balachandran B. Supercavitating Vehicles with Noncylindrical,Nonsymmetric Cavities: Dynamics and Instabilities[J]. Journal ofComputational and Nonlinear Dynamics,2011,10:1-11.
    [68] Vanek B, Bokor J, Balas G J. High-Speed Supercavitation Vehicle Control[C].AIAA Guidance, Navigation, and Control Conference and Exhibit21-24August2006, Keystone, Colarado.
    [69] Vanek B, Bokor J, Balas G J. Theoretical Aspects of High-Speed Super--cavitation Vehicle Control[C]. Proceedings of the2006American ControlConference Minneaapolis, Minnesota, USA, June14-16,2006.
    [70] Vanek B. Control Methods for High-Speed Supercavitating Vehicles [D].University of Minnesota, June2008.
    [71] Vanek B, Balas G J, Arndt R E.A. Linear, Parameter-Varying Control of aSupercavitating Vehicle[J]. Control Engineering Practice,2010,18:1003-1012.
    [72]冯光,颜开.超空泡航行体水下弹道的数值计算[J].船舶力学,2005,4:1-8.
    [73] Kirschner I N, Kring D C, Stokes A W. Control Strategies for SupercavitatingVehicles[J]. Journal of Vibration and Control,2002,9:219-242.
    [74] Dzielski J, Kurdila A. A Benchmark Control Problem for SupercavitatingVehicles and an Initial Investigation of Solutions[J]. Journal of Vibration andControl,2003,9:791-804.
    [75] Mao Xiaofeng, Wang Qian. Nonlinear Control Design for a SupercavitatingVehicle[C]. IEEE Transactions on Control Systems Technology,2009,7:816-832.
    [76] Shao Yunfeng, Mesbahi M, Balas G J. Planing, Switching, and SupercavitatingFlight Control[C]. AIAA Guidance, Navigation, and Control Conference andExhibit11-14August2003, Austin, Texas.
    [77] Goel A. Robust Control of Supercavitating Vehicles in the Presence of Dynamicand Uncertain Cavity[D]. University of Florida,2005.
    [78] Jammulamadaka A K. Nonlinear Dynamics and Control of High-Speed Super--cavitating Vehicles[D]. University of Florida,2005.
    [79]李其弢,胡天群,何友声.超空泡航行体摆动实验研究[C].第七届全国实验流体力学学术会议,中国河北北戴河:2007.114-115.
    [80] Lee Qitao, Xue Leiping, He Yousheng. Experimental Study of VentilatedSupercavitating with a Dynamic Pitching Model[D]. Journal of Hydrodynamics,2008,20:456-460.
    [81]杨传武,王安稳,施连会,等.超空泡流下壳结构模型动态特性实验研究[J].振动与冲击,2010,(11):17-20.
    [82]张劲生.超空泡运动体尾拍冲击振动特性的研究[D].哈尔滨工业大学,2010.
    [83]张劲生,张嘉钟,魏英杰,等.超空泡射弹尾部冲击载荷的仿真研究[J].哈尔滨工业大学学报,2011,(07):19-22.
    [84]张劲生,张嘉钟,王聪,等.超空泡射弹结构响应的流固耦合仿真研究[J].船舶力学,2011,(07):763-768.
    [85]钟伟俊.超空泡高速射弹变深度航行振动特性研究[D].哈尔滨工业大学,2011.
    [86]王天霖.复合材料圆柱壳的动力响应及动力屈曲研究[D].上海:上海交通大学,2006.
    [87] Basar Y, Eller C, Kratzig W B. Finite Element Procedures for ParametricResonance Phenomena of Arbitrary Elastic Shell Structures[J]. ComputationalMechanics,1987,2:89-98.
    [88] Basar Y, Eller C, Kratzig W B. Finite Element Procedures for the NonlinearDynamic Stability Analysis of Arbitrary Elastic Shell Structures[J].Computational Mechanics,1990,6:157-166.
    [89] S. N. Patel, P. K. Datta, A. H. Sheikh. Dynamic Instability Analysis of StiffenedShell Panels Subjected to Partial Edge Loading along the Edges[J]. InternationalJournal of Mechanical Sciences,2007,49:1309-1324.
    [90] Francesco Pellicano. Dynamic Stability and Sensitivity to Geometric Imper--fections of Strongly Compressed Circular Cylindrical Shells under DynamicAxial Loads[J]. Commun Nonlinear Sci Numer Simulat,2009,14:3449-3462.
    [91]施连会,王安稳.轴向载荷下超空泡航行体动力稳定性的数值研究[J].振动与冲击,2011,(02):55-59.
    [92] Massimo Ruzzene, Amr Baz. Finite Element Modelling of Vibration and SoundRadiation from Fluid-Loaded Damped Shells[J]. Thin-Walled Structures,2000,36:21-46.
    [93] Ruzzene M, Soranna F. Impact Dynamics of Elastic Stiffened SupercavitatingUnderwater Vehicles[J]. Journal of Vibration and Control,2004,1:243-267.
    [94] Choi J Y, Ruzzene M, Bauchau O A. Dynamic Analysis of Flexible Super--cavitating Vehicles Using Modal-Based Elements[J]. Simulation,2004,80:619-633.
    [95] V. D. Kubenko, O. V. Gavrilenko. Impact Interaction of Cylindrical Body witha Surface of Cavity during Supercavitation Motion in Compressible Fluid[J].Journal of Fluids and Structures,2009,25:794-814.
    [96]杨传武,刘刚,王安稳.超空泡体结构响应问题的有限元分析[J].海军工程大学学报,2008,(02):101-104.
    [97]杨传武,王安稳.超空泡水下航行体振动特性分析[J].海军工程大学学报,2008,(04):30-32.
    [98]杨传武,王安稳.冲击载荷作用下超空泡水下航行体的结构响应[J].华中科技大学学报(自然科学版),2008,(07):129-132.
    [99]杨传武,王安稳.动态轴向载荷对超空泡航行体振动特性的影响[J].华中科技大学学报(自然科学版),2008,(12):71-74.
    [100]张劲生,张嘉钟,魏英杰,等.超空泡水下航行体的结构动力响应特性[J].北京航空航天大学学报,2010,(04):411-414.
    [101]张劲生,张嘉钟,魏英杰.超空泡射弹的尾拍载荷与结构响应(英文)[J].哈尔滨商业大学学报(自然科学版),2011,(01):71-75.
    [102]尹韶平,刘瑞生.鱼雷总体技术[M].北京:国防工业出版社,2011.
    [103]项庆睿,杨飚,尹韶平等.超空泡水下航行器实验的计算机仿真[J].鱼雷技术,2003,9:14-17.
    [104]邓飞,张宇文,杨武刚.超空化航行体原理试验模型结构设计[J].机械科学与设计,2005,4:434-437.
    [105]傅慧萍,陈延伟,游庆.超空泡航行体外形设计及航程分析[J].弹道学报,2007,(03):15-18.
    [106]何春涛.超空泡射弹结构参数设计与数值模拟研究[D].哈尔滨工业大学,2009.
    [107]张博,张宇文,李文哲,等.超空泡航行体前部线型对空泡生成速度影响实验研究[J].西北工业大学学报,2008,(05):540-544.
    [108]张博,张宇文,孙致月,等.超空化航行体前部外径对空泡影响的研究[J].西北工业大学学报,2010,(06):834-839.
    [109]蒋增辉,于开平,张嘉钟,等.不同尾部超空泡航行体阻力特性数值模拟研究[J].战术导弹技术,2007,(05):14-19.
    [110]张学伟,魏英杰,张嘉钟,等.模型结构对通气超空泡影响的实验研究[J].工程力学,2008,(09):203-208.
    [111]贾力平,张嘉钟,于开平,等.空化器线形与超空泡减阻效果关系研究[J].船舶工程,2006,(02):20-23.
    [112]徐锋.水冲压发动机喷嘴设计研究[D].上海交通大学,2007.
    [113]刘瑜.水反应金属燃料冲压发动机的相关问题研究[D].哈尔滨工程大学,2008.
    [114]甘晓松,何国强,王建儒,等.水冲压发动机原理性试验技术研究[J].固体火箭技术,2008,(01):4-7.
    [115]胡凡,张为华,夏智勋,等.金属燃料/水冲压发动机一次进水试验[J].航空动力学报,2008,(10):1949-1952.
    [116]韩超,夏智勋,胡建新,等.一次进水角度对水冲压发动机比冲性能影响研究[J].固体火箭技术,2009,(05):496-499.
    [117]黄利亚,夏智勋,胡建新.水冲压发动机地面直连试验技术研究[J].推进技术,2009,(06):722-726.
    [118]谭林森,骆东平.加筋双层壳流固耦联振动数值分析[J].华中理工大学学报,1992,10:93-99.
    [119]谭林森,骆东平,王殿卿.双层旋转壳流固耦合振动有限元分析[J].计算结构力学及其应用,1993,11:389-396.
    [120]徐张明,华宏星,沈荣瀛.夹层充液的双层加肋壳体的振动模态分析[J].噪声与振动控制,2001,8:4-7.
    [121]侯国祥,翁章卓,祝玉梅等.充液双层壳的振动与声辐射计算[J].华中科技大学学报,2005,10:16-18.
    [122]张阿漫,钱德进,姚熊亮.结构型式对双层壳声辐射特性影响研究[J].中国舰船研究,2007,6:1-6.
    [123]孙磊.轻外壳对双层壳体结构水下辐射声影响研究[D].哈尔滨:哈尔滨工程大学,2007.
    [124]钟超.有限长双层圆柱薄壳结构振动有限元方法研究[D].哈尔滨:哈尔滨工程大学,2009.
    [125]郭博.壳间连接介质对双层壳声辐射性能的影响[D].哈尔滨:哈尔滨工程大学,2010.
    [126]胡凡.镁基燃料水冲压发动机理论分析与试验研究[D].国防科学技术大学,2008.
    [127]向敏,吴雄,张为华,等.超空泡航行器内外流场仿真及性能分析[J].弹箭与制导学报,2011,(01):137-139.
    [128]缪万波,夏智勋,罗振兵,等.金属/水反应冲压发动机进水管路的工作特性[J].固体火箭技术,2007,(04):311-314.
    [129]缪万波.水冲压发动机内部工作过程理论与试验研究[D].长沙:国防科技大学,2007.
    [130]霍东兴,何国强,陈林泉,等.进水方式对水冲压发动机性能的影响[J].固体火箭技术,2010,(01):30-33.
    [131]孙致月,邓飞,张宇文.超空泡航行器水冲压发动机进水道入口匹配设计[J].机械科学与技术,2011,(07):1159-1162.
    [132]孙致月,邓飞,张博.金属/水冲压发动机进水道工作特性[J].计算机仿真,2011,(09):28-31.
    [133]李玉柱,贺五洲.工程流体力学[M].北京:清华大学出版社,2006.
    [134]杨建国,张兆营,鞠晓丽等.工程流体力学[M].北京:北京大学出版社,2010.
    [135] Kanok-nukulchai W, Taylor R L and Hughes T J R. A large deformationformulation for shell analysis by finite element method[J]. Computers&Structures,1981,13:19-27.
    [136] J.Z.Li, K.C.Hung, Z.Z.Cen. Shell element of relative degree of freedom and itsapplication on buckling analysis of thin-walled structures[J]. Thin-WalledStructures,2002,40:865-876.
    [137] CHEN Li-hua, CHENG Jian-gang, HUANG Wen-bin. Nonlinear dynamicanalysis of shell element with a relative degree of freedom[J]. J. Tsinghua Univ.2002,42:228-231.
    [138]王勖成.有限单元法[M].北京:清华大学出版社.2003.
    [139]罗伯特.库克,戴维.马尔库斯,迈克尔.普利沙等.有限元分析的概念与应用[M].西安:西安交通大学出版社.2007.
    [140] LING Dao-sheng, XU Xing. Nonlinear finite element and program[M]. Hangzhou: Zhejiang University Press,2004:153-187(In Chinese).
    [141] HE Jun-yi, LIN Xiang-du. Numerical method of nonlinear engineering structures[M]. Beijing: National Defense and Industry Press,1993:102-137(InChinese).
    [142] Sabir A B, Djoudi M S. Shallow Shell Finite Element for the Large DeflectionGeometrically Nonlinear Analysis of Shells and Plates[J]. Thin-WalledStructures,1995,21:253-267.
    [143] Sabir A B, Lock A C. The application of finite element to the large deflectiongeometrically nonlinear behaviour of cylindrical shells[J]. Variational Methodsin Engineering pp7/66-7/75Southampton (1972).
    [144] Crisfield M A. A fast incremental iterative solution procedure that handles snapthrough. Computers and Struct[J].,13(1981)55-62.
    [145] Bathe K. J, Ho L. W. A simple and effective element for analysis of generalshell structures. Computers and Struct[J].,13(1981)673-81.
    [146] Hsiao K M. Nonlinear analysis of general shell structures by flat triangular shellelement. Computers and Struct[J].,25(5)(1987)665-75.
    [147]武新峰.大型液体火箭发动机结构动力学分析[D].长沙:国防科技大学,2009.
    [148]汪玉,周璞,刘东岳等.考虑流固耦合作用的舰船冲击仿真计算[J].振动与冲击,2005,1:73-76.
    [149]周小利.弹性圆柱薄壳在流体作用下的变形与内力分析[D].燕山:燕山大学,2006.
    [150]袁亮.管道结构振动与声辐射特性研究[D].武汉:华中科技大学,2006.
    [151]赵子龙,李佩荣,柳海芳.运行速度对水下结构自振频率的影响分析[J].太原科技大学学报,2007,12:479-482.
    [152]项昌乐,焦开河,王文平等.箱体结构动强度的流固耦合有限元分析[J].兵工学报,2007,7:769-773.
    [153]金广文,何琳,姜荣俊.流固耦合对双层圆柱壳体振动特性的影响[J].武汉理工大学学报,2007,10:882-885.
    [154]吴芳,赵德有.水对船舶与海洋建筑物结构振动影响的研究[J].中国海洋平台,2007,6:20-26.
    [155]陈香林,周文禄.压力管道流固耦合振动特性分析[J].红箭推进,2007,10:27-31.
    [156]孙利民,李凤琴,张鹏.弹体水中自振特性的有限元分析[J].淮阴工学院学报,2008,6:1-4.
    [157]孙洋,赵德有.流固耦合理论在船体总振动附加水质量研究中的应用[J].中国海洋平台,2008,6:22-27.
    [158]卓颉,李兵.水下复杂声源结构自振特性分析[J].计算机辅助工程,2008,3:33-35.
    [159]刘敏珊,王素珍,董其伍.蒸汽发生器传热管流体结构耦联动态特性分析[J].振动与冲击,2008,9:128-130.
    [160]杨晓东,金基铎.输流管道流固耦合振动的固有频率分析[J].振动与冲击,2008,3:80-86.
    [161]邬海军,郭鹏程,廖伟丽等. ANSYS在水轮机部件流固耦合振动分析中的应用[J].水电能源科学,2004,12:64-66.
    [162]喻萌.基于ANSYS的输流管道流固耦合特性分析[J].中国舰船研究,2007,10:54-57.
    [163]潘栋,邓民宪.基于ANSYS的储液罐固有振动特性分析[J].西部探矿工程,2008,5:52-54.
    [164]娄涛.基于ANSYS的流固耦合问题数值模拟[D].兰州:兰州大学,2008.
    [165]周韶园.考虑接触问题时某型导弹静动特性分析[D].西安:西北工业大学,2002.
    [166]何国军.考虑连接刚度的固有特性分析[D].宁波:宁波大学,2004.
    [167]郑晓亚.考虑连接刚度的蜂窝夹层结构特性的计算研究[D].西安:西北工业大学,2005.
    [168]胡爱虔,张铎.飞行器结构考虑连接面刚度的固有特性计算研究[J].弹箭与制导学报,2005,3:298-301.
    [169]何国军,竺润祥,尹云玉等.考虑连接刚度的导弹固有特性分析[J].强度与环境,2006,3:14-17.
    [170]王隆基.套接结构的接触分析与试验研究[D].西安:西北工业大学,2007.
    [171]宋波涛.飞行器结构考虑连接面刚度的固有特性计算研究.[D]西北工业大学2003.
    [172]蒋绍军.某型导弹考虑接触时的固有特性分析.[D]西北工业大学2004.
    [173]曾强.高强度螺栓抗拉连接的仿真及实验研究.[D]重庆大学2003年.
    [174]赵万友.接触问题的分析方法研究与工程应用.[D]西安电子科技大学2007年.
    [175]张红兵.有限元模型中螺栓载荷施加方法的研究.[J]机械设计与制造1999年12月.
    [176]王春寒.在ANSYS软件中高强螺栓预紧力的施加方法.[J]四川建筑2006年2月.
    [177]李会勋.利用ANSYS模拟螺栓预紧力.[J]山东科技大学学报2006年3月.
    [178]王永虎,石秀华.入水冲击问题研究的现状与进展[J].爆炸与冲击,2008,5:276-282.
    [179]郑传彬,朱良生,吴家鸣.结构物砰击入水问题研究进展[J].科学技术与工程,2008,11:5891-5897.
    [180]杨代盛.船体强度与结构设计[M].国防工业出版社,1981.
    [181]张虚怀.返回舱着水冲击模拟及其影响因素分析[D].清华大学,2009.
    [182]闫发锁.计及结构弹性效应的砰击载荷与响应[D].哈尔滨工程大学,2009.
    [183]段芳.三体船砰击响应特性研究[D].哈尔滨工程大学,2011.
    [184]彭晟.三体船砰击载荷研究[D].武汉理工大学,2011.
    [185]宋长福.民机机身结构入水冲击问题数值仿真研究[D].上海交通大学,2011.
    [186]倪阳.基于半解析砰击理论的棱柱形滑行艇海豚运动发生界限研究[D].哈尔滨工程大学,2011.
    [187]李裕春,时党勇,赵远. LS-DYNA基础理论与工程实践[M].北京:中国水利水电出版社,2006.
    [188]张晓波.船底结构砰击时的流固耦合数值模拟[D].大连理工大学,2007.
    [189]张艳萍.海洋工程结构单元入水砰击分析与仿真模拟[D].华中科技大学,2007.
    [190]陈福.结构入水问题的流固耦合仿真分析[D].清华大学,2008.
    [191]方超.应用ALE有限元法对飞机水上迫降过程的流固耦合仿真[D].复旦大学,2011.
    [192] Carcaterra A, Ciappi E. Hydrodynamic Shock of Elastic Structures Impactingon the Water: Theory and Experiments[J]. Journal of Sound and Vibration,2004,271:411-439.
    [193]童乐为,周国梁.偏心周期荷载作用下闭口薄壁构件的动力稳定性[J].上海力学,1992,6:41-48.
    [194]杨平,孙兰.偏心周期载荷作用下薄壁构件的动力稳定性[J].武汉交通科技大学学报,1998,8:403-407.
    [195]杨平,马志敏.薄壁骨材的动力侧倾屈曲分析[J].武汉理工大学学报,2004,4:167-170.
    [196]李火坤.弧形闸门流激振动特性及其结构优化研究[D].天津大学,2004.
    [197]张强.含损伤加筋板结构稳定特性变异研究[D].大连理工大学,2005.
    [198]李忠学.采用矢量型转动变量的二维协同转动梁元法[J].浙江大学学报(工学版),2006,(07):1219-1223.
    [199]刘永方.新型协同转动四边形曲壳单元研究[D].浙江大学,2008.
    [200]徐晋.新型协同转动三角形曲壳单元研究[D].浙江大学,2008.
    [201]李忠学,徐晋,刘永方,等.采用应变差分离法的新型协同转动三边形曲壳单元[J].浙江大学学报(工学版),2009,(08):1506-1512.
    [202]张年文,童根树.平面框架几何非线性分析的修正拉格朗日-协同转动联合法[J].工程力学,2009,(08):100-106.
    [203]李忠学,刘永方,徐晋,等.稳定化的新型协同转动四边形曲壳单元[J].工程力学,2010,(09):27-34.
    [204]俞冬良.基于假定应变的新型协同转动四边形曲壳单元研究[D].浙江大学,2010.
    [205]张年文.框架几何非线性分析的若干问题[D].浙江大学,2010.
    [206] Poldneff M J, Rai I S, Arora J S. Design Variation Analysis of ConstrainedNonlinear Elastic Structures Having Follower Forces[J]. AIAA Journal,1992:970-980.
    [207] Yoon S J, Kim J H. A Concentrated Mass on the Spinning Unconstrained BeamSubjected to a Thrust[J]. Journal of Sound and Vibration,2002,4:621-634.
    [208]许赟,谢长川,杨超.推力作用下细长弹箭横向振动及稳定性分析[J].工程力学,2009,12:211-221.
    [209]周凌远,李乔.基于UL法的CR列式三维梁单元计算方法[J].西南交通大学学报,2006,12:690-695.
    [210]周凌远.斜拉桥非线性理论及极限承载力研究[D].西南交通大学,2007.
    [211]张哲.自锚式吊拉组合桥非线性计算程序开发[D].大连理工大学,2009.
    [212]蔡松柏,沈蒲生.大转动平面梁有限元分析的共旋坐标法[J].工程力学,2006,(S1):69-72.
    [213]邓继华,蔡松柏.用四边形平面应力单元进行平面梁的几何非线性分析[J].长沙理工大学学报(自然科学版),2007,(02):32-35.
    [214]蔡松柏,沈蒲生,胡柏学,等.基于场一致性的2D四边形单元的共旋坐标法[J].工程力学,2009,(12):31-34.
    [215]邓继华,邵旭东,蔡松柏,等.大转动三角形平面单元有限元分析的共旋坐标法[J].长沙理工大学学报(自然科学版),2010,(04):32-36.
    [216]邓继华,邵旭东,邓潇潇.四边形八节点共旋法平面单元的几何非线性分析[J].工程力学,2011,(07):6-12.
    [217] Crisfield M A, Moita G F. A Unified Co-Rotational Framework for Solids,Shells and Beams[J]. Int. J. Solids Structures,1996,33:2969-2992.
    [218] Battini J M. A Non-Linear Corotational4-Node Plane Element[J]. MechanicsResearch Communications,2008:408-413.
    [219] Felippa C A, Haugen B. A Unified Formulation of Small-Strain CorotationalFinite Elements: I. Theory[J]. Comput. Methods Appl. Mech. Engrg.2005,194:2285-2335.
    [220] Pajot J M, Maute K. Analytical Sensitivity Analysis of Geometrically NonlinearStructures Based on the Co-Rotational Finite Element Method[J]. FiniteElements in Analysis and Design,2006,42:900-913.
    [221] Almeida F S, Awruch A M. Corotational Nonlinear Dynamic Analysis ofLaminated Composite Shells[J]. Finite Elements in Analysis and Design,2011,47:1131-1145.
    [222] Park S H, Kim J H. Dynamic Stability of a Stiff-Edged Cylinderical ShellSubjected to a Follower Force[J]. Computers and Structures,2002,80:227-233.
    [223] Kumar L R, Datta P K, Prabhakara D L. Dynamic Instability Characteristics ofLaminated Composite Doubly Curved Panels Subjected to Partially DistributedFollower Edge Loading[J]. International Journal of Solids and Structures,2005,42:2243-2264.
    [224] Vitaliani R V, Gasparini A M, Saetta A V. Finite Element Solution of theStability Problem for Nonlinear Undamped and Damped Systems UnderNonconservative Loading[J]. Int. J. Solids Structures,1997,34:2497-2516.
    [225] Gasparini A M, Saetta A V, Vitaliani R V. On the Stability and InstabilityRegions of Non-Conservative Continuous System Under Partially FollowerForces[J]. Comput. Methods Appl. Mech. Engrg.2005,124:63-78.
    [226] Goyal V K, Kapania R K. Dynamic Stability of Laminated Beams Subjected toNonconservative Loading[J]. Thin-Walled Structures,2008,46:1359-1369.
    [227] Trikha M, Mahapatra D R, Gopalakrishnan S, et.al. Structual Stability ofSlender Aerospace Vehicle: Part I Mathematical Modeling[J]. InternationalJournal of Mechanical Sciences,2010,52:937-951.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700