水下柔性结构流固耦合动力效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋结构物多在海洋环境中进行施工,具有极大的难度和特殊性。与陆地或浅水结构不同,海洋结构经常受到波浪、海流、地震等荷载的作用而产生有害振动。随着社会的发展,工程中新材料、新设备、新结构和新工艺的运用,结构不断向高、轻、大三个方向发展。特别是在海洋工程领域,随着海洋资源开发不断地向深海进军,越来越多海洋结构物转变为柔性结构。
     海底隧道、海洋平台等结构物由于自身刚度比较大,所以整体振动幅值不会很大,但海洋悬跨管道、深海采矿系统中的输送软管、水中悬浮隧道等结构则属于细长的柔性结构,容易在波浪、海流、地震等动力因素影响下产生较大的变形,并在部件内部产生额外的张力,极易引起结构的损伤甚至破坏。因此,深入开展水中柔性结构流固耦合振动特性以及在水流、地震等荷载作用下的力学行为的研究,对提高水中柔性结构的安全运营具有十分重要的理论和现实意义。
     本文针对水中柔性结构流固耦合振动特性以及在水流、地震等荷载作用下的力学行为进行研究。论文的主要内容如下:
     1、阐述了课题的研究背景和研究意义,对国内外流固耦合问题的相关理论以及在海流和地震作用下水中结构动力响应的相关研究进行了归纳和总结,阐述了水中柔性结构的振动特性以及在复杂水中环境荷载作用下的力学行为研究中尚待解决的问题。
     2、介绍了流体力学的基本概念和基本方程组,并对无粘性小扰动流动的基本方程和表达形式进行了论述,在此基础上,详细阐述了线性流固耦合系统有限元分析的位移-压力格式以及线性流固耦合系统的动力特性分析方法,最后给出了非线性流固耦合问题的ALE描述方法。
     3、为准确把握水中结构的动力特性,设计制作了水中悬跨结构、深水桥墩以及悬浮隧道的试验模型。分若干工况对各个模型在无水和有水环境下的动力特性进行了测试,并分析了不同尺寸、不同水位、不同形式对结构动力特性的影响。采用附加质量法以及三维数值有限元法对试验模型动力特性进行了计算,并对试验和计算结果进行了比较和分析。
     4、对柔性结构的静力行为进行了研究,总结了柔性结构在静载作用下的应力响应以及变形规律。分别采用附加质量法和三维数值有限元方法对两端固定约束的圆柱管道进行分析,通过比较有水、无水以及是否考预应力效应的计算结果,总结出水中柔性结构振动特点。并对水中柔性结构在简谐荷载作用下的响应规律进行了归纳。
     5、对水流作用下的圆柱绕流及涡激振动现象进行了介绍;基于标准k-s湍流模型,分别采用二维数值模拟和三维数值模拟的方法,对不同水流速度下的圆柱管道绕流流场的压力分布和速度分布进行分析,对海流作用下圆柱管道尾流区涡旋发展的过程进行了描述,探讨了水流作用下水中柔性结构动力响应规律。
     6、对结构地震响应的分析方法进行了介绍,并阐述了基于水动力模型的水中结构地震响应分析方法以及考虑流固耦合效应的水中结构地震响应数值有限元计算方法,建立了地震作用下水中柔性结构流固耦合效应分析模型,通过比较有水、无水以及是否考虑结构大变形的计算结果,探讨地震作用下水中柔性结构动力响应规律,并分析了结构长度、地震强度等因素对结构动力响应的影响。
Most submarine structures are constructed in the marine environment, which has great difficulty and particularity. It is different from the land structures that the action of wave, current and earthquake will make harmful vibrations of the submarine structures. With the development of society, and the application of new materials, new equipment, new structure and new technology, the structures are being higher, lighter and larger. Especially in the marine engineering field, nowadays, more ocean resources are found in deep sea, therefore people build more and more submarine flexible structures.
     The vibration amplitudes of the submarine tunnel and the ocean platform are not great because of the large stiffness of themselves. But the flexible and slender structures such as the free spanning submarine pipelines, flexible delivery hose and Submerged Floating Tunnel will have large deformation and stress under the action of wave, current and earthquake, which may cause structural damage. It is of great theoretical and practical significance to research the vibration characteristics with fluid-solid interaction and mechanical behavior under the action of current or earthquake, for improving the safe operation of submarine flexible structures.
     The vibration characteristics with fluid-solid interaction of submarine flexible structures and their mechanical behavior under the action of current or earthquake are studied in the paper. The main research contents are roughly as follows:
     1. The research background and the significance of this topic were elaborated. The correlation theory of fluid-solid interaction problems and relevant studies of dynamic response of submarine structures with the action of current and earthquake were summarized. Problems need to be solved in the research of vibration characteristics and mechanical behaviors with complicated environmental load of submarine flexible structures were discussed.
     2. The basic concept and equations of fluid mechanics were interduced. The basic equations and expression form of non-sticky small disturbance flow were discussed. The(ui,p) format of linear fluid-solid interaction system of finite element analysis and the analyze methods of dynamic characteristics were elaborated in detail. Finally, the ALE method of nolinear fluid-solid interaction problems was expounded.
     3. Submarine suspended span structure models, deep-water pier models and Submerged Floating Tunnel models were designed for experiments and analysis of dynamic characteristics of submarine structures. The experiments were used to test the dynamic characteristic of each model both in the air and in the water. The factors that influence the dynamic characteristics, including the structure size, water level and detailed form of structures, were analyzed. Additional mass method and three dimensional finite element method was used to calculate the dynamic characteristic of experimental models, the results of experiments and calculations were compared and discussed in the paper.
     4. The stress and deformation laws of flexible structures with dead load is studied and summarized in the paper. Both additional mass method and three dimensional finite element method was used to research the pipes with fixed ends. The vibration characteristics of submarine flexible structures were studied by comparison of calculation results of several conditions, including the structures in the air, structures in the water and structures with consideration of prestress. The paper also summarized the response of submarine flexible structures with the action of harmonic load.
     5. Flow around circular cylinder and vortex induced vibration phenomenon under the current was presented. Two dimensional and three dimensional finite element method based on standardκ-εturbulent model was used to study the pressure and velocity distribution of flow field around pipe with different velocity of flow. The vortex development in the wake of the pipe was described in the paper, and the dynamic response laws of submarine flexible structures under the action of current were discussed.
     6. The main methods for earthquake response analysis of the structures were introduced. The research methods for earthquake response based on the model and the numerical finite element method with the consideration of fluid-solid interaction were expounded. The analysis model of submarine flexible structures with fluid-solid interaction and the action of earthquake was set up to study the dynamic response laws of structures in different conditions. The factors that influence the dynamic response of structures such as length of structures, of earthquake were also discussed in the paper.
引文
[1]沙勇.悬跨海底管线动力响应试验与数值研究[D].大连:大连理工大学.2007.
    [2]何勇.随机荷载作用下海洋柔性结非线性振动响应分析方法[D].浙江:浙江大学.2007.
    [3]王学.基于ALE方法求解流固耦合问题[D].长沙:国防科技大学.2006.
    [4]陈刚.圆柱形消化池流固耦合动力特性分析[D].天津:天津大学.2007.
    [5]Zienkiewicz O C, Bettess P. Fluid-structure dynamic interaction and wave forces. An introduction to numerical treatment [J]. Int.J.Num.Meth.Engrg.1978,13(1):1-16.
    [6]刘振宇.深水桥梁的地震响应研究[D].成都:西南交通大学.2008.
    [7]毕家驹.近海力学导论[M].上海:上海同济大学出版社,1989:13-120
    [8]居荣初,曾心传.弹性结构与液体的耦联振动理论[M].地震出版社.1983:82-112
    [9]傅作新.水-坝相互作用的若干有效解法[J].华水科技情报.1985(2):1-10
    [10]Westergaard H.M. Water pressures on dams during earthquakes [J]. Transacitions of the American Society of Civileigineers 98.1933:18-433.
    [11]谭晓晶.大型储液罐流固耦合地震反应分析[D].哈尔滨:中国地震局工程力学研究所.
    [12]Zienkiewicz O C. Coupled vibrations of a structure submerged in a compressible fluid [C]. Sorensen M eds.Proc Int Symposium on finite Element Techniques.1969.
    [13]Belytschko T. A fluid-structure finite element method for the analysis of reactor safty problem [J]. Nuclear Engineering and Design.1976(38):71-81.
    [14]Belytschko T. Computer models for subassembly simulation [J]. Nuclear Engineering and Design.1978(49):17-38.
    [15]Belytschko T.Structure Interaction[J]. Comput Struct.1980(12):459-469.
    [16]Olson L G, Bathe K J.A study of displacement-based fluid finite elements for calculating frequencies of fluid and fluid-structure systems [J]. Nuclear Engineering and Design. 1983(76):137-151.
    [17]Olson L G, Bathe K J. Analysis of fluid-structure interactions. A direction systemtric coupled formulation based on the fluid velocity potential [J]. Comput Struct.1985(21):21-32.
    [18]Olson L G, Vandini T.Eigenproblems for finite element analysis of fluid-structure interactions [J]. Comput Struct.1989(33):679-687.
    [19]Noh C E L. A time-dependent two-space-dimension coupled Eulerian-Lgarangian code [J]. Methods in computational physics.1964(3):123-144.
    [20]Hirt C W, Aesden A A. Cook H K. A arbitrary Lagrangian-Eulerian method for all flow speeds [J]. Journal of computation physics.1974(14):227-253.
    [21]Belystschko T, Flanagan D F, Kennedy J M. Finite element method with user-controlled meshes for fluid-structure interaction [J]. Computer Methods in Applied Mechanics and Engineering.1982(33):689-723.
    [22]Huerta A, Liu W K. Viscous flows with large free suiface motion [J]. Methods in Applied Mechanics and Engineering.1988(69):277-324.
    [23]Hughes T J R, Liu W K, Zimmerman T K. Lagrangian-Eulerian finite element formulation for incompressible viscous flows [J]. Computer Methods in Applied Mechanics and Engineering.1981(29):329-349.
    [24]Belytschko T, Kennedy J M. Computer models for subassembly simulation [J]. Nuclear Engineering and Design.1978(49):17-38.
    [25]Donea J, Fasoli Stellap. Lagrangian and Eulerian finite elememt techniques for transient fluid-structure interaction problems [J]. Trans Smi.1977:15-19.
    [26]Toebes G H. The unsteady flow and wake near an oscillating cylinder [J]. Journal of Basic Engineering.1969(91):493-502.
    [27]Staubli T. Calculation of the vibration of an elastically mounted cylinder using experimental data from forced oscillation [J]. Journal of Fluids Engineering.1983(10):225-229.
    [28]Tsahalis D T. Vortex-induced vibrations of a flexible cylinder near a plane boundary exposed to steady and wave-induced currents [J]. Journal of Energy Resources Technology. Transactions of the ASME.1984(106):206-213.
    [29]Bryndum M B, Jacobsen V. Hydrodynamic forces on pipelines:model tests [C]. Proceedings of the Seventh International Offshore Mechanics and Arctic Engineering. Houston:Texas, 1988:9-21.
    [30]Bruschi R, Montesi M, Tura F. Field tests with pipeline free spans exposed to wave flow and steady current [C]. Offshore Technology Conference.Houston:Texa,1989:Paper No.6152.
    [31]Sumer B M, Fredse J. Pressure measurements around a pipeline exposed to combined waves and current [C]. Proceedings of the 11th International Offshore Mechanics and Arctic Engineering Calgary. Canada.1992:113-121.
    [32]Gopalkrishnan R. Vortex induced forces on oscillating bluff cylinders [D]. USA:MLT,1993.
    [33]Sarpkaya T, Isaacson M. Mechanics of wave forces on offshore structures [R]. London:Van Nostrand Reinhold Company,1981.
    [34]Griffin O M, Koopman G H. The vortex-excited lift and reaction forces on resonantly vibrating cylinders [J]. Journal of Sound and Vibration,1977(54):435-448.
    [35]Venkataramana K, Kawano K, Yoshihara S.Time-domain dynamic analysis of offshore structures under combined wave and earthquake loadings. Proceedings of the Eighth International Offshore and Polar Engineering Conference,Canada,1998:404-411.
    [36]Carberry J, Sheridan J, Rockwell D. Forces and wake models of an oscillating cylinder [J]. Journal of Fluids and Structures,2001,15(3-4):523-532.
    [37]Cokgor S, Avci I. Hydrodynamic forces on partly buried pipeline in waves/current [C]. Proceedings of the Eighth International Offshore and Polar Engineering Conference, Canada, 1998:94-99.
    [38]Chevalier C, Lambert E, Belorgey M. Velocity field around a pipeline in breaking waves [C]. Proceedings of the Eighth International Offshore and Polar Engineering Conference,Canada, 1998:68-73.
    [39]李岩磊.海底管线悬跨段动力响应分析及其实验研究.青岛:中国海洋大学,2004.
    [40]Gao F P, Yang B, Wu Y X. Steady current induced seabed scour around a vibrating pipeline[J]. Applied Ocean Research,2006,28(5):291-298.
    [41]Aronsen K, Larsen C M, Mφrk K. Hydrodynamic coefficient from in-line VIV experiment[C]. Proceedings of the 24th International Offshore Mechanics and Arctic Engineering. Halkidiki, Greece,2005:Paper No.67393.
    [42]Aronsen K, Larsen C M. Hydrodynamic coefficients for in-line vortex induced vibrations [C]. Proceedings of the 26th International Offshore Mechanics and Arctic Engineering, San Diego, 2007:Paper No.29531.
    [43]王广地.波流作用下悬浮隧道结构响应的数值分析及试验研究[D].成都:西南交通大学.2008.
    [44]王广地,周晓军,高波.均匀流作用下悬浮隧道管段水动力参数分析[J].四川大学学报.2009.41(2):96-102.
    [45]Son J S, Hanratty T J. Numerical solution for the flow around a cylinder at Reynolds number of 40,200 and 500 [J]. Journal of Fluid Mechanics,1969(35):369-386.
    [46]Lin C L, Pepper D W, Lee S C. Numerical methods for separated flow solutions around a circular cylinder [J].AIAA J,1976,14(7):900-907.
    [47]Jordan S K, Fromm J E. Oscillatory drag lift and torque on a circular cylinder in a uniform flow [J]. Phys. Fluids,1972(15):371-376.
    [48]Jain P C, Rao K S. Numerical solution of unsteady viscous incompressible fluid flow past a circular cylinder [J]. Phys. Fluid Suppl.1969(12):57-64.
    [49]叶春明,吴文权.数值模拟圆柱绕流旋涡运动及尾流不稳定性分析[J].工程热物理学报,1997,18(2):169-172.
    [50]李玉成,陈兵.海底管线上波浪力的大涡模拟及三步有限元数值模拟[J].海洋通报,1999,21(6):87-93.
    [51]曹丰产,项海帆.圆柱非定常绕流及涡致振动的数值计算[J].水动力学研究与进展A辑,2001,16(1):111-118.
    [52]吕林.海洋工程中小尺度物体的相关水动力数值计算[D].大连:大连理工大学,2006.
    [53]Hirt G W, Amaden A A, Cook J L. An arbitrary Lagrangian-Eulerian computing method for all flow speeds [J]. Journal of Computational Physics,1974,14(3):227-253.
    [54]Nomura T, Hughes T J R. An arbitrary Lagrangian-Eulerian finite element method for interaction of fluid and a rigid body [J]. Computer Methods in Applied Mechanics and Engineering,1992,95(2):115-138
    [55]Nomura T. ALE finite element computations of fluid-structure interaction problems [J]. Computer Methods in Applied Mechanics and Engineering,1994(112):291-308.
    [56]Wei R, Sekine A, Shimura M. Numerical analysis of 2D vortex-induced oscillations of a circular cylinder [J]. International Jounial for Numerical Methods in Fluids,1995(21): 93-1005.
    [57]王国兴.海底管线管跨结构涡致耦合振动的数值模拟与实验研究[D].青岛:中国海洋大学,2006.
    [58]Newman D J, Kamiadakis G E. A direct numerical simulation study of flow past a freely vibrating cable [J]. Jouroal of Fluid Mechanics,1997(344):95-136.
    [59]Schulz K W, Kallinderis Y. Unsteady flow structure interaction for incompressible flows using deformable hybrid grids [J]. Journal of Computational Physics,1998(143):569-597.
    [60]凌国平,林国灿.绕旋转圆柱流动涡尾流结构和临界状态特性[J].力学学报,1997,29(1):8-16.
    [61]祖楠.考虑流固耦合时的海底管道悬跨段非线性动力分析[D].中国海洋大学硕士学位论文.2005.6.
    [62]祖楠,黄维平.考虑流固耦合时的海底管道悬跨段非线性动力分析[J].中国海洋大学学报.2006,36(1):169-172.
    [63]麦继婷,杨显成,关宝树.悬浮隧道在波流作用下的响应分析[J].铁道学报,2008,30(2):118-123.
    [64]麦继婷,杨显成,关宝树.悬浮隧道和支撑结构的响应分析[J].铁道工程学报,2009(7):67-71.
    [65]麦继婷,罗忠贤,关宝树.波流作用下悬浮隧道的涡激动力响应[J].铁道学报,2005(1).
    [66]麦继婷,罗忠贤,关宝树.波流作用下悬浮隧道张力腿的涡激动力响应[J].西南交通大学学报,2004,39(5):600-604.
    [67]吴钰骅,金伟良,龚顺风等.海底管道流固耦合振动数值模拟[J].浙江大学学报工学版.2009.43(4):782-788.
    [68]吴钰骅.海底管道-流体-海床相互作用机理和监测技术研究[D].杭州:浙江大学,2007.
    [69]Morison J R, Johnson J W, O'Brien M P. The forces exerted by surface waves on piles. Petroleum Transactions[J]. American Institute of Mining Engineering,1950(189):149-157.
    [70]Sarpkaya T, Isaacson M. Mechanics of wave forces on offshore structures [R].London:Van Nostrand Reinhold Company,1981.
    [71]Laya E J, Connor J J, Shyam S S. Hydrodynamic forces on flexible offshore structures [J]. Journal of Engineering Mechanics,1984,110(3):433-448.
    [72]Soedigdo I R. Wake Ⅱ model for hydrodynamic forces on marine pipelines [D]. Texas:Texas A&M University,1997.
    [73]Soedigdo, I R, Edge B L, Sabag S R. Wake Ⅱ model for hydrodynamic forces on marine pipelines including waves and currents,1998
    [74]Lambrakos K F, Chao J C, Beckmann H. Wake model of hydrodynamic forces on pipelines. Ocean Engineering [J].1987,14(2):117-36.
    [75]Terro M J, Abdel-Rohman M. Wave induced forces in offshore structures using linear and nonlinear forms of Morison's equation [J]. Journal of Vibration and Control,2007,13(2): 139-157.
    [76]胡鸿运.定常流作用下拉索式悬浮隧道单节管段的振动初探[D].成都:西南交通大学.2008.
    [77]陈健云,王变革,孙胜男.悬浮隧道锚索的涡激动力响应分析[J].工程力学,2007,24(10):186-192.
    [78]陈健云,孙胜男,王变革.水下悬浮隧道锚索的动力分析[J].计算力学学报,2008.25(4):488-493.
    [79]陈健云,孙胜男,苏志彬.水流作用下悬浮隧道锚索的动力响应[J].工程力学.2008,25(10):229-234.
    [80]麦继婷,关宝树.琼州海峡悬浮隧道的可行性研究[J].铁道工程学报,2003(4):93-96.
    [81]麦继婷,关宝树.用Morison方程计算分析悬浮隧道所受波浪力初探[J].石家庄铁道学院学报,2003,16(13).
    [82]孙胜男.悬浮隧道动力响应分析[D].大连:大连理工大学.2008.
    [83]孙胜男,陈健云,苏志彬.悬浮隧道锚索-隧道耦合非线性参数振动研究[J].振动与冲击,2007.26(10).104-108.
    [84]王变革.水下悬浮隧道锚索的动力响应研究[D].大连:大连理工大学.2007.
    [85]李明高.基于水动力模型的海底悬跨管道地震反应分析[D].大连:大连理工大学.2010.
    [86]周晶,李昕,马冬霞.海底悬跨管线的地震响应和振动控制[J].世界地震工程,2000,16(4):58-62.
    [87]林钟明,高照杰,贾旭等.地震条件下海底双层油气管线的工作原理、强度标准和损伤评价[J].海洋工程,2002,20(3):1-8.
    [88]Haldar A K, Reddy D V. Finite Element Nonlinear Seismic Response Analysis of Submarine Pipe-Soil Interaction [C]. Soils under cyclic and transient loading, Proc of the lnt Symp, Wales,1980(2):867-877.
    [89]Romagnoli R, Varvelli R. Integrated seismic response analysis of offshore pipeline-sea floor systems[C]. Proceedings of the International Offshore Mechanics and Arctic Engineering Symposium, Houston,1988,139-145.
    [90]岳志勇,余轩凌,孙政策.引入惯性力影响的海底埋设管线的抗震设计方法[J].应用力学学报,2004,21(2):110-114.
    [91]马良.海底管道抗震设计初探[J].中国海洋平台,1999,14(4):26-29.
    [92]Nath B, Soh C H. Seismic response analysis of offshore pipelines in contact with the sea-bed [C]. International Journal for Numerical Methods in Engineering,1978,13(1):181-196.
    [93]孙政策,段梦兰,张文.现用海底管线抗震设计方法存在的问题及解决办法[J].振动工程学报,2004,17(3):263-268.
    [94]Figarov N G. Kamyshev A M. Seismic stability of offshore pipelines[C]. Proceedings of the International Offshore and Polar Engineering Conference, LosAngeles,1996,477-481.
    [95]Kalliontzis C. Numerical simulation of submarine pipelines in dynamic contact with a moving seabed[J]. Earthquake Engineering and structural dynamics,1998,465-486.
    [96]Datta T K. Mashaly E A. Seismic response of buried submarine pipelines [J]. Journal of Energy Resources Technology, Transactions of the ASME,1988,110(4):208-218.
    [97]Datta T K. Mashaly E A. Transverse response of offshore pipelines to random ground motion [J]. Earthquake Engineering and Structural Dynamics,1990,19(2):217-228.
    [98]董汝博,周晶,冯新.一种考虑局部场地收敛性的多点地震动合成方法[J].振动与冲击,2007.26(4):5-9.
    [99]董汝博,周晶,冯新.部分悬跨海底管道多点输入地震反应分析[J].振动工程学报,2008,21(2):146-151
    [100]董汝博.多点地震动作用下海底悬跨管道非线性分析[D].大连:大连理工大学,2008.
    [101]董汝博,李昕,金峤等..多点输入下悬跨海底管道非线性地震响应参数分析[J].土木工程学报.2008,41(7):103-109.
    [102]李昕,刘亚坤,周晶等.海底悬跨管道动力响应的试验研究和数值模拟[J].工程力学,2003,20(2):21-25.
    [103]Li X, Dong R B, Jin Q. Hydrodynamic force model on free spanning pipeline subjected to seismic excitations [C]. Proceedings of the 27th International Conference on Offshore Mechanics and Arctic Engineering, Estoril, Portugal,2008, Paper No.57081.
    [104]Zeinodllini M, Sadrossasat S M, Parke G A R. Nonlinear seismic analysis of free spanning submarine pipelines:effects of pipe-water interaction [C]. Proceedings of the 27th International Conference on Offshore Mechanics and Arctic Engineering, Estoril, Portugal, 2008, Paper No.57781.
    [105]李明高,李听,冯新等.波流作用下海底管—土相互作用研究综述[J].中国海洋平台,2007,22(4):23-31
    [106]李明高,李听,周晶.地震对海底悬跨管道动水力作用的实验研究[J].水动力学研究与进展,2009,24(6):747-753.
    [107]李明高,李听,周晶.地震作用下海底悬跨管道动水作用力模型实验研究[J].哈尔滨工程大学学报,2010,31(5):564-569.
    [108]王长春.水中悬浮隧道与洋流耦合作用的模型试验[D].成都:西南交通大学.2005.
    [109]葛斐,王雷,洪友士.水中悬浮隧道锚索非线性涡激振动的研究[C].十一届全国非线性振动学术会议暨八届全国非线性动力学和运动稳定性学术会议论文摘要集,2007:559-564.
    [110]连琏.郭春辉.三维空间水下缆索性状计算初值问题的解[J].海洋工程.1992.10(2):88-94.
    [111]李晓平,王树新,何漫丽.水下拖曳柔索的动力学理论模型研究[J].中国海洋平台.18(3):13-19.
    [112]邵启会.海洋工程柔性构件分析方法研究[D].哈尔滨:哈尔滨工程大学,2008
    [113]张敏.桥墩与河水流固耦合振动分析[D].大连:大连交通大学,2006.
    [114]娄涛.基于ANSYS的流固耦合问题数值模拟[D].兰州:兰州大学,2008.
    [115]O O Bendiksen, G Seber. Fluid-structure interactions with both structural and fluid nonlinearities [J]. Journal of Sound and Vibration,2008.315(3):P 664-684.
    [116]苏波,袁行飞,聂国隽等.流固耦合理论研究述评[C].第七届全国现代结构工程学术研讨会,2007:703-709.
    [117]董平川,徐小荷,何顺利.流固耦合问题及研究进展[J].地质力学学报,1999,5(1):17-26
    [118]钱若军,董石麟,袁行飞.流固耦合理论研究进展[J].空间结构,2008,14(1):3-15
    [119]Hou Zhang, Xiaoli Zhang. Recent development of fluid-structure interaction capabilities in the ADINA system[J]. Computers & Structures,2003,81(8):1071-1085.
    [120]夏泰淳.工程流体力学[M].上海:上海交通大学出版社,2006.
    [121]ADINA流体流固耦合分析手册.2007,2-9
    [122]王勖成.有限单元法[M].北京:清华大学出版社,2003.
    [123]方华灿.油气长输管线的安全可靠性分析[M].北京:石油工业出版社,2002.
    [124]Romagnoli R, Varvelli R. An integrated seismic response analysis of offshore Pipeline-sea floor systems [C].7th International conference on offshore mechanics and arctic Engineering, 1988:139-147.
    [125]Sundar V, Roopsekhar K A P, Schlurmann T. Abbasi M R. Probability distribution of wave forces on pipelines near a sloping boundary parallel and normal to wave direction[J]. Coastal Engineering Journal,2004,46 (1):93-117.
    [126]刘习军,贾启芬.工程振动理论与测试技术[M].北京:高等教育出版社.2006
    [127]杨学山.工程振动测量仪器和测试技术[M].北京:中国计量出版社.2001.
    [128]杨吉新,雷凡,李昆.水下桥墩结构的振动分析.世界桥梁.2009(3):40-42
    [129]Fan Lei, Jixin Yang, Xizhen Xie. The numerical calculation research on dynamic characteristics of pipe conveying fluid. Recent Advances in Nonlinear Mechanics 2009, Kuala Lumpur:Springer Press,2009:72-73.
    [130]Fan Lei,Jixin Yang,Hui Liu.Dynamic response analysis of deepwater pier with fluid-solid interaction. Guangzhou:Trans Tech Publications,2010:161-166.
    [131]黄玉盈.液固耦联系统固有频率的一个变分式.华中工学院学报[J].1985.13(1):91-96.
    [132]钱勤,黄玉盈,刘忠族.求附连水质量的一种直接方法[J].力学与实践,1996.18(5):19-21.
    [133]苏海东,黄玉盈.求半无限域流场中物体附连水质量的一种简便解法[J].华中科技大学学报.2003(4):14-16
    [134]刘素云.潜浮式倒悬索桥动力性能试验与理论研究[D].武汉:武汉理工大学.2008.
    [135]项贻强,薛静平.悬浮隧道在国内外的研究[J].中外公路.2002.22(6):49-52.
    [136]秦银刚,周晓军.张力腿型悬浮隧道涡激响应影响因素分析[J].铁道工程学报.2009(1):78-81.
    [137]葛斐,惠磊,洪友士.水中悬浮隧道在波浪场中非线性动力响应的研究[J].应用力学学报,2008.25(2):207-212.
    [138]龚曙光ANSYS基础应用及范例解析[M].北京:机械工业出版社,2003.
    [139]雷宣扬.内燃机曲轴动态振动特性模拟及其裂纹故障分析[D].大连:大连理工大学.2003
    [140]马丙辉.基于热管传热的液体静压电主轴热态性能及相关技术研究[D].哈尔滨:哈尔滨工业大学,2008.
    [141]王新敏ANSYS工程结构数值分析[M].北京:人民交通出版社.2007.
    [142]王欣欣.求解对称矩阵特征值问题的Lanczos算法的改进及分析[D].哈尔滨:哈尔滨工业大学,2008.
    [143]卢耘耘,王秀喜.关于Morison方程中耦合项的研究[J].中国科学技术大学学报[J].1987,17(3):359-368
    [144]詹昊.钢析拱桥吊杆涡激振动仿真分析[D].武汉:华中科技大学.2009.
    [145]庄协远,马晖扬.流体力学[M].合肥:中国科学技术大学出版社.2009.
    [146]王国兴.海底管线管跨结构涡致耦合振动的数值模拟与实验研究[D].中国海洋大学硕士学位论文.2006.6.
    [147]Housner G W. Characteristic of Strong Motion Earthquakes. Bull. Seism. Soc. Am.,1947(37): 17-31.
    [148]Wilson E L, Kiureghian A D, Bayo E. A Replacement for the SRSS Method in Seismic Analysis. Earthquake Engineering and Structural Dynamics,1981(9):187-192.
    [149]Lee M, Penzien J. Stochastic analysis of structures and piping systems subjected to stationary multiple support excitations. Earthquake Engineering and Structural Dynamics,1983(11): 91-110
    [150]Lin Y K, Zhang R, Yong Y. Multiple Supported Pipeline Under Seismic Wave Excitations. A SCE, Journal of Engineering Mechanics,1990,116(5),1094-1108
    [151]Dumanoglu A A, Severn R T. Stochastic response of suspension bridges to earthquake forces. Earthquake Engineering and Structural Dynamics,1990(19):133-152
    [152]A Der Kiureghian, A Neuenhofer. Response Spectrum Method for Multi-support Seismic Excitations, Earthquake Eng. Struct. Dyn,1992(21):713-740
    [153]Carassale L, Tubino F, Solari G. Seismic Response of Multi-supported Structures by Proper Orthogonal Decomposition. In:Proceeding International Conference on Advances in Structural Dynamics, Hong Kong:Elsevier Science Ltd,2000,827-834
    [154]R Betti, Abdel-Ghaffar A M, Niazy A S. Kinematic soil-structure interaction for long-span cable-supported bridges. Earthquake Engineering and Structural Dynamic,1993(22):415-430
    [155]李建俊,林家浩,张文首.大跨度结构受多点随机地震激励的响应.计算结构力学及其应用,1995,12(4):445-451

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700