新场气田沙溪庙组多层致密气藏开发调整方案研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
致密砂岩气藏在我国的天然气生产中占有相当大的比例,这类气藏具有低丰度、低孔隙、低渗透、低单井日产的特点,如何高效地开发多层叠置的大型致密砂岩气藏在国内外尚处于探索阶段,对于立体开发调整方案的研究更是少见报道。位于四川盆地西部川西坳陷中段的新场气田,是由浅、中、深层多个气藏纵向上叠置而成的大型致密碎屑岩气田,其产量位于全国前列。沙溪庙组JS_2气藏是该气田的绝对主力气藏,纵向上由四个气层组成;2000年编制开发方案,2002年达到设计生产规模,至今已超规模生产近6年。目前,气藏的稳产形势十分严峻,及时对气藏的开发做出合理的调整是气藏开发面临的首要任务。
     本次研究是在利用各种地质资料、实验资料、地球物理资料和开发动态资料的基础上,采取静态预测与动态分析相结合、地质研究与开发动态相补充的思路,利用三维地质建模和气藏数值模拟技术手段对新场气田沙溪庙组JS_2气藏进行了以储层精细地质模型研究为基础,以储层和储量的定量评价为目标,以剩余气分布研究为核心的多学科定量一体化研究,最终形成以提高采收率和经济效益为目的的调整方案,为气藏下一步的开发提供直接、有效的指导。
     在气田开发过程中,从现场获得的第一手资料逐渐增多,对气田的认识日趋全面,多层压裂技术愈发成熟,原订方案对气藏开发的指导作用已显不足。基于此,本论文主要从以下几个方面对新场气田沙溪庙组JS_2气藏进行再认识,并提出相应的整体调整方案:
     (1)气藏基本特征描述:通过200余口井测井资料的小层精细对比并借助于地震解释成果,对JS_2气藏的构造特征、沉积微相、砂体展布进行了精细描述,结果表明,JS_2气藏为一平缓鼻状构造,三角洲平原水下分流河道为其主要沉积微相,4套砂体厚度较大、分布稳定。通过对储层岩性、物性(孔隙度和渗透率)、成岩作用、非均质性等的描述,认为储层物性差,微观非均质性较强,绿泥石和方解石的大量存在和不均匀分布是其主要原因。通过对区内产水井的综合分析后认为,地层水不活跃,主要分布在气藏边部,没有统一的气水界面。储层在地震、测井上的响应特征明显,测井曲线上“低自然伽玛、低中子、低密度、高声波、中等电阻率”特征能很好的识别不同类别的储层,地震上“低频、强振幅、低阻抗”的含气响应模式能准确的对储层进行平面预测;通过对JS_2气藏特征的描述,综合构造形态、储层性质、流体分布后认为,沙溪庙组JS_2气藏是受构造和岩性双重控制的孔隙型异常高压弹性气驱致密气藏。
     (2)气藏三维地质建模:在JS_2气藏综合描述的基础上,根据地质统计学理论,应用地质建模软件Petrel,在变差函数控制下模拟了岩相的100个实现并从中优选出与地质认识最相符的作为最终岩相模型。在此基础上,应用相控随机建模方法,在岩相模型的控制下分别模拟了孔隙度、渗透率、含水饱和度、声波、电阻率五个参数的各100个实现,并各自优选出与实际匹配程度最高的实现作为最终模型。根据建立的定量参数模型,结合不同气层的特征,确定了储层分类标准并对其进行了分类评价。研究区内JS_2~2、JS_2~4以Ⅰ、Ⅱ类储层为主;JS_2~3以Ⅲ类储层为主,Ⅰ、Ⅱ类储层仅局部分布;JS_2~1虽以Ⅰ、Ⅱ类储层为主,但比其它气层要差。
     (3)储量复算与评价:本次研究采用容积法和随机建模法两种方法对储量进行计算。容积法是在原有探明储量的基础上,根据气藏新增的大量动、静态资料,利用新建的解释模型对储量计算中的各个参数进行了重新计算和确定,最终得出沙溪庙组JS_2的气藏储量为463.75×10~8m~3,其中JS_2~1、JS_2~2、JS_2~3、JS_2~4的复算储量分别为104.85×10~8m~3、167.75×10~8m~3、46.56×10~8m~3、144.60×10~8m~3。复算后比原有探明储量(534.35×10~8m~3)减少了71.6×10~8m~3,减少的层位主要为JS_2~3、JS_2~4,减少的原因主要是含气面积的缩小。随机建模法计算储量是在三维随机建模的基础上,把整个储层分为若干网格,视每一个网格上的储量参数为随机变量,对于每一组随机变量,利用容积法进行储量运算后再进行网格积分,从而得到储量的一系列实现值。然后根据储量的分布作密度函数曲线和累计概率曲线,便可获得不同可信度的储量值。该方法既紧密结合了气藏的地质模型,又得到了不同可靠程度的储量数据,使储量结果更为客观。随机建模法计算所得的概率储量P_(90)为470.71×10~8m~3,与复算储量相差不大,误差为1.5%。在储量复算的基础上,依据储层分类和电阻率高低并结合测试产能对储量进行了分类与评价,Ⅰ类储量186.37×10~8m~3,占总复算储量的40%,无阻流量在5×10~4m~3以上;Ⅱ类储量183.33×10~8m~3,占总复算储量的39%,无阻流量在2×10~4m~3以上;Ⅲ类储量97.23×10~8m~3,占总复算储量的21%,属低效储量。除JS_2~1气层外,其他三层的Ⅰ、Ⅱ类储量共288.45×10~8m~3,均已动用。
     (4)气藏综合调整方案研究:通过对沙溪庙组JS_2气藏开发方案的实施情况及开发效果来看,无论是地质认识还是开发层系及开发井网的确定、单井配产及生产规模的设计基本上符合气藏的实际情况,但因生产规模一直高于方案设计而造成稳产期缩短。气藏目前面临的主要问题是,一方面稳产困难,另一方面采出程度低,未动用储量数量大。剩余储量研究结果表明,气藏目前的剩余储量大,由两部分组成,一部分为低效储量,因没有生产井控制而未能动用,各气层均有分布,但主要分布在JS_2~1,JS_2~3气层;另一部分为相对优质储量,虽然已经动用,但因与生产井井距较大,依然保持了较高的地层压力。因而,气藏的稳产可以从两方面着手,其一是利用多层(双层或三层)压裂技术,纵向上动用低效储量,使之与相对优质储量合采;其二是部署调整井(含挖潜井)以提高可动用储量的采出程度,新增动用储量和新增可采储量将为气藏的继续稳产提供储量基础。针对不同类别探明储量及剩余储量的分布状况,部署调整井66口,设计调整方案3套,方案1不增加新井并对现有老井降产40×10~8m~3,使之平均日产量在240×10~4 m~3左右;方案2在方案1的基础上补充31口新井;方案3在方案2的基础上再补充35口新井。利用Eclipse数模软件在历史拟合的基础上,对各套方案的开发指标进行了动态预测,结果表明,增加新井后,气藏的累计采气量和采出程度明显增加和提高,方案3比方案2更优。通过66口调整井的实施,采气量增加32.7×10~8m~3(其中8.91×10~8m~3来自于JS_2~1、JS_2~3),采出程度提高6.5%,气藏的稳产期延长5年,推荐方案3作为JS_2气藏的调整方案。
     本文研究中的创新点为:
     1、首次采用随机建模法对JS_2多层致密气藏的储量进行了计算。该方法不但体现了容积法储量计算中的地质概念,又充分考虑了储量计算参数的不确定性,融积分法与统计模拟法于一体;计算结果用概率的方式表达,在一定程度上规避了常规方法只获得一个储量值而不能对这一储量的准确性进行评估的缺陷。
     2、首次针对多层致密气藏提出了经济与次经济储量并举、通过多层压裂技术和调整井的实施达到经济储量带动次经济储量的立体开发及调整思路。根据这一思路编制了JS_2气藏的立体开发调整方案,这对过去只注重于经济储量动用的大中型多层叠置气田的高效开发具有重要的指导和借鉴意义。
     3、将现代油气藏管理的两大技术手段—储层建模和数值模拟融为一体,用于多层致密气藏立体开发调整方案研究之中。形成了一套以储层精细地质模型为基础,以储层和储量的定量评价为目标,以剩余气分布研究为核心的致密气藏开发调整方案研究技术体系。
Tight sandstone gas reservoir is of low richness, low porosity, low permeabilityand low individual well producing rate, however, it produced natural gas in a largeproportion in our country. At present, how to exploit efficiently the large multi-layerssuperimposed tight sandstone gas reservoir is still in the preliminary stage in theworld, and don't even mention the research on the three-dimensional adjusteddevelopment plan. The Xin Chang gas field, which located at the middle section ofthe western Sichuan depression in the west part of Sichuan basin, is a large tightclastic gas field imposed by many gas reservoirs vertically. Its production lies in thetop list in our country. JS_2 reservoir, the main producing reservoir and consisting fourgas formations, produced in 2000, achieved the designed production in 2002 and ithad been producing over the designed for almost six years. Now it is difficulty toproduce steadily, so, now, the proper & timely adjustment for the gas reservoir is ourfirst target.
     Based on the various geologic formation, experimental, geophysical and dynamicdata, adopted by the methods of static prediction with dynamic analysis, used by themeasures of three-dimension geological modeling and numerical simulation, JS_2 gasreservoir has been quantitatively key researched on the unproduced gas distributionwith the goal of quantitative evaluation, which aims to improve the recovery andeconomic efficiency and to provide the direct & efficient guide for the furtherdevelopment.
     During the process of development, more and more data & knowledge achievedand more advanced fracturing technology results in the even less steering function tothe reservoir development for the original plan. That is why this article focuses on theissues as following:
     (1) Basic features description of gas reservoir
     The fine description of structural characteristics, sedimentary microfacies andsand body spread based on the 200 wells log and the seismic data, indicates that JS_2 isa flat nose structure, the main sedimentary microfacies are distributary river course ofdelta plain with four thick & stable sand bodies. A large amount of chlorite and calcite presented and their uneven distribution lead to worse physical properties and strongmicro non-homogeneous property by the description of reservoir lithology, physicalproperty, diagenesis and non-homogeneous property. The comprehensive analysis onthe water produced wells shows that formation water exits in the formation edge andwithout unified boundary between gas and water. There are obvious characteristicsreflected on the log curve and seismic data, such as low natural gamma ray, lowneutron, low density, high sonic and medium resistivity, which can distinguish thereserves, low frequency, strong amplitude and low resistance, whose gas -bearingresponse module can give the plane prediction to the reserve. From the above researchwork, it is concluded that JS_2 is a kind of porous tight gas reservoir with abnormalhigh pressure, driven by gas and controlled by structure and lithology.
     (2) Three-dimension modeling of gas reservoir
     Based on the comprehensive description above mentioned, according to thegeological statistics theory, adopted by modeling software Petrel and under the controlof function, we simulated 100 actualizations and selected the final module whichhas the best conformity with geological knowledge. Besides, used by the method ofrandom modeling and under the control of petrofacies module, we simulated 100realizations individually for five parameters including porosity, permeability watersaturation, sonic and resistivity, and also selected the final actualization as the finalmodules which have the best conformity with facts. In accordance with the obtainedparameter module, combined with the characteristics of various gas formation, weset down the classification criteria of reserve and at the same time, we made anevaluation as listed: on the range of research area,ⅠandⅡreserves dominate in JS_2~2and JS_2~4 reservoirs, JS_2~3 withⅢreserve andⅠandⅡreserves local distributed andJS_2~1 withⅠandⅡreserves of worse quality.
     (3) Reserves recalculation and evaluation
     Reserves recalculated by using the volumetric method and the stochasticmodeling method in this paper. Based on the original proved reserves and accordingto the abundant dynamic and static datum, each parameter in the volumetric method isrecalculated and confirmed by using the new interpretation model. It is obtained thatthe reserves of Sha Xi Miao reservoir (JS_2) is 463.75×10~8m~3 through the volumetricmethod, and the reserves of each layer (JS_2~1, JS_2~2, JS_2~3, JS_2~4) is respectively104.85×10~8m~3, 167.75×10~8m~3, 46.56×10~8m~3, 144.60×10~8m~3. The recalculatedreserves has decreased by 71.60×10~8m~3 compared with the original proved reserves which is 534.35×10~8m~3. The layers of decreased reserves are JS_2~3, JS_2~4, the reason isthe decreasing of area. The stochastic modeling method is based on thethree-dimensional stochastic modeling, through dividing the whole reserves layer intoa lot of grids, considering the reserves parameters in each grid as stochastic variables, and performing grid integral for each group of stochastic variables after reservescalculation by the volumetric method, and a series of realized values of reserves arefinally figured out. Then reserves datum of different reliability can be obtained bydrawing the density function curves and accumulative probability curves according tothe distributing of reserves. This method is not only combined with geologic modelclosely, but also reserves datum of different reliability is obtained, which makingresults more external. The probability reserves P_(90) is 470.71×10~8m~3 through thestochastic modeling method. The value is close to that of recalculated reserves and theerror is 1.5%. Based on the reserves recalculation, reserves is classified and evaluatedaccording to layer-sorting, resistivity-sizing, and testing productivity. Reserves ofgradeⅠis 186.37×10~8m~3, which is 40% of the total, and AOF is more than 5×10~4m~3.Reserves of gradeⅡis 183.33×10~8m~3, which is 39% of the total, and AOF is morethan 2×10~4m~3. Reserves of gradeⅢis 97.23×10~8m~3, which is 21% of the total andbelongs to low- profit reserves. Except JS_2~1, reserves of gradeⅠandⅡof other layershave been produced which is totally 288.45×10~8m~3.
     (4) Synthetic adjustment plan research of gas reservoir
     According to the execution schedule and development effect of the developmentplan of Sha Xi Miao JS_2 reservoir, not only geologic cognition but also developmentlayer series, well pattern, product of single well, and production scale are accord withthe practice of reservoir. But the production scale is always higher than the designedscale, which results in that the stable production period has been shortened. The mainproblems the reservoir faced are that it is difficult to keep production stable, on theother hand, recovery percent of reserves is rather low and un-produced reserves israther great. Remained reserves research shows that the present remained reserves ofreservoir is great which is composed of two parts. One is low- profit reservesdistributing in every layer but mainly in JS_2~1, JS_2~3, which can not be produced due tohave no well controlling. The other is relatively high grade reserves which keepsrather high formation pressure due to big well spacing although has been produced.Thus there are two ways to keep production stable. One is to use commingledproducing wells between low- profit and high grade reserves through multi-layer fracturing technology, the other is to dispose adjustment wells (including wellwork-over) to increase recovery percent of producible reserves. Newly-increasedproduced reserves and producible reserves will provide keeping production stablewith substantial bases. According to the distribution of different grade of reserves andremained reserves, 66 adjustment wells are disposed and three adjustment programsare designed. The first program decrease present wells production by 45×10~4m~3without adding new wells and makes daily production to the level of 240×10~4m~3. Thesecond program adds 31 new wells on the base of the first program. The thirdprogram adds 35 new wells again on the base of the second one. The dynamicdevelopment indexes of each programs have been forecasted by using ECLIPSEsoftware based on history matching. The results show that the cumulative productionand recovery percent is obviously increased and the third program is better than thesecond one. Through disposing 66 adjustment wells, the production is increased by32.7×10~8m~3 (8.91×10~8m~3 from JS_2~1 and JS_2~3), the recovery percent is increased by6.5%, and the stable production period is extended by 5years. Thus the third programis recommended to be the adjustment paln of the reservoir.
     This paper has three innovative points:
     1. The reserves of multi-layer tight reservoir JS_2 is calculated by using stochasticmodeling method for the first time. This method combines integral method withstatistical simulation, which not only exhibits geologic conceptions in the volumetricmethod, but also considers the uncertainty of calculative parameters of reserves. Theresults is expressed by the way of probability, and to some degree, evades thelimitation that traditional methods can only obtain one reserves value but evaluate theveracity of the value.
     2. Economic reserves and hypo-economic reserves are both considered aimed atmulti-layer tight gas reservoir. The method of three-dimensional Adjustment Plan forhypo-economic reserves being driven by economic reserves by multi-layer fracturingand implementing of adjustment wells. According to this idea, the three-dimensionalAdjustment Plan has been drawn. It has important direction and reference significanceto high-efficient development of large and middle scale gas fields, only the economicreserves of which are produced in the past.
     3. The two technologies of modern reservoir management-reservoir layermodeling and numerical model combine to one part, which is used to researchthree-dimensional Adjustment Plan of multi-layer reservoir. A researching technology system for tight reservoir Adjustment Plan has been formed, which is based on thefine geologic model, making a target of quantitative evaluation for reservoir layersand reserves, and taking the distribution of remaining gas as the researching point.
引文
[1] 刘正中,徐向荣,李华昌.新场气田J_2s~2气藏整体压裂改造开发井网优化设计[J].成都理工大学学报(自然科学版),2005,32(5):504—507
    [2] 刘正中,杨锦林,李华昌.川西新场气田地层水分布规律与对策[J].天然气工业,2005,25(2):33—35
    [3] 陈作,田助红,曾斌.超深、致密砂岩气藏压裂优化技术[J].天然气工业,2001,21(6):61—65
    [4] 朱彤.成岩作用对致密砂岩储层储集性的控制作用研究[J].成都理工学院学报,1999,26(2):157—160
    [5] 罗诗薇译.致密砂岩气藏[J].国外油田工程,2007,23(2):31-35
    [6] 李忠平,铁忠银,杨志彬等.西坳陷低渗致密砂岩气藏难采储量分类评价[J].新疆石油天然气,2005,1(2):41-44
    [7] 唐建明.川西坳陷致密非均质气藏储层空间展布刻划[J].天然气工业,2002,22(4):19-23
    [8] 朱彤,叶军.川西坳陷致密碎屑岩气藏类型划分及特征[J].石油实验地质,2004,26(6):537-541
    [9] 吴志均,唐红君,安凤山.川西新场致密砂岩气藏层理缝成因探讨[J].石油勘探与开发,2003,30(2):109-111
    [10] 赖南君,叶仲斌,赵文森等.川西致密气藏水锁损害室内实验研究[J].油气地质与采收率,2004,11(6):75-77
    [11] 龙学,宋艾玲.川西致密砂岩气藏储层改造技术方法选择及效果分析[J].钻采工艺,2001,24(5):38-40
    [12] 罗金丽,靳正平.川西致密砂岩气藏试井曲线特征分析[J].矿物岩石,2001,21(4):65-70
    [13] 罗洪涛,马丽梅,熊燕莉等.川西致密砂岩气藏数值模拟研究[J].西南石油学院学报,2004,26(6):21-23
    [14] 段永刚,陈伟,李其深等.川西致密砂岩气藏新的矿场评价标准和评价方法[J].天然气工业,2001,21(5):74-76
    [15] 吴志均,唐红君,冯文光.川西致密砂岩气藏压裂效果的试井解释评价[J].油气地质与采收率,2002,9(6):52-54
    [16] 王强,孙万里,张震涛.川西致密碎屑岩气藏老井挖潜技术与应用[J].钻采工艺,28(3):55-57
    [17] 张虹.川西致密碎屑岩气藏描述的物探方法技术[J].石油物探,2002,41(增刊):253-260
    [18] 青永固.川西致密碎屑岩气藏水力压裂工艺技术进展[J].天然气工业,2002,22(3):21-24
    [19] 曹伟.川西侏罗系致密砂岩气藏裂缝特征[J].石油实验地质,1999,21(1):12-17
    [20] 王昔彬,刘传喜,郑荣臣.大牛地致密低渗透气藏启动压力梯度及应用[J].石油与天然气地 质,2005,26(5):98-102
    [21] 康毅力,罗平亚.中国致密砂岩气藏勘探开发关键工程技术现状与展望[J].石油勘探与开发,2007,34(2):239-245
    [22] 张箭,李华昌,刘成川.新场气田低渗致密沙二气藏数值模拟研究[J].天然气工业,2002,22(3):58-61
    [23] 李华昌,陈单平,邓绍林等.新场气田低渗致密沙溪庙组气藏气井防堵解堵工艺技术[J].天然气工业,2005,25(9):73-75
    [24] 齐翊时.新场气田沙溪庙组致密气藏加砂压裂经济分析[J].天然气工业,2000,20(4):95-98
    [25] 吴志均,何顺利.新场致密气藏地质特征及合理压裂规模[J].天然气工业,2004,24(9):93-96
    [26] 张百灵,周静.新场致密砂岩气藏泡沫排水采气技术应用优化[J].天然气工业,2003,23(3):126-129
    [27] 顾战宇.制约川西致密砂岩气藏高效开发主要因素探讨[J].石油天然气学报(江汉石油学院学报).2005,27(4):510-512
    [28] 李士伦,孙雷,杜建芬.低渗致密气藏、凝析气藏开发难点与对策[J].新疆石油地质,2004,24(2):156-159
    [29] 张曙光,石京平,刘庆菊.低渗致密砂岩气藏岩石的孔隙结构与物性特征[J].新疆地质,2004,22(4):438-441
    [30] 付永强,李鹭光,何顺利.低压致密气藏气井产能潜力的识别技术研究[J].天然气工业,2007,27(1):93-96
    [31] 李前贵,康毅力,杨建.致密砂岩气藏开发传质过程的时间尺度研究[J].天然气地球科学,2001,18(1):149-153
    [32] 李忠平,刘正中,谢峰.致密砂岩气藏难动用储量影响因素及其开发对策[J].天然气工业,2007,27(3):97-100
    [33] 刘正中.低渗透砂岩气藏剩余气分布规律研究[D].成都:成都理工大学,2005
    [34] 杨诚.新场气田蓬莱镇组气藏储层随机建模研究[D].成都:成都理工大学,2005
    [35] 秦百平.低渗透油藏储层精细描述与剩余油分布规律[D].西安:西北大学,2005
    [36] D. L. Fairhurst, M.E.Semmelbeck. Fracturing previously bypassed highly laminated tight gas sands: a production optimization case study in South Texas.
    [37] BEN SLOAT, MAURICE BROWN, MAURICE BROWN. How To Flood a Tight Sand[J]. SPE 2129: 1119-1128
    [38] Maryam A. Mousavi, Steven L. Bryant. Geometric models of porosity reduction mechanisms in tight gas sands[J]. SPE 107963
    [39] C. F. Knutsn, Don C. Ward. Implication of surface fracture patterns and sand continuity in relation to stimulation tight gas sands, eastern uinta basin, utah[J]. SPE 6740.
    [40] 段文焱,黄绪德,谢雄光等.致密碎屑岩气藏模型研究[J].河南石油,2001,15(3):5-6.
    [41] 邓力健.致密砂岩储层储渗体差异识别技术[J].新疆石油学院学报,2004,16(1):24-26.
    [42] 曾大乾,张世民,卢立泽.低渗透致密砂岩气藏裂缝类型及特征[J].石油学报,2003,24(4):36-39.
    [43] 徐霜.低渗致密砂岩气藏储层裂缝定量预测研究与应用[J].内蒙古化工,2005,12(1):117-120.
    [44] 谢用良,唐建明,杨振武.地震地层反演在川西致密砂岩气藏描述中的应用[J].石油地球物理勘探,2000,35(2):228-235.
    [45] 生如岩.深层致密气藏早期开发评价中几个问题的探讨[J].油气地质与采收率,2005,12(6):37-39.
    [46] 杨兆中,李允,徐向荣等.低渗致密裂缝性气藏整体压裂模拟模型的建立与求解[J].天然气工业,2001,21(5):77-79.
    [47] 王允诚,吕运能,曹伟 著.气藏精细描述[M].成都:四川科学技术出版社;乌鲁木齐:新疆科技卫生出版社,2003
    [48] 王允诚,张永贵,胡宗全著.油气藏开发地震[M].成都:四川科学技术出版社;乌鲁木齐:新疆科技卫生出版社,2003
    [49] 王允诚 编著.裂缝性致密油气储集层[M].北京:地质出版社,1992
    [50] 王允诚 编著.油气储层评价[M].北京:石油工业出版社,1999.
    [51] 王允诚 编著.气藏地质[M].北京:石油工业出版社,2004.
    [52] 中国石油勘探余生产分公司 编.精细油藏描述技术交流会论文集(2005年)[M].北京:石油工业出版社,2006.
    [53] 王捷 主编.油藏描述技术-勘探阶段[M].北京:石油工业出版社,1996.
    [54] 李伯虎,李洁 主编.大庆油田精细地质研究与应用技术[M].北京:石油工业出版社,2004.
    [55] 穆龙新,周丽清,郑小武,等著.精细油藏描述及一体化技术[M].北京:石油工业出版社,2006.
    [56] 徐守余 著.油藏描述方法原理[M].北京:石油工业出版社,2005.
    [57] 胡宗全 著.致密裂缝性碎屑岩储层描述、评价与预测[M].北京:石油工业出版社,2005.
    [58] 陈恭洋.碎屑岩油气储层随机建模[M].北京:地质出版社,2000.
    [59] 黄炳光,冉新权,李晓平等编著.气藏工程分析方法[M].北京:石油工业出版社,2004.
    [60] 杨克明,徐进 主编.川西坳陷致密碎屑岩领域天然气成藏理论与勘探开发方法技术[M].北京:地质出版社,2004.
    [61] 任玉林.用不稳定流动的压力和流量解释致密低渗气藏的地层参数[J].大庆石油地质与开发.2004(6):36-38
    [62] Visscher W. M., M. Bolstereli. Random packing of equal and unequal spheres in two and three dimensions[J], Nature, 239,(1972),504-508
    [63] Shnley K. W., Cluff R. M., Robinson J. W.. Factors controlling prolific gas production from low-permeabiliy sandstone reservoirs: Implications for resource assessment, prospect development and risk analysis[J], AAPG, v.88, no.8(August), PP. 1083-1121.
    [64] M.A. Crotti.Water saturation in tight gas reservoirs[J]. SPE 107145
    [64] H.H.Haldorsen, et al. Stochastic modeling of underground reservoir facies.1987,SPE 16751
    [65] 穆龙新等译,JeffreyM.Yarus等.随机建模和地质统计学,北京:石油工业出版社,2000
    [66] C.B.Tiolsen etc.. Stochastic relative permeability usually have neglectable effect on reservoir performance. In 68th Annual Technical Conference and Exhibition, Texas,1993, SPE 26473
    [67] Alabert, F.G. and Modot, V.: "Stochastic Models of Reservoir Heterogeneity: Impact on Connectivity and Average Permeabilities," paper SPE 24893
    [68] Eivind Damsleth,et al,1994, Mixed reservoir characterization methods, SPE 27969
    [69] C.E. Romero, J. N. Carter. Using genetic algorithms for reservoir characterization. Journal of Petroleum Science and Engineering, 2001, 31: 113-123
    [70] K.Aminian,S. Ameri. Application of artificial neural networks for reservoir characterization with limited data. Journal of Petroleum and Engineering, 2005, 49:212-222
    [71] 张一伟,熊琦华,王志章,等.陆相油藏描述[M].北京:石油工业出版社,1997
    [72] 裘怿楠等.油藏描述.北京:石油工业出版社,1996
    [73] 穆新龙.油藏描述技术的一些发展方向.石油勘探与开发,1999,12(06):45-47
    [74] 张团峰,王家华.河流相储层表征的三阶段随机建模方法[C].第五次国际石油工程会议论文集(下册).北京:中国石油学会,1995,752-760.
    [75] 杨辉廷等,油藏描述中的储层建模技术,天然气勘探与开发,2004,6(03):13-16
    [76] 信荃麟 著.油藏描述与油藏模型[M].东营:石油大学出版社,1990
    [77] 于兴河 著.碎屑岩系储层地质建模及计算机模拟[M].北京:地质出版社,1996
    [78] 师永民 编著.陆相油田开发中后期油藏精细描述[M].北京:石油工业出版社,2004
    [79] 张烈辉 编著.油气藏数值模拟基本原理[M].北京:石油工业出版社,2005
    [80] (美)哈利德.阿齐兹,(加)安东尼.塞特瑞.油藏数值模拟[M].北京:石油工业出版社,2004
    [81] 张兴国.孤东油田沙河街组油藏描述与数值模拟[D].北京:中国地质大学
    [82] 王永辉.低渗透储层开发压裂的油藏数值模拟研究[D].成都:西南石油大学
    [83] 谷建伟.高含水开发期基于微观渗流机理宏观油藏数值模拟研究[D].青岛:中国海洋大学
    [84] 程启贵.特低渗透砂岩油藏精细描述及数值模拟研究应用[D].成都:西南石油大学
    [85] 张建国.气藏数值模拟研究[D].大庆:大庆石油学院
    [86] 张俊法.濮12聚合物驱数值模拟研究[D].北京:中国地质大学
    [87] J.L.Jensen, et al, A statistical study of reservoir permeability distributions, correlations and averages, SPE 14270[J], 1985
    [88] Jef Caers. Geostatistical history matching under training-image based geological model constraints[J]. SPE 77429,2002
    [89] J.P.H3entendorfer, etal. Integrated reservoir modeling of a major Arabian Carbonate reservoir[J].1995, SPE 29369
    [90] H.H.Haldorsen, et al. Stochastic modeling of underground reservoir facies[J].1987, SPE 16751
    [91] M. Rovellini Et Al. Facies Related Geological Model: A Reliable Method to Describe Complex Reservoirs, Petroleum Geosciences[J], 1998, Vol.4, No.3, P. 227-V 23 5
    [92] Alister C. Macdonald Et Al, Stochastic Modeling of Incised Valley Geometries[J], 1998, AAPG Bulletin Vol.82, No.6, P. 1156-1172.
    [93] Hewett T A. Fractal Distributions of Reservoir Heterogeneity and Their Influence on Fluid Transport, Proceedings, SPE annual Technical Conference and Exhibition, New Orleans[J], SPE 15368,1986
    [94] Painter S. Random Fractal Models of Heterogeneity: The Levy-Stable Approach, Mathematical Geology[J], 1995, 27(7):813-830
    [95] Rodriguez A. Facies Modeling and the Flow Unit Concept as a Sedimentological tool in Reservoir Description[J]. SPE 18154
    [96] Jeffrey M.Yarus, etc. Stochastic Modeling and Geostatistics: Principles, Methods, and Case Studies. AAPG Computer Application in Geology[J], 1994(3).
    [97] Seiichi Nagihara. Three-dimensional inverse modeling of the refractive heat-flow anomaly associated with salt diaprism[J] .AAPG, 2003, 87(7): 1207-1222
    [98] Haldorsen H. and Lake L.. A new approach to shale management in field scale simulation models[J], SPE 10976. 1-8, 1984
    [99] Painter S . Random Fractal Models of Heterogeneity: The Levy-Stable Approach, Mathematical Geology[J], 1995, 27(7):813-830
    [100] Chen H Y, Teufel L W and Lee R L. Coupled fluid flow and geomechanics in reservoir study-1. theory and governing equations[J]. SPE 30752
    [101] Jose G Osorio, et al. Numerical simulation of the impact of flow-inducedgeomechanical response on the production of stress-sensitive reservoirs [J]. SPE 51929
    [102] Douglas,J. ,Jr. , Peaceman,D. W. and Rachford, H. H. Jr. A method for calculating multi-dimensional immisicible displacement[J], Trans. SPE of AIME,216,pp.421-439.1959
    [103] Steffensen, R. J. and Sheffield, M. (1973). Reservoir simulation of a collapsing gas saturation requiring areal variation in bubble-point pressure, SPE 4275, 3rd Symposium on Numerical Simulation of Reservoir Performance, Houston
    [104] Jose G Osorio, et al. Numerical simulation of the impact of flow-induced geomechanical response on the production of stress-sensitive reservoirs[J]. SPE 5192
    [105] Thomas, L.K., Lumpkin, W.B. and Reheis, G. M.(1976). Reservoir simulation of variable bubble-point problems[J], Trans, SPE of AIME, 261, pp. 10~16
    [106] Bruce, G. H., Peaceman, etc. Calculations of unsteady-state gas flow through porous media, Trans. SPE of AIME, 198, pp.79~92(JPT). 1953
    [107] 刘成川,李华昌.四川德阳新场气田上沙溪庙组JS2气藏开发方案(2000).西南石油局
    [108] 韩大匡等.油藏数值模拟基础[M].第一版.北京:石油工业出版社,1993
    [109] 王志章等.现代油藏描述技术,石油工业出版社[M],1999
    [110] 吴胜和等.储层建模,石油工业出版社[M],1999
    [111] 赵旭东等.石油数学地质,石油工业出版社[M],1993
    [112] 裘怿楠,陈子琪.油藏描述[M].北京:石油工业出版社,1996
    [113] 宋子齐,谭成仟.灰色理论油气储层评价[M].北京:石油工业出版社,1995
    [114] 王仁铎,胡光道.线性地质统计学[M].北京:地质出版社,1986
    [115] 王增林,刘慧卿,王厉强.精细油藏数值模拟中非均质性的表征技术[J].西安石油大学学报(自然科学版).2004,19(3):13~16
    [116] 周波.鄯善油田精细油藏描述与开发系统优化研究[D].西南石油大学,2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700