柴油机尾气碳烟氧化催化剂的制备与催化活性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
柴油机因其循环热效率高、燃油经济性好而日益受到重视。然而柴油机排放物造成的环境污染问题也日益突出。柴油机的主要排放物碳烟,不仅对视觉和嗅觉有不良的影响,而且碳烟上常常粘附SO_2及致癌物质,对任何生物都有害。
     由于碳烟颗粒的热氧化温度高达550~600℃,而柴油车的排气温度为175~400℃。为了降低碳烟燃烧温度,其中一个解决的办法就是使用以催化剂为基的DPF。在DPF中使用的催化剂应该在实际工作条件下显示出良好的活性,稳定性和耐久性。尽管世界各先进国家的科学家经过三十多年的探索和研究,但尚未找到一种像汽油机用的三效催化剂那样十分有效的碳烟氧化催化剂。
     本研究分别采用浸渍法和涂覆法制备了V_2O_5-KCl和NH_4VO_3-KNO_3碳烟氧化催化剂,采用研磨混合法制备了V-ⅡA,V-Ln,Co—ⅡA,Sm-ⅡA,Ce-Zr系列碳烟氧化催化剂,采用涂覆法制备了V-ⅡA-K,Ln-K,V-Ln-K,Co-ⅡA-K,Sm-ⅡA-K,Ce-Zr-K系列碳烟氧化催化剂,采用共沉淀法、溶胶-凝胶法和高分子凝胶法制备了Ce_(0.5)Zr_(0.5)O_2碳烟氧化催化剂,采用程序升温反应控制系统(TPR)测试了催化剂的催化活性,应用TG-DSC和XRD对催化剂的结构进行了表征,采用SEM对催化剂的表面以及碳烟粒子形貌进行了观察,应用TEM对制备的Ce-Zr催化剂粉体形貌进行了观察,并采用比表面积分析仪对Ce-Zr催化剂的比表面积进行了测定。分析了催化剂的结构与催化活性之间的关系,另外还对催化剂与碳烟之间的接触模式对催化催化活性的影响进行了研究,并对催化剂的催化机理进行了初步探索。
     采用涂覆法制备的NH_4VO_3-KNO_3催化剂的催化活性要明显高于浸渍法制备的NH_4VO_3-KNO_3催化剂的催化活性,主要是由于催化剂粉末涂覆在载体表面,形成凹凸表面,可以增大催化剂和碳烟的接触面积,因而催化活性要更高。而采用溶液浸渍的方法使催化剂进入载体组织内部,表面比较平滑,使催化剂和碳烟的接触不如涂覆法充分。
     采用涂覆法制备的KNO_3催化剂的催化活性要高于KCl催化剂的催化活性,主要是因为:一方面,KNO_3的熔点较低(330℃),熔融的KNO_3能够增强碳烟与催化剂之间的接触,另外一方面,可能的催化机制就是KNO_3是一种强氧化剂,KNO_3能够被C还原成KNO_2,KNO_2然后又能被O_2氧化成KNO_3。
     对于NH_4VO_3:KNO_3=1:2催化剂来说,在主晶相KNO_3+KVO_3的协同作用下,碳烟的起始燃烧温度是362℃,催化剂的催化活性高于单一组分的KNO_3和KVO_3的催化活性。随着KNO_3含量的增加,催化剂的催化活性降低了,一方面由于KHCO_3的含量增多了,阻碍了催化剂的活性组分KNO_3和KVO_3与碳烟的接触,另一方面KVO_3相减少了,降低了与KNO_3协同作用的发挥,因此也导致了碳烟起始燃烧温度的升高。
     在V-K催化剂的作用下,碳烟的起始燃烧温度较高,而且碳烟氧化速率也较慢,由于KNO_3的熔点较低,催化剂的稳定性也较差。在V-K催化剂中添加碱土金属氧化物或盐类的目的二方面是提高催化剂的稳定性,另一方面是增加催化剂中KNO_3的绝对含量,可以降低由于部分KNO_3的流失而造成的催化活性的恶化。在V-ⅡA-K系列催化剂中,在V:ⅡA:K=1:1:6催化剂的作用下,碳烟的起始燃烧温度最低。CaO和MgO的催化活性比较差,而Sr(NO_3)_2和Ba(NO_3)_2都是氧化剂,碳烟的起始燃烧温度比CaO和MgO大大降低,碳烟氧化速率也较快,其催化机制是:M(NO_3)_2+C=M(NO_2)_2+CO_2 (1) 2M(NO_2)_2+C=2MN_2O_3+CO_2 (2) 2MN_2O_3+O_2=2M(NO_2)_2 (3) M(NO_2)_2+O_2=M(NO_3)_2(M是Sr或Ba) (4)
     在稀土金属氧化物催化剂中添加了KNO_3以后,催化剂的催化活性明显增强。其中稀土金属氧化物与KNO_3并没有形成化合物,而可能是一部分K~+进入到稀土金属氧化物中形成固溶体,造成晶格缺陷,促进碳烟燃烧。Ln-K催化剂的作用下,碳烟的起始燃烧温度由低到高的顺序为:Ce-K(330℃)=Pr-K(330℃)<La-K(350℃)=Y-K(350℃)<Sm-K(365℃);碳烟氧化速率由快到慢的顺序为:Sm-K>Ce-K=La-K>Y-K>Pr-K。在V-K催化剂中添加稀土金属氧化物,V-Ce/Pr-K=1:0.25:2催化剂的催化活性与Ce/Pr-K=1:2催化剂差不多,而V-La/Y-K=1:0.5:2催化剂的催化活性稍高于La/Y-K=1:2催化剂,V-Sm-K=1:0.5:2催化剂的催化活性明显高于Sm-K=1:2催化剂。
     在所制备的Co-ⅡA-K催化剂中,接触方式对催化剂的催化活性都有影响,尤其是碳烟氧化速率受接触程度的影响较大。只有在采用研磨法制造的紧密接触的条件下,碳烟才更容易与催化剂表面的晶格氧发生反应,而采用KNO_3的熔化来制造的紧密接触条件下,碳烟氧化速率要慢一些。这主要是因为虽然KNO_3的熔化增强了碳烟与催化剂的接触,也增加了催化剂的流动性,但是熔化的KNO_3同时会连成片,反而会妨碍催化剂中几种晶相的协同作用的发挥。当Co:ⅡA:K=0.5:0.25:2时,催化剂的催化活性最高,在紧密接触与松散接触的条件下,碳烟的起始燃烧温度差不多,而碳烟氧化速率在紧密接触的条件下要快一些。Co_3O_4的催化机理是:2Co_3O_4+C=6CoO+CO_2 (5) 2CoO+C=2Co+CO (6) 2Co+O_2=2CoO (7) 6CoO+O_2=2Co_3O_4 (8)
     在所制备的Sm-ⅡA-K催化剂中,Sm、ⅡA和K之间没有形成化合物,但是催化剂的催化活性较好,其中MgO/CaO/Sr(NO_3)_2/Ba(NO_3)_2提高了催化剂碳烟氧化速率,Sm_2O_3改善了冷启动性,KNO_3一方面改善了催化剂与碳烟之间的接触,另一方面本身作为氧化剂氧化碳烟。当KNO_3-Mg,KNO_3-Ca,KNO_3-Sr,和KNO_3-Ba的重量比例分别为8.41,5.78,7.57和7.36时,催化剂具有最佳的催化活性,即碳烟具有最低的起始燃烧温度318,323,332和325℃。另外在Sm-ⅡA-K催化剂的作用下,碳烟氧化速率比V-Sm-K催化剂快。
     采用研磨混合法制备的Ce-Zr催化剂的催化活性要高于采用共沉淀法、溶胶凝胶法和高分子凝胶法制备的Ce-Zr-O固溶体催化剂,说明ZrO_2+CeO_2的协同催化作用大于Zr_(0.5)Ce_(0.5)O_2催化剂。无论何种制备方法制备的催化剂,在紧密接触的条件下,催化剂的催化活性都要好于在松散接触的条件,说明Ce-Zr催化剂的催化活性受接触条件的限制。尽管采用研磨混合法制备的Ce-Zr催化剂与碳烟在松散接触的条件下催化活性较差,但是在紧密接触的条件下,碳烟的起始燃烧温度甚至低于含有KNO_3的催化剂。
Diesel engines are more popular due to the relatively high thermal efficiency andfuel economy than gasoline engines. Diesel engine emissions have led to seriousenvironmental problems especially their carbon particles content. The small size ofdiesel soot particles(≤2μm) may be linked to a number of health problems by itsability to penetrate the body through the respiratory system.
     The non-catalytic ignition temperature of soot generally exceeds 550℃, while thetemperature of typical exhausts is 400℃or below in light duty applications. Thecombination of traps and oxidation catalysts appears to be the most plausibleafter-treatment technique to eliminate soot particles. However, the temperature ofdiesel exhaust is in the range of 175-400℃. To lower the soot ignition temperature,one solution is using a catalyst-based DPF. The catalysts used in a catalytic DPFshould display good activity in the temperature range of diesel exhaust, and goodstability and durability under practical working conditions. Many attempts have beenmade to develop the useful catalysts that promote soot oxidation, whereas there is noeffective catalyst like three-way catalysts that can be applied in practice.
     In this paper, V_2O_5-KCl and NH_4VO_3-KNO_3 catalysts have been prepared byimpregnation and coating method, V-ⅡA, V-Ln, Co-ⅡA, Sm-ⅡA, and Ce-Zrcatalysts have been produced by grinding method, V-ⅡA-K, Ln-K, V-Ln-K,Co-ⅡA-K, Sin-ⅡA-K, and Ce-Zr-K catalysts have been prepared by coating method.In addition, Ce_(0.5)Zr_(0.5)O_2 have been prepared by co-precipitation, sol-gel andpolymer-network gel methods. XRD and TG-DSC have been used to characterize the catalysts, and their catalytic activities have been evaluated by a temperatureprogrammed reaction system (TPR). The surface morphologies of catalysts and sootparticles have been observed by SEM. The morphologies of Ce-Zr catalysts powderprepared by various methods have been observed by TEM, and the BET has beenmeasured too. The relation between the structure and catalytic activity has beenanalyzed. Otherwise, the effect of contact mode between catalysts and soot on catalyticactivity has been studied, and the catalytic mechanism has been explored.
     The catalytic activity of NH_4VO_3-KNO_3 catalysts prepared by coating method isbetter than those prepared by impregnation method. As the catalysts coated on thesubstrate can form accidented surface and increase the contact area between thecatalyst and the soot. However, the catalyst prepared by impregnation can enter intosubstrate and the surface is relatively smooth, which lead to poor contact between thesoot and the catalyst.
     The catalytic activity of KNO_3 prepared by coating method is higher than that ofKCl. On the one hand, the melting KNO_3 can enhance the contact between the catalystand the soot as the melting point of KNO3 is 330℃; on the other hand, the probablemechanism is that one in which the nitrate is reduced to nitrite by the reaction withcarbon and that the oxygen or the nitrogen oxide oxidize the nitrite again to nitrate.
     The soot onset ignition temperature is 362℃by the synergistic catalysis of KNO_3with KVO_3 for NH_4VO_3-KNO_3 catalyst with a molar ratio of 1:1, which is lower thanthat of single KNO_3 or KVO_3. The catalytic activity of NH_4VO_3-KNO_3 catalysts islowered with the increase of KNO_3 content. One reason is that the higher KHCO_3content hinders the contact between the catalyst and the soot; the other is that thesynergistic catalysis is lowered with the decrease of KVO_3.
     The soot onset ignition temperature is relatively high, and soot oxidation rate isslow for V-K catalysts. In addition, the V-K catalysts are unstable due to the lowermelting point of KNO_3. The V-K catalysts added alkaline earth metal oxide or nitratecould improve the stability of catalysts, and increase the KNO_3 content avoiding thedeterioration of catalytic activity led by the loss of partial KNO_3. The catalytic activityof CaO/MgO is worse than that of Sr(NO_3)_2/Ba(NO-3)_2 which are oxidant. The catalyticmechanism of Sr(NO_3)_2/Ba(NO_3)_2 is: M(NO_3)_2+C=M(NO_2)_2+CO_2 (1) 2M(NO_2)_2+C=2MN_2O_3+CO_2 (2) 2MN_2O_3+O_2=2M(NO_2)_2 (3) M(NO_2)_2+O_2=M(NO_3)_2 (Mis SrorBa) (4)
     The soot onset ignition temperature of-Ⅴ-ⅡA-K catalyst with a molar ratio of 1:1:6 is the lowest among the prepared V-ⅡA-K catalysts.
     The catalytic activity is improved by adding KNO_3 to rare earth metal oxide, Thecrystal lattice defect formed by partial K~+ entering into the rare earth metal oxide canpromote the soot combustion. The soot onset ignition temperature order of Ln-Kcatalysts is as follows: Ce-K(330℃C=Pr-K(330℃)<La-K(350℃)=Y-K(350℃)<Sm-K(365℃). The soot oxidation rate comply to the sequence: Sm-K>Ce-K=La-K>Y-K>Pr-K。
     The catalytic activity of V-Ce/Pr-K catalyst with a molar ratio of 1:0.25:2 isalmost the same as that of Ce/Pr-K catalyst with a molar ratio of 1:2. The catalyticactivity of V-La/Y-K catalyst with a molar ratio of 1:0.5:2 is higher slightly than that ofLa/Y-K catalyst with a molar ratio of 1:2. The catalytic activity of V-Sm-K catalyst ishigher obviously than that of Sm-K catalyst with a molar ratio of 1:2.
     The effect of contact mode between the catalyst and the soot has an importanteffect on the catalytic activity of Co-ⅡA-K catalysts, especially on the soot oxidationrate. The soot can react with crystal lattice O only in tight contact condition made bygrinding, while the soot oxidation rate becomes slow in tight contact condition madeby melting KNO_3. Although it can improve the contact condition between the soot andthe catalyst, the melting KNO_3 can encumber the synergistic catalysis of severalcrystalline phases. The catalytic activity of Co-ⅡA-K catalyst with a molar ratio of0.5:0.25:2 is the best, and the soot onset ignition temperature is almost same whetherin tight contact or in loose contact condition, while the soot oxidation rate is morerapidly in tight contact condition than that in loose contact condition. The catalyticmechanism of Co_3O_4 is: 2Co_3O4+C=6CoO+CO_2 (5) 2CoO+C=2Co+CO_2 (6) 2Co+O_2=2CoO (7) 6CoO+O_2=2Co_3O_4 (8)
     The catalytic activity of Sin-ⅡA-K catalyst is good. The soot oxidation rate isquickened by adding MgO/CaO/Sr(NO_3)_2/Ba(NO_3)_2, and the cold boot performance isimproved by adding Sm_2O_3. KNO_3 can enhance the contact between catalyst and soot,and act as an oxidant. The soot onset ignition temperature is 318, 323,332, aad 325℃when the weight ratio ofKNO_3-Mg, KNO_3-Ca, KNO_3-Sr and KNO_3-Ba is 8.41, 5.78,7.57, and 7.36 respectively for Sin-ⅡA-K catalysts. In addition, the soot oxidation rateof the Sin-ⅡA-K catalysts is more rapidly than that of V-Sm-K catalysts.
     The catalytic activity of Ce-Zr catalysts is higher than Zr_(0.5)Ce_(0.5)O_2 prepared byco-precipitation, sol-gel and polymer-network gel methods, wfiich shows that the synergistic catalysis of ZrO2-CeO2 is better thafi~ that of Zro.sCeo.502. The catalyticactivity of all the Ce-Zr catalysts is higher in tight contact mode than that in loosecontact mode. The soot onset ignition temperature of Ce-Zr catalyst prepared bygrinding method in tight contact condition.is lower than the catalysts containing KNO3
引文
[1] (美)S.D.哈达德等,柴油机原理及运用性能,北京:人民交通出版社,1991
    [2] 陈鸿奎,轿车柴油机技术关键及其应用,世界汽车,1998,(1):18-20
    [3] 杨冬霞,曹秋娥,赵云昆等,柴油车尾气净化催化技术进展,工业催化,2005,13(3):31-34
    [4] 焦天民,柴油机排气后处理的研究现状及存在问题,拖拉机与农用运输车,2002,(2):16-18
    [5] 刘坚,赵震,徐春明,柴油车排放碳黑颗粒消除催化剂的研究进展,催化学报,2004,25(8):673-680
    [6] 曹明让,柴油机有害排放物及其影响因素,车用发动机,1999,(3):51-54
    [7] 张涛,任丽丽,林励吾,甲烷选择催化还原NO研究进展,催化学报,2004,25(1):75-83
    [8] 周黎明,陈光文,王树东等,丙烯选择催化还原NO的研究,化工学报,2003,54(2):199-203
    [9] 贺泓,张润铎,余运波等,富氧条件下氮氧化物的选择性催化还原I.Ag/Al_2O_3催化剂上C_3H_6选择性催化还原NO的性能,催化学报,2003,24(10):788-794
    [10] 尉继英,朱月香,段连运等,金属氧化物掺杂对锡锆固溶体催化剂的一氧化氮选择性还原性能的影响,催化学报,2003,24(6):414-418
    [11] 何国本,胡顺堂,李桐,柴油机的微粒排放及处理措施,车用发动机,2002,(5):43-46
    [12] Walsh M.P., "Worldwide Developments in Motor Vehicle Diesel Particulate Control", SAE Paper 890168.
    [13] Walsh M.P., Bradow R., "Diesel Particulate Control Around the World", SAE Paper 910130.
    [14] Walsh M.P., "Global Trends in Diesel Particulate Control 1993 Update", SAE Paper 930126.
    [15] 许心凤,汽车排放法规的综述,汽车与配件,1991,(4):42-44
    [16] 许心凤,关于我国汽车排放污染控制情况,汽车与配件,1989,(6):29-30
    [17] 邹建国,钟秦,柴油机排放颗粒物净化技术研究进展,环境污染治理技术与设备,2005,6(9):7-11
    [18] 陈岳,用于消除柴油车尾气中微粒的新型催化剂研究,[硕士学位论文]吉林:吉林大学,2005
    [19] 刘志明,郝郑平,沈迪新等,柴油机排放碳颗粒物和NO_x催化净化技术的研究进展,环境污染治理技术与设备,2000,1(5):78—86
    [20] Ma J.X., Fang M., Li E et al., Microwave-assisted catalytic combustion of diesel soot, Applied Catalisis A: General, 1997, 159(1-2):211-228
    [21] 梁红,林维明,金属氧化物对柴油车排气颗粒净化的研究进展,天然气化工,2004,29(6):47-50
    [22] An H.M., McGinn P.J., Catalytic behavior of potassium containing compounds for diesel soot combustion,Applied Catalysis B: Environmental, 2006, 62(1-2):46-56
    [23] Neeft J.P.A., Makkee M., Moulijn J.A., Catalysts for the oxidation of soot from diesel exhaust gases. I. An exploratory study, Applied Catalysis B: Environmental, 1996, 8(1):57-78
    [24] Miyazaki T., Tokabuchi N., Arita M. et al., Catalytic combustion of carbon by alkali metal carbonates supported on perovskite-type oxide, Energy & Fuels, 1997, 11 (4):832-836
    [25] An H.M.,Kilroy C., McGinn P.J.,Combinatorial synthesis and characterization of alkali metal doped oxides for diesel soot combustion, Catalysis Today, 2004, 98(3): 423-429
    [26] Wang S.B.,Haynes B.S.,Catalytic combustion of soot on metal oxides and their supported metal chlorides, Catalysis Communications, 2003, 4(11):591-596
    [27] Neri G., Rizzo G., Galvagno S. et al., Pietropaolo R., K- and Cs-FeV/Al_2O_3 soot combustion catalysts for diesel exhaust treatment, Applied Catalysis B: Environmental, 2003, 42(4):381-391
    [28] Pisarello M.L.,Milt V.,Peralta M.A. et al., Simultaneous removal of soot and nitrogen oxides from diesel engine exhausts, Catalysis Today, 2002, 75(1-4):465-470
    [29] Milt V.G., Pissarello M.L., Miro E.E. et al., Abatement of diesel-exhaust pollutants: NO_x storage and soot combustion on K/La_2O_3 catalysts,Applied Catalysis B: Environmental, 2003, 41(4):397-414
    [30] Neeft J.P.A., Makkee M., Moulijn J.A., Metal oxides as catalysts for the oxidation of soot, The Chemical Engineering Journal and the Biochemical Engineering Journal, 1996, 64(2):295-302
    [31] Carrascull A., Lick I.D., Ponzi E.N. et al., Catalytic combustion of soot with a O_2/NO mixture KNO_3/ZrO_2 catalysts, Catalysis Communications, 2003, 4(3): 124-128
    [32] Saracco G., Badini C., Russo N. et al., Development of Catalyst Based on Pyrovanadates for Diesel Soot Combustion, Applied CatalysisB: Environmental, 1999, 21(4): 233-242
    [33] Pisarello M.L., Milt V., Peralta M.A. et al., Miro E.E., Simultaneous removal of soot and nitrogen oxides from diesel engine exhausts, Catalysis Today, 2002, 75(1-4): 465-470
    [34] 张守臣,赵修仁,刘长厚等,二氧化氮消除柴油机排气中炭烟过程基础研究,燃烧科学与技术,2002,8(2):163-165
    [35] Oi-Uchisawa J., Obuchi A., Enomoto R. et al., Catalytic performance of Pt supported on various metal oxides in the oxidation of carbon black, Applied Catalysis B: Environmental, 2000, 26(1):17-24
    [36] Oi-Uchisawa J., Obuchi A., Enomoto R. et al., Oxidation of carbon black over various Pt/MO_x/SiC catalysts, Applied CatalysisB: Environmental, 2001, 32(4): 257-268
    [37] Oi-Uchisawa J., Obuchi A., Wang S.D. et al., Catalytic performance of Pt/MOx loaded over SiC-DPF for soot oxidation, Applied Catalysis B: Environmental, 2003, 43 (2): 117-129
    [38] Matsuoka K., Orikasa H., Itoh Y. et al., Reaction of NO with soot over Pt-loaded catalyst in the presence of oxygen,Applied Catalysis B: Environmental, 2000, 26(2): 89-99
    [39] Setiabudi A., van Set-ten B.A.A.L., Makkee M. et al., The influence of NOx on soot oxidation rate: molten salt versus platinum, Applied Catalysis B: Environmental, 2002, 35(3): 159-166
    [40] Setiabudi A., Makkee M., Moulijn J.A., An optimal NOx assisted abatement of diesel soot in an advanced catalytic filter design, Applied Catalysis B: Environmental, 2003, 42(1):35-45
    [41] Craenenbroeck J.V., Andreeva D., Tabakova T. et al., Spectroscopic analysis of Au-V-based catalysts and their activity in the catalytic removal of diesel soot particulates., Journal of Catalysis, 2002, 209(2):515-527
    [42] 王海洪,车用柴油机尾气催化系统的发展,重型汽车,1999,(1):6-8
    [43] Oi-Uchisawa J., Obuchi A., Zhao Z. et al.,Carbon oxidation with platinum supported catalysts,Applied Catalysis B: Environmental, 1998, 18(3-4):L183-L187
    [44] Liu S.T., Obuchi A., Oi-Uchisawa J. et al.,Kushiyama S.,Synergistic catalysis of carbon black oxidation by Pt with MoO3 or V_2O_5, Applied Catalysis B: Environmental, 2001, 30(3-4):259-265
    [45] Oi-Uchisawa J., Wang S.D., Nanba T. et al., Improvement of Pt catalyst for soot oxidation using mixed oxide as a support,Applied Catalysis B: Environmental, 2003, 44(3):207-215
    [46] 李平,卢冠忠,赵秀阁,肖文德,用TPD研究SO_2对NO催化氧化过程的影响,催化学报,2003,24(9):681-686
    [47] Liu S.T, Obuchi A., Oi-Uchisawa J. et al., Synergistic catalysis of carbon black oxidation by Pt with MoO_3 or V_2O_5, Applied Catalysis B: Environmental, 2001, 30(3-4): 259-265
    [48] Neeft J.P.A., Catalytic oxidation of soot. Potential for the reduction of diesel particulate emissions, [PhD Dissertation]Delft: Delft University of Technology, 1995
    [49] Stanmore B.R., Brilhac J.F., Gilot P., The oxidation of soot: a review of experiments, mechanisms and models, Carbon, 2001, 39(15):2247-2268
    [50] Oi-Uchisawa J., Obuchi A., Enomoto R. et al., Oxidation of carbon black over various Pt/MO_x/SiC catalysts, Applied Catalysis B: Environmental 2001, 32(4): 257-268
    [51] Liu S.T., Obuchi A., Uchisawa J. et al., An exploratory study of diesel soot oxidation with NO_2 and O_2 on supported metal oxide catalysts, Applied Catalysis B: Environmental, 2002, 37(4):309-319
    [52] Harrison P.G., Ball I.K., Daniell W. et al., Cobalt catalysts for the oxidation of diesel soot particulate., Chemical Engineering Journal, 2003, 95(1-3):47-55
    [53] Querini C.A., Ulla.M.A., Requejo E et al., Catalytic combustion of diesel soot particles. Activity and characterization of Co/MgO and Co, K/MgO catalysts, Applied Catalysis B: Environmental, 1998, 15 (1-2):5-19
    [54] Querini C.A., Comaglia L.M., Ulla M.A. et al., Catalytic combustion of diesel soot on Co,K/MgO catalysts, Effect of the potassium loading on activity and stability, Applied Catalysis B: Environmental, 1999, 20(3): 165-167
    [55] Miro E.E., Ravelli E,Ulla M.A.,Comaglia L.M.,Querini C.A.,Catalytic combustion of diesel soot on Co, K supported catalysts. Catalysis Today, 1999, 53(4): 631-638
    [56] Mul G, Zhu W.D., Kapteijn E, Moulijn J.A., The effect of NO_x and CO on the rate of transition metal oxide catalyzed carbon black oxidation: An exploratory study, Applied Catalysis B: Environmental, 1998, 17(3):205-220
    [57] Chien C-C, Huang T.J., Effect of Copper Content on Pt-Pd-CuO/γ-Alumina Catalyst for Motorcycle Soot Conversion. Industrial & Engineering Chemistry Research, 1995, 34(6):1952-1959
    [58] Xiao S., Ma K.W., Tang X.Y. et al., The lean catalytic reduction of nitric oxide by solid carbonaceous materials, Applied Catalysis B: Environmental, 2001, 32(1-2): 107-122
    [59] Mul G., Kapteijn F., Moulijn J.A., Catalytic oxidation of model soot by metal chlorides, Applied Catalysis B: Environmental, 1997, 12(1):33-47
    [60] Mul G., Neeft J. P. A., Kapteijn F. et al., Soot oxidation catalyzed by a Cu/K/Mo/Cl catalyst: evaluation of the chemistry and performance of the catalyst, Applied Catalysis B: Environmental, 1995,6(4):339-352
    [61] Badini C., Saracco G., Serra V., Combustion of carbonaceous materials by Cu-K-V based catalysts: role of copper and potassium vanadates, Applied Catalysis B: Environmental, 1997,11(3-4): 307-328
    [62] Fredrik Ahlstr6m A., Ingemar Odenbrand C. U., Catalytic Combustion of Soot Deposits from Diesel Engines, Applied Catalysis, 1990, 60(1): 143-156
    [63] 郑育英,邓淑华,黄惠民,汽车尾气净化催化剂中助剂的研究进展,化工时刊,2004,18(2):28-31
    [64] Bozo C., Gaillard F., Guilhaume N., Characterisation of ceria-zirconia solid solutions after hydrothermal ageing, Applied Catalysis A: General, 2001,220(1-2): 69-77
    [65] Vidmar P., Fomasiero P., Kaspar J. et al., Effects of Ttrivalent dopants on the redox properties of Ce_(0.6)Zr_(0.4)O_2 mixed oxide, Journal of catalysis, 1997, 171(1): 160-168
    [66] Kureti S., Weisweiler W., Hizbullah K., Simultaneous conversion of nitrogen oxides and soot into nitrogen and carbon dioxide over iron containing oxide catalysts in diesel exhaust gas, Applied Catalysis B: Environmental, 2003, 43(3):281-291
    [67] Liu S.T., Obuchi A., Uchisawa J. et al., An exploratory study of diesel soot oxidation with NO_2 and O_2 on supported metal oxide catalysts, Applied Catalysis B: Environmental, 2002, 37(4):309-319
    [68] 薛群山,稀土储氧材料在汽车尾气净化催化剂中的应用,精细与专用化学品,2000,(12):13-14
    [69] 郑育英,邓淑华,黄惠民,汽车尾气净化催化剂中助剂的研究进展,化工时刊,2004.18(2):28-31
    [70] Puma E.S., Vohs J.M., Gorte R.J. et al., An examination of praseodymia as an oxygen-storage component in three-way catalysts, Catalysis Letters, 1998, 54(1-2): 17-21
    [71] Nunan J.G., Cohn M.J., Dormer J.T., Effect of high temperature lean aging on the performance of Pt, Rh/CeO_2 and rare earth/alkaline earth doped Pt, Rh/CeO_2 catalysts, Catalysis today, 1992, 14(2):277-291
    [72] Koltsakis, G.C., Stamatelos A.M., Catalytic automotive exhaust aftertreatment, Progress Energy Combust Science, 1997,23(1): 1-39
    [73] 朱保伟,陈宏德,田群,汽车尾气催化剂的发展,中国环保产业,2003,(7):35-38
    [74] Yang Z.X., Chen X.Y., Niu G.X. et al., Comparison of effect of La-modification on the thermostabilities of alumina and alumina-supported Pd catalysts prepared from different alumina sources, Applied Catalysis B: Environmental, 2001, 29(3): 185-194
    [75] 杨志柏,林培琰,肖莉等,改进的溶胶-凝胶法制备CeO_2-ZrO_2固溶体及其物性表征,功能材料,2000,31(6):657-659
    [76] Teraoka Y., Nakano K.,Shangguan W.E et al., Simultaneous catalytic removal of nitrogen oxides and diesel soot particulate over perovskite-related oxides, Catalysis Today, 1996, 27(1-2): 107-113
    [77] Hong S-S, Lee G-D., Simultaneous removal of NO and carbon particulates over lanthanoid perovskite-type catalysts, Catalysis Today, 2000, 63(2-4):397-404
    [78] Teraoka Y., Kanada K., Kagawa S., Synthesis of La-K-Mn-O perovskite-type oxides and their catalytic property for simultaneous removal of NOx and diesel soot particulates, Applied Catalysis B: Environmental, 2001, 34(1):73-78
    [79] Fino D., Fino P.,Saracco G. et al., Studies on kinetics and reactions mechanism of La_(2-x)K_xCu_(1-y)V_yO_4 layered perovskites for the combined removal of diesel particulate and Nox, Applied Catalysis B: Environmental, 2003, 43(3):243-259
    [80] Miyazaki T., Tokubuchi N., Arita M. et al., Catalytic combustion of carbon by alkali metal carbonates supported on perovskite-type oxide, Energy & Fuels, 1997, 11 (4):832-836
    [81] Uenishia M., Taniguchia M., Tanakab H. et al., Redox behavior of palladium at start-up in the Perovskite-type LaFePdOx automotive catalysts showing a self-regenerative function, Applied Catalysis B: Environmental, 2005, 57(4):267-273
    [82] Buciumana F-C., Joubert E., Menezob J-C. et al., Catalytic properties of La_(0.8)A_(0.2)MnO_3 (A= Sr, Ba, K, Cs) and LaMn_(0.8)B_(0.2)O_3(B=Ni, Zn, Cu) perovskites 2. Reduction of nitrogen oxides in the presence of oxygen, Applied Catalysis B: Environmental, 2001, 35(2): 149-156
    [83] Shangguan W. F., Teraoka Y., Kagawa S., Simultaneous catalytic removal of NO_x and diesel soot particulates over ternary AB_2O_4 spinel-type oxides, Applied Catalysis B: Environmental, 1996, 8(2):217-227
    [84] Shangguan W. F., Teraoka Y., Kagawa S., Promotion effect of potassium on the catalytic property of CuFe_2O_4 for the simultaneous removal of NO_x and diesel soot particulate, Applied Catalysis B: Environmental, 1998, 16(2):149-154
    [85] 刘光辉,黄震,上官文峰,阎存仙,利用微粒过滤器同时催化去除柴油机微粒和NO_x,科学通报,2002,47(21):1620-1623
    [86] 刘光辉,黄震,上官文峰,阎存仙,同时催化去除柴油机微粒和NO_x的试验研究(1),内燃机学报,2003,21(1):40-44
    [87] Shangguan W. F., Teraoka Y., Kagawa S., Kinetics of soot-O_2, soot-NO and soot-O_2-NO reactions over spinel-type CuFe_2O_4 catalyst, Applied Catalysis B: Environmental, 1997, 12(2-3):237-247
    [88] Reichenbach H.M., An H.M., McGinn P.J., Combinatorial synthesis and characterization of mixed metal oxides for soot combustion, Applied Catalysis B: Environmental, 2003,44(4):347-354
    [89] Saracco G., Badini C., Specchia V., Catalytic traps for diesel particulate control, Chemical Engineering Science, 1999, 54(15-16):3035-3041
    [90] 李平,朱兵,汪仁,柴油机排放碳颗粒物燃烧催化剂性能的研究,天然气化工,1995,20(1):18-23
    [91] van Setten B.A.A.L.,van Dijk R., Jelles S.J. et al., The potential of supported molten salts in the removal of soot from diesel exhaust gas, Applied Catalysis B: Environmental, 1999, 21(1):51-61
    [92] van Setten B.A.A.L., Bremmer J., Jelles S.J. et al., Ceramic foam as a potential molten salt oxidation catalyst support in the removal of soot from diesel exhaust gas, Catalysis Today, 1999, 53(4):613-621
    [93] Serra V., Saracco G., Badini C. et al., Combustion of carbonaceous materials by Cu-K-V based catalysts Ⅱ. Reaction mechanism, Applied Catalysis B: Environmental, 1997, 11(3-4):329-346
    [94] Bellaloui A., Varloud J., Meriaudeau P. et al., Low temperature diesel soots combustion using copper based catalysts modified by niobium and potassium promoters, Catalysis Today, 1996, 29(1-4):421-425
    [95] Neeft J.P.A.,Schipper W., Mul G. et al., Feasibility study towards a Cu/K/Mo/(Cl) soot oxidation catalyst for application in diesel exhaust gases, Applied Catalysis B: Environmental, 1997, 11(3-4):365-382
    [96] Badini C., Saracco G, Serra V. et al., Suitability of some promising soot combustion catalysts for application in diesel exhaust treatment, Applied Catalysis B: Environmental, 1998, 18(1-2):137-150
    [97] Zhao Z., Obuchi A., Oi-Uchisawa J. et al., Autonomous improvement in the catalytic activity of KVO_3/SiC for soot oxidation under practical gaseous conditions, Chemistry Letters, 1998, 27(4):367-368
    [98] Zhao Z., Obuchi A., Oi-Uchisawa J. et al., Studies in Surface Science and Catalysis, 1999, 121:387-390
    [99] Saracco G., Badini C., Russo N. et al., Development of catalysts based on pyrovanadates for diesel soot combustion, Applied Catalysis B: Environmental, 1999, 21(4):233-242
    [100] Jelles S.J., van Setten B.A.A.L., Makkee M. et al., Molten salts as promising catalysts for oxidation of diesel soot: importance of experimental conditions in testing procedures, Applied Catalysis B: Environmental, 1999, 21(1):35-49
    [101] Saracco G., Russo N., Ambrogio M. et al., Diesel particulate abatement via catalytic traps, Catalysis Today, 2000, 60(1-2):33-41
    [102] Ambrogio M., Saracco G., Specchia V., Combining filtration and catalytic combustion in particulate traps for diesel exhaust treatment, Chemical Engineering Science, 2001, 56(4):1613-1621
    [103] Nejar N., Garci a-Cortes J. M., Salinas-Martinez de Lecea C. et al., Bimetallic catalysts for the simultaneous removal of NOx and soot from diesel engine exhaust: A preliminary study using intrinsic catalysts, Catalysis Communications, 2005, 6(4): 263-267
    [104] 汪文栋,林培琰,伏义路等,含铈镧低贵金属含量三效催化剂的结构与性能,催化学报,1999,20(5):525-529
    [105] 臧树良,李俊,汽车尾气净化催化剂,当代化工,2001,30(4):187-192
    [106] Wrobleski J.T., Boudart M., Preparation of Solid Catalyst, an appraisal, Catalysis Today, 1992, 15(3-4):349-360
    [107] Davis M. E., New Vistas in Zeolite and Molecular Sieve Catalyst, Accounts of Chemical Reserch, 1993, 26(3): 111-116
    [108] Phllips J., Dumesic J.A., Production of Supported Metal Catalysts by the Decomposition of Metal Carbonyls, Applied Catalysis, 1984, 9(1): 1-30
    [109] 吉林大学化学系《催化作用基础》编写组编,催化作用基础,吉林:吉林大学出版社,1980:356-358
    [110] Ernest S., weitkamp J., Chapter 3 Synthesis of Large Pore Aluminosillicates, Catalysis Today, 1994, 19(1):27-60
    [111] Lobo R. F., Pan M., Chan L. et al., SSZ - 26 and SSZ-23: two molecular sieves. with intersecting 10- and 12- ring pores, Science, 1993, 252:1543-1546
    [112] Martens J. A., Grobert P. J., Jacobs P. A., The chemistry of the α- alumination of faujasite zeolites with silicon tetrachloride, Studies in Surface Science and Catalysis, 1990, 63:355
    [113] 王虹,赵震,徐春明,同时消除柴油机尾气排放炭颗粒和NO_x催化剂的研究进展,化工进展,2004,23(7):723-726
    [114] Fino D., Russo N., Saracco G. et al., The role of suprafacial oxygen in some perovskites for the catalytic combustion of soot, Journal Catalysis, 2003, 217(2): 367-375
    [115] Janiak C., Hoffmann R., Sjovall P. et al., The potassium promoter function in the oxidation of graphite: an experimental and theoretical study, Langmuir, 1993, 9(12):3427-3440
    [116] Badini C., Mazza D., Ronchetti S. et al., Effect of chemical composition of isomorphous metavanadates on their catalytic activity toward carbon combustion, Materials Research Bulletin, 1999, 34(6):851-862
    [117] Badini C., Saracco G., Serra V., Combustion of carbonaceous materials by Cu—K—V based catalysts Ⅰ. Role of copper and potassium vanadates, Applied Catalysis B: Environmental, 1997, 11(3-4):307-328
    [118] Courcot D., Pruvost C., Zhilinskaya E. A. et al., Potential of supported copper and potassium oxide catalysts in the combustion of carbonaceous particles, Kinetics and Catalysis, 2004, 45(4):580-588
    [119] Reichenbach H. M., An H. M., McGinn P. J., Combinatorial synthesis and characterization of mixed metal oxides, for soot combustion, Applied Catalysis B: Environmental, 2003, 44(4):347-354
    [120] Pisarello M. L., Saux C., Miro E. E. et al., Catalyst Deactivation2001 Proceedings, Elsevier Science B V, Amsterdam, 2001
    [121] Pisarello M.L., Milt V., Peralta M.A. et al., Miro E.E., Simultaneous removal of soot and nitrogen oxides from diesel engine exhausts, Catalysis Today, 2002, 75(1-4): 465-470
    [122] Jelles S. J., van Setten B. A. A. L., Makkee M. et al., Molten salts as promising catalysts for oxidation of diesel soot: importance of experimental conditions in testing procedures, Applied Catalysis B: Environmental, 1999, 21(1):35-49
    [123] van Setten B.A.A.L., van Gulijk C., Makkee M. et al., Molten Salts Are Promising Catalysts. How to Apply in Practice? Topics in Catalysis, 2001, 16/17:275-278
    [124] van Setten B.A.A.L., Schouten J.M., Makkee M. et al., Realistic contact for soot with an oxidation catalyst for laboratory studies, Applied Catalysis B: Environmental, 2000, 28(3-4), 253-257
    [125] Leocadio I.C.L., Braun S., Schmal M., Diesel soot combustion on Mo/Al_2O_3 and V/Al_2O_3 catalysts: investigation of the active catalytic species, Journal of Catalysis, 2004, 223(1): 114-121
    [126] 杜庆洋,杨振明,张劲松,钒酸盐对柴油机排气中碳烟氧化的催化性能,材料研究学报,2004,18(2):205-211
    [127] 翁端,冉锐,吴晓东,稀土催化材料的应用进展,稀土信息,2004,(2):6-9
    [128] Retailleau L., Vonarb R., Perrichon V. et al., Catalytic oxidation of a diesel soot formed in the presence of a cerium additive. Ⅰ. Characterization of the cerium fraction using magnetic susceptibility and temperature-programmed desorption, Energy & Fuels, 2004, 18(3):872-882
    [129] Vonarb R., Hachimi A., Jean E. et al., Catalytic oxidation of a diesel soot formed in the presence of a cerium additive. Ⅱ. Temperature-programmed experiments on the surface-oxygenated complexes and kinetic modeling, Energy & Fuels, 2005, 19(1):35-48
    [130] Bianchi D., Jean E., Ristori A. et al., Catalytic oxidation of a diesel soot formed in the presence of a cerium additive. Ⅲ. Microkinetic-assisted method for the improvement of the ignition temperature, Energy & Fuels, 2005, 19(4): 1453-1461
    [131] Setiabudi A., Chen J.L., Mul G. et al., CeO_2 catalysed soot oxidation:the role of active oxygen to accelerate the oxidation conversion, Applied Catalysis B: Environmental, 2004, 51(1):9-19
    [132] Tikhomirov K., Krocher O., Elsener M. et al., MnO_x-CeO_2 mixed oxides for the low-temperature oxidation of diesel soot, Applied Catalysis B: Environmental, 2005, 64(1-2):72-78
    [133] Milt V. G., Querini C. A., Mir6 E. E. et al., Abatement of diesel exhaust pollutants: NO_x adsorption on Co, Ba, K/CeO_2 catalysts, Journal of Catalysis, 2003, 220(2): 424-432
    [134] Badini C., Saracco G, Russo N. et al., A screening study on the activation energy of vanadate-based catalysts for diesel soot combustion, Catalysis Letters, 2000, 69(3-4):207-215
    [135] Takasu Y., Matsui M., Matsuda Y., Absorption and desorption behavior of unstable lattice oxygen in praseodymium oxide, Journal of catalysis, 1986, 98(2): 568-571
    [136] Cornaglia L.M., Munera J., Irusta S. et al., Raman studies of Rh and Pt on La_2O_3 catalysts used in a membrane reactor for hydrogen production, Applied Catalysis A: General, 2004, 263(1):91-101
    [137] Toops T. J., Walters A. B., Vannice M.A., The effect of CO_2, H_2O and SO_2 on the kinetics of NO reduction by CH_4 over La_2O_3, Applied Catalysis B: Environmental, 2002, 38(3): 183-199
    [138] Milt V. G., Querini C.A., Miro E.E., Thermal analysis of K(x)/La_2O_3, active catalysts for the abatement of diesel exhaust contaminants, Thermochimica Acta, 2003, 404 (1-2): 177-186
    [139] Chai B.H.T., Mroczkowski S., Synthesis rare-earth carbonates under hydrothermal conditions, Jounal of Crystal Growth, 1978, 44(1):84-97
    [140] Hussein G.A.M., Buttrey D.J., DeSanto P. et al., Formation and characterization of samarium oxide generated from different precursors, Thermochimica Acta, 2003, 402(1-2):27-36
    [141] Ji L., Lin J., Zeng H.C., Metal-Support Interactions in Co/Al_2O_3 Catalysts: A Comparative Study on Reactivity of Support, the Journal of Physics Chemistry B, 2000, 104(8): 1783-1790
    [142] Schmieg S. J., Belton D. N., Effect of hydro thermal aging on oxygen storage/release and activity in a commercial automotive catalyst, Applied Catalysis B: Environmental, 1995, 6(2): 127-144
    [143] Kaachir A, Perrichon V., Reduct ion of CeO_2 by hydrogen, J. Chem. Soc., Faraday Trans., 1991, 87(10):1601-1609
    [144] 赵建军,刘源,汽车尾气净化催化剂用Ce_xZr_(1-x)O_2固溶体的研究进展,稀土,2002,23(3):52—57
    [145] Usmen R.K., Graham G.W., Watkins W.L.H. et al., Incorporation of La~(3+) into a Pt/CeO_2/Al_2O_3 catalyst, Catalysis Letters, 1995, 30(1-4):53-63
    [146] Bozon-Verduraz F., Bensalem A., Delamar M. et al., Preparation and characterization of highly dispersed silica-supported ceria, Applied Catalysis A: General, 1995,121(1): 81-93
    [147] Zamar, F., Trovarelli A., Leitenburg, C. et al., CeO_2-based solid solutions with the fluorite structure as novel and effective catalysts for methane combustion, J. Chem. Soc. Chem. Cornmun., 1995,(8): 965-966
    [148] Vidmar P., Fornasiero P., Kaspar J. et al., Effects of trivalent dopants on the redox properties of Ce_(0.6)Zr_(0.4)O_2 mixed oxide, Journal of Catalysis, 1997, 171(1): 160-168
    [149] Fornasiero P., Dimonte R., Ran G.R. et al., Rh-loaded CeO_2-ZrO_2 solid-solutions as highly efficient oxygen exchangers: dependence of the reduction behavior and the oxygen storage capacity on the structural-properties, Journal of Catalysis, 1995, 151(1): 168-177
    [150] Liotta L.F., Macaluso A., Longoa A. et al., Effects of redox treatments on the structural composition of aceria-zirconia oxide for application in the three-way catalysis, Applied Catalysis A: General, 2003, 240(1-2):295-307
    [151] Yashima M., Arashi H., Kakihana M. et al., J.Am.Ceram. Soc., 1994, 77:1067
    [152] Kaspar J., Fornasiero P., Graziani M., Use of CeO_2-based oxides in the three-way catalysts, Catalysis Today, 1999, 50(2):285-298
    [153] Vlaic G, Monte R.D., Fornasiero P. et al., Graziani M., Journal of Catalysis, 1999, 182(2):378-389
    [154] Fornasiero P., Balducci G., Monte G.R. et al., Modificat ion of the Redox behaviour of CeO_2 induced by structural doping with ZrO_2, Journal of Catalysis, 1996, 164(1): 173-183
    [155] Bozo C., Guilhaume N., Garbowski E. et al., Combustion of methane on CeO_2-ZrO_2 based catalysts, Catalysis Today, 2000, 59(1-2): 33-45
    [156] Terribile D., Trovarelli A., de Leitenburg C. et al., Catalytic combustion of hydrocarbons with Mn and Cu-doped ceria-zirconia solid solutions, Catalysis Today, 1999, 47(1): 133-140
    [157] Trovarelli A., de Leitenburg C., Dolcetti G., Design better cerium-based oxidation catalysts, Chem. Tech., 1997, 27(6): 32-37
    [158] 张俊卿,郭军平,郝茂荣,纳米铈锆氧化物粉末的制备和表征,包头钢铁学院学报,2006,25(1):55-58

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700