分子筛催化的烯烃裂解及戊烯异构反应机理的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分子筛催化的烯烃裂解以及戊烯异构化是两个重要的石油化工过程。本文利用量子化学密度泛函理论和分层计算的方法,采用分子筛簇模型系统地研究了烯烃裂解和戊烯异构化反应机理,从微观结构和能量的角度揭示了分子筛酸催化作用本质。主要内容及结果如下:
     1.采用ONIOM(B3LYP/6-31G(d,p):UFF)分层计算方法,研究了C_2-C_5直链烯烃在HY和H-ZSM-5分子筛上的吸附性质。理论计算结果表明烯烃与分子筛的酸性位相互作用形成π配位的超分子复合物。得到的乙烯在HY分子筛上的吸附能接近它的实验观测值,表明了ONIOM方法能够恰当地描述本文所研究的体系。随着烯烃碳链的增长,烯烃的吸附能增加,这个增加量近似为一个常数。与烷烃在分子筛上的吸附具有相同的规律。烯烃双键位置对烯烃的吸附能影响很大,2位烯烃的吸附能要远大于1位烯烃的。
     烯烃在不同类型分子筛上的吸附性能也有很大的差别,小孔径H-ZSM-5分子筛上的吸附能比大孔径的HY分子筛的大,而且碳原子数越多,这种差别越大。从微观结构上看,吸附的烯烃与H-ZSM-5分子筛酸性位的距离要远大于HY分子筛的。这些现象是由于不同类型分子筛的微孔结构产生的静电作用是不同的,孔径减小这种作用增强
     2.在密度泛函B3LYP/6-31G(d,p)水平上,研究了分子筛催化的C_4-C_(10)α烯烃裂解反应机理。采用3T分子筛簇模型来模拟分子筛的酸性位。研究得出,C_4-C_(10)α烯烃的裂解具有相同的反应途径。每个反应都是酸性位质子直接进攻烯烃双键端基的碳原子,然后β位置的C-C键断裂。尽管仅有相应于C-C键断裂的过渡态被发现,但IRC计算表明分子筛催化的烯烃裂解反应实际上按照两步机理进行,存在一个吸附的、短寿命的碳正离子作为中间体。然而,在3T簇模型上并没有得到它的稳定构型。
     计算得到的烯烃裂解真实活化能比对应的烷烃裂解实验值低,这个结果与文献报道的烷氧基中间体裂解机理的结果相反,表明碳正离子的反应路径更有利。但由于醇盐在分子筛孔道易于形成,因而醇盐中间体的反应途径也可能发生,这样中间体就可能有两种存在形式。烯烃裂解真实的活化能几乎与碳链长度无关(约为44 kcal/mol),这与烷烃裂解的实验结果是一致的。
     3.为了考察分子筛骨架结构对烯烃裂解机理的影响,采用ONIOM(B3LYP/6-31G(d,p):UFF)方法研究了H-ZSM-5分子筛催化的1-已烯裂解反应。计算结果揭示出,H-ZSM-5上的裂解机理与在3T、5T簇模型上的相同。然而,在H-ZSM-5分子筛上优化得到了稳定的碳正离子,发现烯烃裂解反应中存在碳正离子中间体的途径,这说明分子筛的骨架结构对碳正离子的稳定性有着非常重要的影响。还发现吸附的碳正离子是一个活性的高能物种,只需要很小的活化能(7.24kcal/mol)就能发生C-C键的断裂。因此,本文推测碳正离子应该具有非常短的寿命。这样能够合理地解释为什么在分子筛孔道内通过NMR几乎很少观测到碳正离子。扩展的骨架结构对吸附能和裂解反应的表观活化能都有很大的影响,与实验上烷烃裂解情况相比考虑了分子筛环境所得到的结果是合理的。
     4.在密度泛函的B3LYP/6-31G(d,p)水平上,采用3T分子筛簇模型系统地研究了戊烯的双键异构、顺反异构和骨架异构反应机理。从理论上揭示了这三种反应复杂的、相互关联的微观作用机制,解释了所观测的实验现象。主要结果如下:
     1-戊烯的双键异构存在两个反应途径,即连续反应机理和协同反应机理。连续反应机理包括两个基元步骤,涉及烷氧基物种作为反应的中间体。协同反应仅包含一个基元步骤,质子转移和双键转移以协同方式进行。协同反应具有较低的能垒,避免了高稳定的烷氧基中间体的生成,因此在低温下这个反应途径将起主导地位。然而由于烷氧基的形成比较容易,因此高温下两个反应途径应该是相互竞争的。两个反应途径的提出很好地解释了为什么在低温和高温时所观测的实验现象不同。综合考虑两个反应途径,1-戊烯双键顺式异构的真实活化能是在19.25-19.92 kcal/mol范围内,而反式异构的真实活化能是在17.93-20.54 kcal/mol范围内,表明1-戊烯顺式异构和反式异构的能力相差不大,与实验结果相符。为了考察分子筛骨架结构对戊烯异构过程的影响,采用ONIOM(B3LYP/6-31G(d,p):UFF)分层计算方法,研究了大孔径的HY分子筛催化1-戊烯反式双键异构的协同反应机理。结果揭示出,HY分子筛上计算的1-戊烯反式双键异构的真实活化能(20.67 kcal/mol)与3T簇上的结果几乎(20.54 kcal/mol)相等。这说明3T簇模型在一定程度上能很好地表述大孔径分子筛的酸性位。由此,后面的戊烯异构化反应均采用3T簇模型进行计算。
     2-戊烯的顺反异构体转化反应存在三个反应通道。在一步协同机理中,反应是通过酸性位质子转移和碳碳双键的迁移来完成的。烷氧基机理包含两个基元步骤存在两个反应通道,即2位戊氧基和3位戊氧基中间体通道。综合考虑这三个反应通道,2-戊烯顺反异构体相互转化的活化能是在22.05-23.84 kcal/mol范围内,与1-戊烯双键异构的活化能相差不大。因此,在反应过程中1-戊烯、顺式-2-戊烯和反式-2-戊烯很容易发生相互转化。
     戊烯的骨架异构有两种反应机理:烷氧基中间体机理和类甲基环丙烷中间体机理。而烷氧基中间体机理又包括两个反应途径,一个是甲基迁移,另一个是乙基迁移。因此,整个异构反应存在三个反应途径。(1)甲基迁移机理分三步,首先涉及3位戊氧基中间体的生成,它可以通过顺式-2-戊烯和反式-2-戊烯质子化来获得,然后是这个直链的3位戊氧基复合物通过一个环状的过渡态发生甲基迁移生成了支链的异戊氧基复合物,异戊氧基复合物再发生分解反应生成吸附的2-甲基-1-丁烯。反应的速控步骤是甲基迁移反应,其活化能是49.27kcal/mol。(2)乙基迁移机理也分三步,首先涉及2位戊烯氧基中间体的生成,它可以通过1-戊烯、顺式-2-戊烯和反式-2-戊烯质子化来获得,然后是2位戊氧基复合物发生乙基迁移生成了异戊氧基复合物,之后与甲基迁移机理相同是异戊氧基复合物发生分解。反应的速控步骤是乙基迁移反应,其活化能是49.55 kcal/mol,几乎与甲基迁移的相等,这表明两个反应途径是互相竞争的。然而由于受到分子筛骨架结构的限制,从空间位阻的角度来说,乙基发生转移的反应途径是不利的。(3)类甲基环丙烷中间体机理分两步,首先是反式-2-戊烯发生碳链扭转,生成类甲基环丙烷中间体,然后再发生甲基迁移反应生成产物。反应的中间体具有高的离子性,且是一个高能物种,这些特征与前面烯烃裂解过程中得到的碳正离子相似,所不同的是C_5H_(11)基团碳骨架发生较大的扭转,它的吸附作用是依靠碳链上的H原子与骨架氧原子之间弱的氢键。反应的速控步骤是碳链扭转反应,其活化能是35.35 kcal/mol,明显低于甲基迁移和乙基迁移两个反应途径的能垒,意味着类甲基环丙烷中间体的反应途径更容易发生。
     5.由戊烯的计算结果得出,双键异构反应最容易进行,而裂解反应要难于骨架异构反应,这个变化规律与实验观测的三种反应所需酸强度的变化规律是一致的。
The olefin cracking and the pentene isomerization over zeolites are two very important reactions in the petrochemical industry. The reaction mechanisms of the olefin cracking and the pentene isomerization have been systematically studied by using density functional theory (DFT) and the ONIOM method with the zeolite cluster models. The microcosmic essence of the acid catalysis of the zeolite is revealed from structure and energy point of view. The main research contents and results are as following:
     1. The adsorption properties of linear C_2-C_5 olefins on HY and H-ZSM-5 zeolites have been studied by using the ONIOM(B3LYP/6-31G(d,p):UFF) method. The study results indicate that the microcosmic interactions of the olefin molecules with the Br(?)nsted acid sites of the zeolites lead to the formation ofπ-complexes. The calculated adsorption energy of ethene on HY zeolite is close to its experimental data, suggesting that the ONIOM model can describe the system of our study well. The adsorption energies of olefins on zeolites increase with increasing the number of carbon atoms, and the increase amount is approximate constant, which agrees well with the adsorption properties of the alkane on zeolites. The position of the double bond has biggish effect on the adsorption energies of olefins. The adsorption energies of 2-olefins are much higher than those of 1-olefins.
     The adsorption energies of olefins on the different types of zeolitesalso have a significant difference. The adsorption energies of olefins onsmall pore H-ZSM-5 zeolite are much larger than those on large pore HYzeolite. Furthermore, the confinement effect in the different types ofzeolites is more obvious when the number of carbon atoms increase.From microstructure, it can be seen that the distance between theadsorbent molecule and the acidic proton in H-ZSM-5 zeolite is muchbigger than that in HY zeolite. These are mainly attributed to thedifferences in the electrostatic interactions from the different types ofzeolites, and the small pore zeolites have much stronger electric fields.
     2. The cracking reactions of linear C_4-C_(10)α-olefins over zeolites have been studied by using density functional theory at the B3LYP/6-31G(d,p) level. A 3T cluster model is used to simulate the Br(?)nsted acid site of the zeolite. The calculated results show that theβ-scission processes of C_4-C_(10) olefins have the same reaction mechanism. In all cases, the attack of the zeolite acidic proton is directly on the primary carbon of the double bond of an olefin, and then the C-C bond located inβposition breaks. Although only one transition state corresponding to the rupture of the C-C bond is found, IRC calculations indicate that actually the cracking reaction follows a two-step mechanism with an adsorbed short-lifetime carbocation as intermediate species. However, the stable carbenium ion is not obtained using the bare 3T cluster model.
     The calculated real activation energy for this carbocation pathway is lower than the experimental value for corresponding alkane cracking contrary to the previously reported pathway via an alkoxide intermediate. Therefore, the reaction pathway via a carbocation intermediate species is energetically much more favorable. Since the alkoxide is readily formed in zeolite pores, under certain reaction conditions the pathway via an alkoxide intermediate can also occur. Thus, the intermediate species for olefin cracking likely exists in two forms. The real activation energies of olefin cracking are nearly independent of the olefin chain length (~ 44 kcal/mol), which is in agreement with the existing experimental results of alkane cracking.
     3. In order to understand the influence of the zeolite pore structure on the mechanism of olefin cracking, the 1-hexene cracking reaction over H-ZSM-5 zeolite has been studied by using the ONIOM(B3LYP/6-31G(d,p):UFF) method. The obtained results display that this cracking mechanism is the same with the reaction process on the 3T and 5T cluster. The stable carbenium ion is found in the cavity of the H-ZSM-5 zeolite, which theoretically verifies the existing of carbenium ion in the reaction of olefin cracking. It indicates that the H-ZSM-5 zeolite environment plays a significant role in stabilizing the carbenium ion. The adsorbed carbenium ion is an active high energetic species, and the rupture of the C-C bond in its beta position only requires low energy barrier (7.24 kcal/mol). Accordingly, it is anticipated that the carbenium ion should have a very short lifetime. This phenomenon can well explain why the carbocations are seldom observed inside the zeolite cavities by NMR probes. The extended zeolite framework also has profound effects on the adsorption energy and the apparent activation energy. Compared with the experimental data for alkane cracking, the results obtained in H-ZSM-5 zeolite is better reasonable than those obtained in small 5T cluster.
     4. The reaction mechanism of the double-bond isomerization, the cis-trans isomerization and the skeletal isomerization of pentene catalyzed by zeolites have been systematically investigated by using the B3LYP/6-31G(d,p) method with 3T cluster model. The microcosmic interaction mechanisms of the correlation among three kinds of reactions are shown theoretically, which can well explain the experimental phenomena observed. The main results are summarized as follows:
     The double-bond isomerization may proceed via either a stepwise or a concerted reaction pathway. The stepwise reaction consists of two elementary steps involving an alkoxy species as the intermediate. The concerted reaction includes an elementary step, and the migration of the double bond and proton transfer is concerted. The concerted mechanism has lower energy barrier than the stepwise reaction, which avoids the formation of highly stable alkoxide species. Therefore, at low temperatures, the concerted reaction should dominate the overall isomerization reaction. At high temperatures the two reaction pathways compete against each other because the formation of the alkoxy intermediate will occur relatively easily. Presenting two kinds of pathways for the double bond isomerization of olefins can well explain why the different experimental phenomena are observed at low and high temperatures. The calculated real activation energy of the cis form isomerization of 1-pentene for two pathways is in the range of 19.25-19.92 kcal/mol, while the real activation energy of the trans form isomerization of 1-pentene for two pathways is in the range of 17.93-20.54 kcal/mol. It shows that two kinds of isomerization reactions compete against each other, in agreement with experimental results. In order to investigate the effect of the zeolite framework on the process of pentene isomerization, the concerted reaction pathway of the conversion of 1-pentene to trans-2-pentene over large pore HY zeolite has been studied by using the ONIOM(B3LYP/6-31G(d,p):UFF) method. The real activation energy of the double bond isomerization of 1-pentene over HY zeolite (20.67 kcal/mol) is nearly identical with the results of 3T cluster (20.54 kcal/mol), demonstrating that the 3T cluster model can describe the acid site of the large pore zeolites well. Hence, the 3T cluster model is used in other isomerization reactions of pentene.
     The cis-trans isomerization of 2-pentene has three reaction channels. In the mechanism of the one-step concerted mechanism, the reaction proceeds through proton shift and the migration of the C=C double bond. The alkoxy intermediate mechanism includes two elementary steps and has two reaction channels, i.e. 2-pentyl alkoxide pathway and 3-pentyl alkoxide pathway. Considering three reaction channels, the real activation energies for the cis-trans isomerization of 2-pentene are in the range of 22.05-23.84 kcal/mol, which is slight higher than the data of the double bond isomerization of 1-pentene. Consequently, 1-pentene, cis-2-pentene and trans-2-pentene can easily convert each other.The skeletal isomerization can proceed by two kind of mechanism:the alkoxide intermediate mechanism and methylcyclopropane-likeintermediate mechanism. The alkoxide intermediate mechanism involvestwo reaction pathways: methyl shift and ethyl shift. Accordingly, theoverall skeletal isomerization of pentene has three reaction pathways. (1)
     The methyl shift mechanism consists of three elementary steps: the firststep is the formation of the line 3-pentoxide intermediate which isobtained through the protonation of adsorbed cis and trans 2-pentene; secondly, a methyl group of this intermediate transfers to another site in the residual hydrocarbon chain through a cyclic transition state, and then the branched one is formed; thirdly, the decomposition of the branched species gives adsorbed iso-pentene. The speed control elementary step is the shift of the methyl group, and its activation barrier is 49.27 kcal/mol; (2) The ethyl shift mechanism also consists of three elementary steps: firstly, the line 3-pentoxide intermediate is formed through the protonation of adsorbed 1-pentene, cis and trans 2-pentene; secondly, this intermediate converts into the branched one through a ethyl group transfer; the third step is the same with the ethyl shift mechanism. The speed control elementary step is the shift of the ethyl group, and its activation barrier is 49.55 kcal/mol. This value is nearly equivalent to that of the methyl shift process, indicating that two reaction pathways compete between each other. However, due to confinement of the pore dimension of the zeolite, the ethyl shift process is not favorable from a steric hindrance point of view; (3) The methylcyclopropane-like intermediate mechanism includes two elementary steps: the torsion of adsorbed trans-2-pentene to give the methylcyclopropane-like intermediate, and then transferring methyl group of the methylcyclopropane-like intermediate to give adsorbed iso-pentene. This intermediate has highly ionic character, and is a high energy species. These characters are similar to the carbocations obtained in the olefin cracking process. The difference is that the torsion of the carbon skeleton is significantly large. But, it can be stabilized on the small 3T cluster. The adsorption interaction between the methylcyclopropane-like intermediate and 3T cluster depends on the weak hydrogen bond. The speed control elementary step is the torsion of the carbon chain, and its activation barrier is 35.35 kcal/mol. This value obviously is lower than those of the methyl and ethyl shift process, implying that the methylcyclopropane-like intermediate pathway occurs more easily.
     5. Through the study results of pentene, it can be seen that the double bond isomerization reaction is the easiest; the cracking reaction is more difficult than the skeletal isomerization reaction. This change rule is consistent with the acidity change rule of three kinds of reactions observed experimentally.
引文
[1]Smith G A,Evans M.Meeting changing gasoline specifications and variable propylene and butylenes demand through the use of additives[R].In:Proceedings of the NPRA Annual Meeting,San Fransisco,1998
    [2]Niccum P K,Miller R B,Claude A M,et al.MaxofinTM:a novel FCC process for maximizing light olefins using a new generation of ZSM-5 additive[R].NPRA Annual Meeting,San Fransisco,1998
    [3]Ren T,Patel,M,Blok K.Olefins from conventional and heavy feedstocks:Energy use in steam cracking and alternative processes[J].Energy,2006,31,425-451
    [4]孙昱东,窦锦民,黄小海.催化裂化生产低碳烯烃综述[J].石油天然气与化工,2004,33(3):160-163
    [5]朱向学,刘盛林,牛雄雷,等.ZSM-5分子筛上C4烯烃催化裂解制取丙烯和乙烯[J].石油化工,2004,33(4):320-324
    [6]刘春岩,车延超,曹祖宾,等.Ni-P/Hβ催化剂上FCC汽油加氢改质[J].辽宁石油化工大学学报,2004,24(3):24-27
    [7]张建国,宋昭峥,丁宏霞,等.增产丙烯的技术进展与我国发展对策[J].现代化工,2006.增刊(2):5-9
    [8]Bortnovsky O,Sazama P,Wichterlova.B.Cracking of pentenes to C2-C4 light olefins over zeolites and zeotypes Role of topology and acid site strength and concentration[J].Appl.Catal.A,2005,287:203-213
    [9]Zhu X,Liu S,Song Y,et al.Catalytic cracking of C4 alkenes to propene and ethene:Influences of zeolites pore structures and Si/A12 ratios[J].Appl.Catal.A,2005,288:134-142
    [10]Total to commercialize olefin cracking process.Focus on Catalysts,2006,2006(8):5-5
    [11]滕加伟,赵国良,谢在库,等.ZSM-5分子筛晶粒尺寸对C4烯烃催化裂解制丙烯的影响[J].催化学报,2004,25:602-606
    [12]张昕,王建伟,钟进,等。C4烯烃催化化增产丙烯研究进展[J]。石油化工,2004,33(8):781-787
    [13]钱伯章.增产丙烯的技术进展[J].化工技术经济,2006,24:33-39
    [14]Buchanan J S,Olson D H,Schramm S E.Gasoline selective ZSM-5 FCC additives:effects of crystal size,SiO2/A12O3,steaming,and other treatments on ZSM-5 diffusivity and selectivity in cracking of hexene/octene feed[J],Appl.Catal.A,2001,220:223-234
    [15]den Hollander M A,Wissink M,Makkee M,et al.Gasoline conversion:reactivity towards cracking with equilibrated FCC and ZSM-5 catalysts[J].Appl.Catal.A:Gen.,2002,223:85-102
    [16]Zhao G;Teng J,Xie Z,et al.Effect of phosphorus on HZSM-5 catalyst for C4-olefin cracking reactions to produce propylene[J].J.Catal.,2007,248:29-37
    [17]Zhao G L,Teng J W,Zhang Y H,et al.Synthesis of ZSM-48 zeolites and their catalytic performance in C4-olefin cracking reactions[J].Appl.Catal.A,2006,299:167-174
    [18]Wang B,Gao Q,Gao J D,et al.Synthesis,characterization and catalytic C4 alkene cracking properties of zeolite ZSM-23[J].Appl.Catal.A,2004,274:167-172
    [19]Zhu X X,Liu S L,Song Y Q,et al.Catalytic cracking of l-butene to propene and ethene on MCM-22 zeolite[J].Appl.Catal.A,2005,290:191-199
    [20]姚国欣.面向21世纪的车用清洁燃料生产技术[J].石油炼制与化工,2000,31(1):1-5
    [21]陈肖青.我国汽油的现状与发展[J].石油化工动态,1999,7(4):16-20
    [22]Hochtl M,Jentys A,Vinek H.Isomerization of 1-pentene over SAPO,CoAPO(AEL,AFI)molecular sieves and HZSM-5[J].Appl.Catal.A,2001,207:397-405
    [23]白尔铮,金国林.轻质烯烃骨架异构化工艺进展[J].化学世界,2001,9:498-501
    [24]Mooiweer H H,De Jong K P,Kraushaar-czametzki B,et al.Skeletal isomerization of olefins with the zeolite ferrierite as catalyst[J].Stud.Surf.Sci.Catal.,1994,84:2327-2334
    [25]Pasquale G M,Murray B D.Ferrierite-type crystalline zeolites,their manufacture,especially high-surface area hydrogen ferrierite,and process for isomerizing olefins using the ferrierite as catalyst[P].PCT Patent,WO 9640587.1996-12-19
    [26]Finelli Z R,Figoli N S,Comelli R A.Isobutene production from skeletal isomerization of 1-butene on WOx/ferrierite[J].Catal.Lett,1998,51:223-228
    [27]Huss A J,Klocke D J,Lissy D N,et al.Isomerization of n-olefms in the presence of ZSM-35 zeolite catalysts[P].PCT Patent,WO 9528372.1995-10-26
    [28]Huss A J,Rahmin I I,Wood P.Linear olefim isomerization process[P].PCT Patent,WO 9529143.1995-11-2
    [29]Benazzi E,Patrigeon A,Marcilly C,et al.Zeolite catalysts and process for hydroismerizing C5- 10 normal paraffins[P].FR Patent,FR 2796313.2001-1-19
    [30]John T P,Thomas S P.Texas plant fast to isomerize n-butylenes to isobutylene[J].Oil Gas J.,1993,91(21):54-59
    [31]吴肖群,周力,慎炼,C5全组分异构烯烃化的催化反应原理与催化剂[J].石油炼制与化工,1995,26:19-24
    [32]Asensi M A,Corma A,Martinez A.Skeletal isomerization of 1-butene on MCM-22 zeolite catalyst[J].J.Catal.,1996,158:561-569
    [33]赵恒,李树本.ZSM-5型分子筛对正丁烯选择异构化反应的催化作用[J].分子催化,1994.8:225-231
    [34]Fottinger K,Kinger G,Vinek H.1-Pentene isomerization over FER and BEA[J].Appl.Catal.A:Gen.,2003,249:205-212
    [35]Gajda G J.Isomerization of olefins over medium pore molecular sieve catalysts[P].UOP Inc.U.S.5430221,1995-07-4;Appl.1990-02-8 Cont.-in-part of U.S.5254789
    [36]Xu W Q,Yin Y G,Suib S L,et al.Selective conversion of n-butene to isobutylene at extremely high space velocities on ZSM-23 zeolites[J].J.Catal.,1994,150:34-45
    [37]Bianchi D,Simon M W,Nam S S,et al.Kinetic studies of the isomerization of n-butenes over boroaluminosilicate zeolites[J].J.Catal.,1994,145:551-560
    [38]Houzvicka J,Hansiladaar S,Ponec V.The shape selectivity in the skeletal isomerisation of n-butene to isobutene[J].J.Catal.,1997,167:273-278
    [39]Gielgens L H,Veenstra I H E,Ponec V,et al.Selective isomerisation of n-butene by crystalline aluminophosphates[J].Catal.Lett.,1995,32:195-203
    [40]周力,吴肖群,吕德伟,C5全组分异构烯烃化过程分析[J].工业催化,1997,1:3-12
    [41]国家自然科学基金委员会化学科学部.新世纪的物理化学[M].北京:科学出版社,2004
    [42]高滋,何鸣元,戴逸云.沸石催化与分离技术[M].北京:中国石化出版社,1999
    [43]梁娟,张盈珍.化工百科全书第4卷:分子筛[M].北京:化学工业出版社,1993
    [44]Szastak R.Molecular Sieves:Principles of synthesis and identification[M].New York:Van Norstrand Reinhold,1989,p205
    [45]Kresge C T,Leonowicz M E,Roth W J,et al.Ordered mesoporous moleular sieves synthesized by a liquid crystal template mechanisra[J].Nature,1992,359:710-712
    [46]韩维屏等.催化化学导论嗍.北京:科学出版社,2003
    [47]中国科学院大连化学物理研究所分子筛组,沸石分子筛[M].北京:科学出版社,1978
    [48]徐如人,庞文琴,屠昆岗,等.沸石分子筛的结构与合成[M].长春:吉林大学出版社,1987
    [49]Corma A.Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions[J].Chem.Rev.,1995,95:559-614
    [50]Okumura K,Hashimoto M,Mimura T,et al.Acid properties and catalysis of MCM-22with different A1 concentrations[J].J.Catal.,2002,206:23-28
    [51]Vinh-Thang H,Huang Q,Ungureanu A,et al.Effect of the acid properties on the diffusion of C7 hydrocarbons in UL-ZSM-5 materials[J].Mieropor.Mesopor.Mat.,2006,92:117-128
    [52]Busch O M,Brijoux W,Thomson S,et al.Spatially resolving infrared spectroscopy for parallelized characterization of acid sites of catalysts via pyfidine sorption:Possibilities and limitations[J].J.Catal.,2004,222:174-179
    [53]Borade R,Sayari A,Adnot A,et al.Characterization of acidity in ZSM-5 zeolites:an x-ray photoelectron and IR spectroscopy study[J]J.Phys.Chem.,1990,94:5989-59945989
    [54]Stocker M.X-Ray photoelectron spectroscopy on zeolites and related materials[J].Micropor.Mater.,1996,6:235-257
    [55]Boreave A,Auroux A,Guiman C.Nature and strength of acid sites in HY zeolites:a multitechnical approach[J].Micropor.Mater.,1997,11:275-291
    [56]Cejka J,Krejci A,Zilkova N,et al.Activity and selectivity of zeolites MCM-22 and MCM-58 in the alkylation of toluene with propylene[J].Micropor.Mesopor.Mat.,2002,53:121-133
    [57]Wichterlova B,Tvaruzkova Z,Sobalik Z,et al.Determination and properties of acid sites in H-ferrierite:A comparison of ferrierite and MFI structures[J].Micropor.Mesopor.Mat.,1998,24:223-233
    [58]Kaeding W W,Chu C,Young L B,et al.Shape-selective Reaction with Zeolite Catalysts:Ⅱ.Selective Disproportionation of Toluene to Produce Benzene and P-Xylene[J].J.Catal.,1981,69:392-398
    [59]Zheng S,Jentys A,Lercher J A.On the enhanced para-selectivity of HZSM-5 modified by antimony oxide[J].J.Catal.,2003,219:310-319
    [60]Roger H P,Kraimer M,Moller K P,et al.Effects of in-situ chemical vapour deposition using tetraethoxysilane on the catalytic and sorption properties of ZSM-5[J].Micropor.Mesopor.Mat.,1998,21:607-614
    [61]赵同复,李斌,王振龙,等.BaX分子筛的阳离子分布及其吸附分离对二甲苯的机理[J].催化学报,2005,26:655-659
    [62]Jere F,Paul W,Peter K.Selective sorption of 2.6-diisopropylnaphthalene[P].US,5017735,1991-05-21
    [63]Richards R E,Rees L V C.The sorption of p-xylene in ZSM-5[J].Zeolites,1988,18: 35-39
    [64]Weisz P B,Frilette V J.Intracrystalline and molecular-shape-selective catalysis by zeolite salts[J].J.Phys.Chem.,1960,64:382-382
    [65]Csicstry,S M.Shape-selective catalysis in zeolites[J].Zeolites,1984,4:202-213
    [66]Whyte Jr T E,Dalla Betta,R A.Zeolite advances in the chemical and fuel industries:A technical perspective[J].Catal.Rev.-Sci.Eng.,1982,24:567-598
    [67]Chen N Y,Garwood W E.Industrial application of shape-selective catalysis[J].Catal.Rev.-Sci.Eng.,1986,28:185-264
    [68]曾昭槐编著.择形催化[M].北京:中国石化出版社,1994,1-9
    [69]Tsaia T-C,Liub S-B,Wangc I.Disproportionation and transalkylation of alkylbenzenes over zeolite catalysts[J].Appl.Catal.A,1999,181:355-398
    [70]Song C,Ma X,Schmitz A D,et al.Shape-selective isopropylation of naphthalene over mordenite catalysts:Computational analysis using MOPAC[J].Appl.Catal.A,1999,182:175-181
    [71]Llewellyn P L,Grillet Y,Schiith F,et al.Effect of pore size on adsorbate condensation and hysteresis within a potential model adsorbent:M41S[J].Micropor.Mat.,1994,3:345-349
    [72]Wang C S,Lin C H.Synthesis and properties of phosphorus-containing PEN and PBN copolyesters[J].Polymer,1999,40:747-757
    [73]One Y.A survey of the mechanism in catalytic isomerization of alkanes[J].Catal.Today,2003,81:3-16
    [74]Feller A,Guzman A,Zuazo I,et al.On the mechanism of catalyzed isobutane/butene alkylation by zeolites[J].J.Catal.,2004,224:80-93
    [75]Strcker M,Mostad H,Karlsson A,et al.Isobutane/2-butene alkylation on dealuminated H EMT and H FAU[J].Catal.Lett.,1996,40:51-58
    [76]Gao S,Moffat J B.The isomerization of 1-butene on stoichiometric and nonstoichiometric boron phosphate:The dependence of the acidity on stoichiometry[J].J.Catal.,180:142-148
    [77]Lago R M,Haag W O,Mikovsky R J,et al.in:Murakami Y,Iijima A,Ward J W.(Eds.),New Developments in Zeolite Science and Technology,Studies in Surface Science and Technology,Kodansha/Elsevier,Tokyo/Amsterdam,1986,28:677
    [78]Weitkamp J.Zeolites and catalysis[J].Solid State Ionics,2000,131:175-188
    [79]Csicsery S M,Hickson D A.Selectivities of acid-catalyzed reactions over silica-alumina and molecular sieve catalysts[J].J.Catal.,1970,19:386-393
    [80]Cheng Z X,Ponec V.Selective Isomerization of Butene to Isobutene[J].J.Catal.,1994,148:607-616
    [81]Cheng Z X,Ponec V.Fluorinated alumina as a catalyst for skeletal isomerization of n-butene[J].Appl.Catal.A:Gen.,1994,118:127-138
    [82]Katada N,Kageyamaa Y,Takahara K,et al.Acidic property of modified ultra stable Y zeolite:increase in catalytic activity for alkane cracking by treatment with ethylenediaminetetraacetic acid salt[J].J.Mol.Catal A:Chem.,2004,211:119-130
    [83]Hopkins P D.Cracking activity of some synthetic zeolites and the nature of the active sites[J].J.Catal.,1968,12:325-334
    [84]Paweewan B,Barrie Patrick J,Gladden L F.Coking and deactivation during n-hexane cracking in ultrastable zeolite Y[J].Appl.Catal.A:Gen,1999,185:259-268
    [85]Houzvicka J,Diefenbach O,Ponec V.The role of bimolecular mechanism in the skeletal isomerisation of n-butene to isobutene[J].J.Catal.,1996,16-4:288-300
    [86]Houzvicka J,Ponec V.Skeletal isomerisation of n-butene on phosphorus containing catalysts[J].Appl.Catal.,1996,145:95-109
    [87]Houzvicka J,Ponec V.Skeletal isomerization of n-butene[J].Catal.Rev-Sci Eng.,1997,39:319-344
    [88]Domokos L,Lefferts L,Seshan K,et al.The importance of acid site locations for n-butene skeletal isomerization on ferrierite[J].J.Mol.Catal.A-Chem.,2000,162:147-157
    [89]Wiehterlova B,Zikova N,Uvarova E,et al.Effect of Broensted and Lewis sites in ferrierites on skeletal isomerization ofn-butenes.Appl.Catal.A:Gen.,1999,182:297-308
    [90]Houzvieka J,Nienhuis J G,Hansildaar S,et al.ZSM-5 - An active,selective and stable catalyst for skeletal isomerisation ofn-butene[J].Appl.Catal.A:Gen.,1997,165:443-449
    [91]Corma A,Wojciechowski B W.The Catalytic Cracking of Cumene[J].Catal.Rev.-Sci.Eng.,1982,24:1.-65
    [92]Corma A,Faraldos A M,Mifsud A.Hydrogen transfer on USY zeolites during gas oil cracking:Influence of the adsorption characteristies of the zeolite catalysts[J].L Catal.,1990,122:230-239
    [93]Abbot J,Wojciechowski B W.The mechanism of catalytic cracking of n-alkenes on ZSM-5 zeolite[J].Can.J.Chem.Eng.,1985,63:462-470
    [94]Buchanan J S.Reactions of model compounds over steamed ZSM-5 at simulated FCC reaction conditions[J].Appl.Catal.,1991,74:83-94
    [95]Buchanan J S,Santiesteban J G,Haag W O.Mechanistic considerations in acid-catalyzed cracking ofolefins[J].J.Catal.,1996,158:279-287
    [96]Guisnet M,Andy P,Gnep N S,et al.Skeletal isomerization of n-butenes:I.Mechanism of n-butene transformation on a nondeaetivated H-Ferrierite catalyst[J].J.Catal.,1996,158:551-560
    [97]Szabo J,Szabo G,van Gestel J,et al.Isomerization of n-butenes to isobutene catalyzed by fluorinated alumina:Reaction kinetics[J].Appl.Catal.A:Gen.,1993,96:319-330
    [98]O'Young C L,Pellet R J,Casey D G,et al.Skeletal isomerization of 1-butene on 10-member ring zeolite catalysts[J].J.Catal.,1995,151:467-469
    [99]Xu W Q,Yin Y G,Suib S L,et al.n-Butene skeletal isomerization to isobutylene on shape selective catalysts:Ferrierite/ZSM-35[J].J.Phys.Chem.,1995,99:9443-9451
    [100]Meunier F C,Domokos L,Seshan K,et al.In situ IR study of the nature and mobility of sorbed species on H-FER during but-l-ene isomerization[J].J.Catal.,2002,211:366-378
    [101]Houzvicka J,Ponec V.Skeletal isomerization of butene:On the role of the bimolecular mechanism[J].Ind.Eng.Chem.Res.,1997,36:1424-1430
    [102]Cejka J,Wichterlova B,Sarv P.Extent ofmonomolecular and bimolecular mechanism in n-butene skeletal isomerization to isobutene over molecular sieves[J].Appl.Catal.A:Gen.,1999,179:217-222
    [103]Fottinger K,Kinger G,Vinek H.1-Pentene isomerization over zeolites studied by in situ IR spectroscopy[J].Catal.Lett,2003,85:117-122
    [104]Liu H,Lei G D,Sachtler W M H.Alkane isomerization over solid acid catalysts Effects of one-dimensional micropores[J].Appl.Catal.,1996,137:167-177
    [105]Weitkamp J.Isomerization of long-chain n-alkanes on a Pt/CaY zeolite catalyst[J].J.Ind. Eng. Chem. Prod. Res. Dev., 1982,21: 550-558
    [106] Cheng Z X, Ponec V. On the problems of the mechanism of the skeletal isomerization of n-butene[J]. Catal. Lett., 1994,27: 113-117
    [107] Meijers S, Ponec V, Finocchio E, et al. FTIR study of the adsorption and transformation of allylbenzene over oxide catalysts[J]. J. Chem. Soc.-Faraday Trans., 1995, 91: 1861 -1869
    [108] Stepanov A G, Arzumanov S S, Luzgin M V, et al. In situ monitoring of n-butene conversion on H-ferrierite by 1H, 2H, and 13C MAS NMR: kinetics of a double-bond-shift reaction, hydrogen exchange, and the 13C-label scrambling[J]. J. Catal.,2005,229:243-251
    [109] Xu T, Haw J F. Cyclopentenyl carbenium ion formation in acidic zeolites: An in situ NMR study of cyclic precursors[J]. J.Am. Chem. Soc., 1994,116: 7753-7759
    [110] Xu T, Haw J F. NMR Observation of indanyl carbenium ion intermediates in the reactions of hydrocarbons on acidic zeolites[J]. J. Am. Chem. Soc., 1994,116:10188-10195
    [111] Haw J F. Zeolite acid strength and reaction mechanisms in catalysis[J]. Phys. Chem.Chem. Phys., 2002,4:5431-5441
    [112] Haw J F, Richardson B R, Oshiro I S, et al. Reactions of propene on zeolite HY catalyst studied by in situ variable-temperature solid-state nuclear magnetic resonance spectroscopy[J]. J.Am. Chem. Soc., 1989, 111: 2052-2058
    [113] Aronson M T, Gorte R J, Farneth W E, et al. 13C NMR identification of intermediates formed by 2-methyl-2-propanol adsorption in H-ZSM-S[J]. J. Am. Chem. Soc, 1989, 111:840-846
    [114] Kondo J N, Domen K. IR observation of adsorption and reactions of olefins on H-form zeolites[J]. J. Mol. Catal. A: Chem., 2003,199: 27-38
    [115] Kondo J N, Domen K, Wakabayashi F. A Novel route of double-bond migration of an olefin without protonated species on ZSM-5 zeolite[J]. J. Phys. Chem. B, 1997, 101:5477-5479
    
    [116] Lewis D W, Catlow C R A, Sankar G, et al. Structure of iron-substituted ZSM-5[J]. J.phys. chem., 1995, 99: 2377-2383
    [117] Lewis D W, Sankar G, Catlow C R A, et al. Computer simulation of Fe-ZSM-5-comparison to EXAFS studies[J]. Nucl. Instrum. Meth. B, 1995, 97: 44-53
    [118] Sauer J, Bussemer B. Ab initio modelling of chemical shifts for silicate solutions, silicates and zeolite catalytsts[J]. Abstr. Pap. Am. Chem. Soc, 1998,216: 154-COMP
    [119] Stave M S, Nicholas J B. Density functional studies of zeolites.2. Structure and acidity of [T]-ZSM-5 models (T=B, Al, Ga, and Fe)[J]. J. phys. chem., 1995, 99: 15046-15061
    [120] Xavier R, Rutger A, Van S, et al. A periodic DFT study of isobutene chemisorption in proton-exchanged zeolites: Dependence of reactivity on the zeolite framework structure[J]. J. Phys. Chem. B, 2003, 107: 1309-1315
    [121] Kyrlidis A, Cook S J, Chahraborty A K, et al. Electronic structure calculations of ammonia adsorption in H-ZSM-5 zeolites[J]. J. phys. chem., 1995, 99: 1505-1515
    [122] Muller M, Bar H J, Kast S M. Ab initio localisation of adsorption sites in guest/host systems: application to the system thionine in zeolite NaY[J]. Chem. Phys. Lett., 1999,311:485-490
    [123] Rigby A M, Kramer G J, van Santen R A. Mechanisms of hydrocarbon conversion in zeolites: A quantum mechanical study[J]. J. Catal., 1997, 170: 1-10
    [124]Chu C T,Chang C D.Isomorphous sabs(??)tution in zeolite frameworks.1.acidity of surface hydroxyls in[B-],[Fe-],[Ga-],and[A1]-ZSM-5[J].J.phys.chem.,1985,89:1569-1571
    [125]Kazansky V B.Adsorbed carbocations as transition states in heterogeneous acid catalyzed transformations of hydrocarbons[J].Catal.Today,1999,51:419-434
    [126]Hay P J,Redondo A,Guo Y.Theoretical studies of pentene cracking on zeolites:C-C β-seission processes[J].Catal.Today,1999,50:517-523
    [127]Frash M V,Kazansky V B,Rigby A M,et al.Cracking of hydrocarbons on zeolite catalysts:Density Functional and Hartree-Fock calculations on the mechanism of the β-scission reaction[J].J.Phys.Chem.B,1998,102:2232-2238
    [128]Zheng X,Blowers P.An ab initio study of ethane conversion reactions on zeolites using the complete basis set composite energy method[J].J.Mol.Catal.A:Chem.,2005,229:77-85
    [129]Rigby A M,Frash M V.Ab initio calculations on the mechanisms of hydrocarbon conversion in zeolites:Skeletal isomerisation and olefm chemisorption[J].J.Mol.Catal.A:Chem.,1997,126:61-72
    [130]Zheng X,Blowers P.A computational study of methane catalytic reactions on zeolites[J].J.Mol.Catal.A:Chem.,2006,246:1-10
    [131]Brindle M,Sauer J.Acidity differences between inorganic solids induced by their framework structure.A combined Quantum Mechanics/Molecular Mechanics ab Initio study on zeolites[J].J.Am.Chem.Soc.,1998,120:1556-1570
    [132]Treesukol P,Lewis J P,Limtrakul J,et al.A full quantum embedded cluster study of proton siting in chabazite[J].Chem.Phys.Lett.,2001,350:128-134
    [133]Khaliullin R Z,Bell A T,Kazansky V B.An experimental and Density Functional Theory study of the interactions of CH4 with H-ZSM-5[J].J.Phys.Chem.A,2001,105:10454-10461
    [134]Limtrakul J,Nanok T,Jungsuttiwong S,et al.Adsorption of unsaturated hydrocarbons on zeolites:the effects of the zeolite framework on adsorption properties of ethylene[J].Chem.Phys.Lett,2001,349:161-166
    [135]Froese R D J,Morokuma K.Accurate calculations of bond-breaking energies in C60 using the three-layered ONIOM method[J].Chem.Phys.Lett.,1999,305:419-424
    [136]Froese R D J,Morokuma K.IMOMO-G2MS approaches to accurate calculations of bond dissociation energies of large molecules[J].J.Phys.Chem.A,1999,103:4580-4586
    [137]Vreven T,Morokuma K.The accurate calculation and prediction of the bond dissociation energies in a series of hydrocarbons using the IMOMO(integrated molecular orbital plus molecular orbital)methods[J].J.Chem.Phys.,1999,111:8799-8803
    [138]Vreven T,Morokuma K.Prediction of the dissociation energy of hexaphenylethane using the ONIOM(MO:MO:MO)method[J].J.Phys.Chem.A,2002,106:6167-6170
    [139]Boronat M,Viruela P,Corma A.Theoretical study of the mechanism of zeolite-catalyzed isomerization reactions of linear butenes[J].J.Phys.Chem.A,1998,102:982-989
    [140]李会英.分子筛酸性位催化丁烯异构化反应机理的理论研究[D].北京:北京化工大学,2005
    [141]Demuth T,Rozanska X,Benco L,et al.Catalytic isomerization of 2-pentene in H-ZSM-22-A DFT investigaticn[J].J.Catal.,2003,214:68-77
    [142]Nieminen V,Sierka M,Murzin D Yu,et al.Stabilities of C3-C5 alkoxide species inside H-FER zeolite:a hybrid QM/MM study[J],j.Catal.,2005,231:393-404
    [143]Benco L,Hafner J,Hutschka F,et al.Physisorption and chemisorption of some n-hydrocarbons at the BrΦnsted acid site in zeolites 12-membered ring main channels:Ab initio study of the gmelinite structure[J].J.Phys.Chem.B,2003,107:9756-9762
    [144]Boronat M,Viruela P M,Corma A.Reaction intermediates in acid catalysis by zeolites:Prediction of the relative tendency to form alkoxides or carbocations as a function of hydrocarbon nature and active site structure[J].J.Am.Chem.Soc.,2004,126:3300-3309
    [145]周公度,段连运.结构化学基础[M].北京:北京大学出版社,1995,第二版
    [146]Born M,Oppenheimer J R.Zur Quantentheorie Der Molekeln[J].Ann.Physik.,1927,band 84:361-376
    [147]Born M,Huang K.Dynamical Theory of Crystal Lattices[M].Oxford Uniersity Preess,New York,1954
    [148]Hartree D R.The wave mechanism of an atom with a non-coulomb central field.I.Theory and methods.Ⅱ.Some results and discussion[J].Proc.Cambirdge Phil.Soc.,1928,24:89-132
    [149]Fock V."Self-consistent field" with interchange for sodium[J].Z.Physik,1930,62:795-805
    [150]Hartree D.Calcaulations of Atomic Structure[M].Wiley,1957
    [151]Ira N.赖文.量子化学(宁世光,余敬曾,刘尚长译)[M].北京:人民教育出版社,1980
    [152]Roothaan C C J.New developments in molecular orbital theory[J].Rev.Mod.Phys.,1951,23:69-89
    [153](a)Heher W J,Radon L,Schleyer P V,et al.Ab initio Moleculaar Orbital Theory[M].Jhon Wiley & Sons,Inc.,1986;(b)Mcquarrie D A.Quantum Chemistry University Science Books[M]:Mill Vally.CA.,1983
    [154]唐敖庆,杨忠志,李前树.量子化学[M].北京:科学出版社,1982
    [155]徐光宪,黎乐民,王德民.量子化学基本原理和从头算方法(中册)[M].北京:科学出版社,1985
    [156]Parr R G,Yang W.Density-functional theory of atoms and molecules[M].Oxford University Press:Oxfird,1989
    [157]赵成大.固体量子化学-材料化学的理论基础[M].北京:高等教育出版社,2003,第二版
    [158]Labanowski J K,Andzelm,J.Density functional methods in chemistry[M].Springer-Verlag:New York,1991
    [159]Hohenbergh P C,Kohn W.Inhomogeneous electron gas[J].Phys.Rev.,1964,136:B864-B871
    [160]Murphy D R.Sixth-order term of the gradient expansion of the kinetic-energy density functional[J].Phys.Rev.A,1981,24:1682-1688
    [161]Yang W.Gradient correction in Thomas-Fermi theory[J].Phys.Rev.A,1986,34:4575-4585
    [162]Perdew J P,Wang Y.Theory of the cyclotron resonance spectrum of a polaron in two dimensions[J].Phys.Rev.B,1986,33:8800-8809
    [163]Perdew J P,Chevary J A,Vosko S H,et al..Atoms,molecules,solids,and surfaces:Applications of the generalized gradient approximation for exchange and correlation[J]. Phys.Rev.B,1992,46:6671-6687
    [164]Becke A D.Density-functional exchange-energy approximation with correct asymptotic behavior[J].Phys.Rev.A,1988,38:3098-3100
    [165]Perdew J P.Generalized gradient approx for exchange and approximation correlation:a look backward and forward[J].Physica B,1991,172:1-2
    [166]Beeke A D.Density-functional thermochernistry.I.The effect of the exchange-only gradient correction[J].J.Chem.Phys.,1992,96:2155-2160
    [167]Beeke A D.Density-functional thermochemistry.IV.A new dynamical correction functional and implications for exact-exchange mixing[J].J.Chem.Phys.,1996,104:1040-1046
    [168]Stern M J,Peraky A,Klein F S.Force field and tunneling effects in the H-H-C1 reaction system.Determination from kinetic-isotope-effect measurements[J].J.Chem.Phys.,1973,58:5697-5706
    [169]Garrett B C,Tnthlar D G.Generalized transition state theory.Classical mechanical theory and applications to eollinear reactions of hydrogen mnleeules[J].J.Phys.Chem.,1979,83:1052-1079
    [170]Garrett B C,Truhlar D G Additions and corrections-generalized transition state theory[1].Quantum effects for collinear reactions of hydrogen molecules[J].J.Phys.Chem.,1983,87:4553-4553
    [171]Wynne-Jones W F K,Eyring H.The absolute rate of reactions in condensed phases[J].J.Chem.Phys.,1935,3:492-502
    [172]赵学庄等编著,化学反应动力学原理(下册)[M].北京:高等教育出版社,1990
    [173]Fukui K,Tachibana A,Yamashita K.Toward chemodynamies[J].Int.J.Quantum.Chem.,1981,15:621-632
    [174]Ishida K,Morokuma K,Komornieki A.The intrinsic reaction coordinate.An ab initio calculation for HNC-HCN and H-+CH4→CH4+H-[J].J.Chem.Phys.,1977,66:2153-2156
    [175]Eyring H,Lin S H,Lin S M.Basic Chemical Kinetics[M].Jotm Wiley and Sons,1980
    [176]Truhlar D G,Garrett B C,Klippenstein S J.Current status of transition-state theroy[J].J.Phys.Chem.,1996,100:12771-12800
    [177]Dapprich S,Komaromi I,Byun K S,et al.A new ONIOM implementation in Gaussian98.Part I.The calculation of energies,gradients,vibrational frequencies and electric field derivatives[J].J.Mol.Strut.,1999,461-462:1-21
    [178]Vreven T,Morokuma K.On the application of the IMOMO(integrated molecular orbital plus molecular orbital)method[J].J.Comput.Chem.,2000,21:1419-1432
    [179]Kasuriya S,Namuangruk S,Treesukol P,et al.Adsorption of ethylene,benzene,and ethylbenzene over faujasite zeolites investigated by the ONIOM method[J].J.Catal.,2003,219:320-328
    [180]Bobuatong K,Limtrakul J.Effects of the zeolite framework on the adsorption of ethylene and benzene on alkali-exchanged zeolites:An ONIOM study[J].Appl.Catal.A,2003,253:49-64
    [181]Rungsirisakun R,Jansang B,Pantu P,et al.The adsorption of benzene on industrially important nanostructured catalysts(H-BEA,H-ZSM-5,and H-FAU):confinement effects[J].J.Mol.Struc.,2005,733:239-246
    [182] Panjan W, Limtrakul J. The influence of the framework on adsorption properties of ethylene/H-ZSM-5 system: An ONIOM study[J]. J. Mol. Struct., 2003,654: 35-45
    [183] Derouane E G, Andre J-M, Lucas A A. Surface curvature effects in physisorption and catalysis by microporous solids and molecular sieves[J]. J. Catal., 1988, 110: 58-73
    [184] Derouane E G, Chang C D. Confinement effects in the adsorption of simple bases by zeolites[J]. Micropor. Mesopor. Mat., 2000,35-36:425-433
    
    [185] Derouane E G Zeolites as solid solvents[J]. J. Mol. Catal. A, 1998, 134:29-45
    [186] Kontnik-Matecka B, Gorska M, Eysymontt J, et al. Infrared study of adsorption of methanol, deuterated methanol and ethylene on the surface of ZSM-5 type zeolite[J]. J.Mol. Struct., 1982,80: 199-202
    [187] White J L, Beck L W, Haw J F. Characterization of hydrogen bonding in zeolites by proton solid-state NMR spectroscopy[J]. J. Am. Chem. Soc., 1992, 114: 6182-6189
    [188] Derouane E G, Nagy J B, Gilson J P, et al. Adsorption and conversion of ethylee on H-ZSM-5 zeolite studied by carbon-13 NMR and thermogravimetry[J]. Stud. Surf. Sci.Catal., 1981,7: 1412-1425
    
    [189] Cant NW,Hall WK. Studies of the hydrogen held by solids XXI. The interaction between ethylene and hydroxyl groups of a Y-zeolite at elevated temperatures[J]. J. Catal., 1972,25: 161-172
    [190] Yoda E, Kondo J N, Domen K. Detailed process of adsorption of alkanes and alkenes on zeolites[J]. J. Phys. Chem. B, 2005,109: 1464-1472
    
    [191] Spoto G, Bordiga S, Ricchiardi G, et al. IR study of ethene and propene oligomerization on H-ZSM-5 - hydrogen-bonded precursor formation, initiation and propagation mechanisms and structure of the entrapped oligomers[J]. J. Chem. Soc, Faraday Trans., 1994, 90:2827-2835
    
    [192] Barrer RM. Specificity in physical sorption[J]. J. Colloid Interf. Sci., 1966,21: 415-434
    [193] Maesen T L M, Beerdsen E, Calero S, et al. Understanding cage effects in the n-alkane conversion on zeolites[J]. J. Catal., 2006, 237: 278-290
    
    [194] Webster, C E, Cottone A III, Drago R S. Multiple equilibrium analysis description of adsorption on Na-Mordenite and H-Mordenite[J]. J. Am. Chem. Soc, 1999, 121:12127-12139
    [195] Babitz S M, Williams B A, Miller J T, et al. Monomolecular cracking of n-hexane on Y,MOR, and ZSM-5 zeolites[J]. Appl. Catal. A: General, 1999, 179: 71-86
    
    [196] Vos A M, Rozanska X, Schoonheydt R A, et al. A theoretical study of the alkylation reaction of toluene with methanol catalyzed by acidic mordenite[J]. J. Am. Chem. Soc,2001, 123:2799-2809
    
    [197] Namuangruk S, Khongpracha P, Pantu P, et al. Structures and reaction mechanisms of propene oxide isomerization on H-ZSM-5: An ONIOM study[J]. J. Phys. Chem. B, 2006,110:25950-25957
    [198] Clark L A, Sierka M, Sauer J. Stable mechanistically-relevant aromatic-based carbenium ions in zeolite catalysts[J]. J. Am. Chem. Soc, 2003, 125: 2136-2141
    
    [199] Maseras F, Morokuma K. IMOMM: A new integrated ab initio + molecular mechanics geometry optimization scheme of equilibrium structures and transition states[J]. J.Comput. Chem., 1995, 16: 1170-1179
    [200] Olson D H, Dempsey E. The crystal structure of the zeolite hydrogen faujasite[J]. J. Catal., 1969,13:221-231
    [201]Van Koningsveld H,Van Bekkum H,Jansen J C.On the location and disorder of the tetrapropyl-ammonium(TPA)ion in zeolite ZSM-5 with improved framework accuracy[J].Acta Crystallogr.B,1987,43:127-132
    [202]Frisch M J,Trucks G W,Sehlegel H B,et al.Gaussian 03,Revision B.04,Gaussian,Inc.,Pittsburgh PA,2003
    [203]Kondo J N,Domen.K,Wakabayashi F.Double bond migration of 1-butene without protonated intermediate on D-ZSM-5[J].Mieropor.Mesopor.Mat.,1998,21:429-437
    [204]Mortier W J.Electronegativity equalization and solid state chemistry of zeolites[J].Stud.Surf.Sei.Catal.,1988,37:253-268
    [205]Datka J,Boezar M.Interaction of benzene and hexane molecules with OH-groups of various acid strengths in NaHZSM-5 zeolite[J].React.Kinet.Catal.Lett,1993,51:161-166
    [206]van Bokhoven J A,Williams B A,Ji W,et al.Observation of a compensation relation for monomolecular alkane cracking by zeolites:the dominant role of reactant sorption[J].J.Catal.,2004,224:50-59
    [207]Koch H,Reschetilowski W.Is the catalytic activity of A1-MCM-41 sufficient for hydrocarbon cracking[J].Micropor.Mesopor.Mat.,1998,25:127-129
    [208]Roos K,Liepold A,Koch H.Impact of accessibility and acidity on novel molecular sieves for catalytic cracking of hydrocarbons[j].Chem.Eng.Technol.,1997,20:326-332
    [209]Whitmore F C.Mechanism of the polymerization of olefins by acid catalysts[J].Ind.Eng.Chem.,1934,26:94-95
    [210]Malkin V G,Chesnokov V V,Paukshtis E A,et al.Quantum-chemical calculations of 13C chemical shifts of the alkoxide form in zeolites[J].J.Am.Chem.Soc.,1990,112:666-669
    [211]Narbeshuber T F,Vinek H,Lercher J A.Monomolecular conversion of light alkanes over H-ZSM-5[J].J.Catal.,1995,157:388-395
    [212]Arsenova-Hartel N,Bludau H,Schumacher R,et al.Catalytic and sorption studies related to the para selectivity in the ethylbenzene disproportionation over H-ZSM-5 catalysts[J].J.Catal.,2000,191:326-331
    [213]Arsenova N,Bludau H,Haag W O,et al.In situ IR spectroscopic study of the adsorption behaviour of ethylbenzene and diethylbenzenes related to ethylbenzene disproportionation over HY zeolite[J].Micropor.Mesopor.Mat.,1998,23:1-10
    [214]Eder F,Lercher J A.Alkane sorption in molecular sieves:The contribution of ordering,intermolecular interactions,and sorption on BrΦnsted acid sites[J].Zeolites,1997,18:75-81
    [215]Haag W O.Catalysis by zeolites - science and technology[J].Stud.Surf.Sci.Catal.,1994,84:1375-1394
    [216]van de Runstraat A,Stobbelaar P J,Van Grondelle J,et al.Influence of zeolite pore structure on catalytic reactivity[J].Stud.Surf.Sci.Catal.,1997,105:1253-1260
    [217]Denayer J F,Baron G V,Souverijns W,et al.Hydrocracking of n-alkane mixtures on Pt/H-Y zeolite:Chain length dependence of the adsorption and the kinetic constants[J].Ind.Eng.Chem.Res.,1997,36:3242-3247
    [218]Plank C J,Drake L C.Differences between silica and silica-alumina gels I.Factors affecting the porous structure of these gels[J].J.Colloid Sci.,1947,2:399-412
    [219]Li H-Y,Pu M,Liu K-H,et al.A density-functional theory study on double-bond isomerization of l-butene to cis-2-butene catalyzed by zeolites[J].Chem.Phys.Lett.,2005,404:384-388
    [220]Pu M,Li Z-H,Gong Y-J,et al.Ab initio study on the iosmerization of 1-hexene to 2-hexene over the surface of aluminosilicate molecular sieves[J].J.Mater.Sci.Lett.,2003,22:955-957
    [221]Lee C,Yang W,Parr R G.Development of the colle-salvetti correlation-energy formula into a functional of the electron-density[J].Phys.Rev.B,1988,37:785-789
    [222]Gonzalez C,Schlegel H B.An improved algorithm for reaction-path following[J].J.Chem.Phys.,1989,90:2154-2161
    [223]Gonzalez C,Schlegel H B.Reaction-path following in mass-weighted internal coordinates[J].J.Phys.Chem.,1990,94:5523-5527
    [224]Narbeshuber T F,Brait A,Seshan K,et al.Dehydrogenation of Light Alkanes over Zeolites[J].J.Catal.,1997,172:127-136
    [225]Temkin M I.The kinetics of some industrial heterogeneous catalytic reactions[J],adv.Catal.,1979,28:173-281
    [226]Xu B,Sievers C,Hong S B,et al.Catalytic activity of BrΦnsted acid sites in zeolites:Intrinsic activity,rate-limiting step,and influence of the local structure of the acid sites[J].J.Catal.,2006,244:163-168
    [227]Corma A,Ortega F J.Influence of adsorption parameters on catalytic cracking and catalyst decay[J].J.Catal.,2005,233:257-265
    [228]Kondo J N,Shao L,Wakabayashi F,et al.Double bond migration of an olefin without protonated species on H(D)form zeolites[J].J.Phys.Chem.B,1997,101:9314-9320
    [229]Corma A,Planelles J,Tomas F.The influence of branching isomerization on the product distribution obtained during cracking of n-heptane on acidic zeolites[J].J.Catal.,1985,94:445-454
    [230]Yang L,Trafford K,Kresnawahjuesa O,et al.An examination of confinement effects in high-silica zeolites[J].J.Phys.Chem.B,2001,105:1935-1942
    [231]Rappe A K,Casewit C J,Colwell K S,et al.UFF,a full periodic table force field for molecular mechanics and molecular dynamics simulations[J].J.Am.Chem.Soc.,1992,114:10024-10035
    [232]Jansang B,Nanok T,Limtrakul J.Interaction of mordenite with an aromatic hydrocarbon:An embedded ONIOM study[J].J.Mol.Catal.A:Chem.,2006,264:33-39
    [233]Boronat M,Zicovich-Wilson C M,Viruela P,et al.Influence of the local geometry of zeolite active sites and olefin size on the stability of alkoxide intermediates[J].J.Phys.Chem.B,2001,105:11169-11177
    [234]Guo J,Cheng X-W,Zhou W-Z,et al.Studies on crystallography,stability,acidity and skeletal isomerization of C5 olefins of THF-FER zeolite[J].Micropor.Mesopor.Mat.,2005,79:319-328
    [235]Sandelin F,Eilos I,Harlin E,et al.A CFB unit for skeletal isomerization of linear c4-c6olefins on ferrierite catalysts[J].Stud.Surf.Sci.Catal.,2004,154:2157-2162
    [236]周伟正,林德昌,钟鹰,等.THF-FER沸石的系列研究Ⅳ.固体酸性及C5烯烃骨架异构化催化性能[J].化学学报,2004,62:833-838
    [237]吴治华,王清遐,徐龙伢,等.C5+烯烃骨架异构和FCC汽油改质[J].石油炼制与化 工,2000,31:25-29;周力,吴肖群,吕德伟.C5全组分异构烯烃化过程分析[J].工业催化,1997,1:3-12
    [238]Sandelina F,Salmib T,Murzinb D Yu.An integrated dynamic model for reaction kinetics and catalyst deactivation in fixed bed reactors:skeletal isomefization of 1-pentene over ferrierite[J].Chem.Eng.Sei.,2006,61:1157-1166
    [239]Maurer T,Kraushaar-Czametzki B.Thermodynamic and kinetic reaction regimes in the isomerization of 1-pentene over ZSM-5 catalysts[J].J Catal.,1999,187:202-208
    [240]Nakamura K,Eda K,Hasegawa S,et al.Reactivity for isornerization of 1-butene on the mixed MoO3-ZnO oxide catalyst[J].Appl.Catal.A:Gen.,1999,178:167-176
    [241]Li J-H,Davis R J.On the use of 1-butene double-bond isomerizafion as a probe reaction on cesium-loaded zeolite X[J].Appl.Catal.A:Gen.,2003,239:59-70
    [242]Lombardo E A,Velez J.Adv.Kinetics and mechanism of n-butene and n-peotene isomerization over Na-Y zeolites[J].Chem.Ser.,1973,121:553-562
    [243]Kazansky V B.The nature of adsorbed carbenium ions as active intermediates in catalysis by solid acids[J].Acc.Chem.Res.,1991,24:379-383
    [244]Scott A P,Radom L.Harmonic vibrational frequencies:An evaluation of Hartree-Fock,MΦller-Plesset,quadratic configuration interaction,density functional theory,and semiempirical scale factors[J].J.Phys.Chem.,1996,100:16502-16513
    [245]Trombetta M,Armaroli T,Alejandre A G,et al.An FT-IR study of the internal and external surfaces of HZSM5 zeolite[J].Appl.Catal.A:Gen.,2000,192:125-136
    [246]Kustov L M,Kazansky V B,Beran S,et al.Adsorption of Carbon Monoxide on ZSM-5Zeolites.Infrared Spectroscopic Study and Quantum-chemical Calculations[J].J.Phys.Chem.,1987,91:5247-5251
    [247]Makarova M A,Ojo A F,Karim K,et al.FTIR Study of Weak Hydrogen Bonding of Bronsted Hydroxyls in Zeolites and Aluminophosphates[J].J.Phys.Chem.,1994,98:3619-3623
    [248]Lazo N D,Richardson B R,Schettler P D,et al.In situ variable-temperature MAS carbon-13 NMR study of the reactions of isobutylene in zeolites HY and HZSM-5[J].J.Phys.Chem.1991,95:9420-9425
    [249]Ishikawa H,Yoda E,Kondo J N,et al.Stable dimerized alkoxy species of 2-methylpropene on mordenite zeolite studied by FT-IR[J].J.Phys.Chem.B,1999,103:5681-5686
    [250]李会英,蒲敏,陈标华.DFT法研究分子筛催化trans-2-丁烯的双键异构[J].物理化学学报,2005,21:898-902
    [251]Lombardo E A,Velez J,Comeijo E.Normal monoolefin isomerization over sodium Y zeolites[J].Acta Cient.Venez.supl.1973,24:160-164
    [252]傅献彩,沈文霞,姚天扬.物理化学(下册)[M].北京:高等教育出版社,2001
    [253]Szabo J,Perrotey J,Szabo G,et al.Isomerization of n-butenes into isobutene over fluorinated aluminas:Influence of experimental conditions upon selectivity[J].J.Mol.Catal.,1991,67:79-90

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700