表面活性剂在废木质纤维素制酒精中的应用基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对木质纤维素资源生物转化制取酒精技术实用化的一个主要的障碍——纤维素酶活性不高、生产成本过高而导致其应用仍受到限制的问题,本研究首次将由微生物产生的生物表面活性剂鼠李糖脂用于木质纤维素原料制取酒精的几个主要环节,即液态发酵和固态发酵生产纤维素酶、纤维素酶法水解及同步糖化发酵制酒精的过程,目的是为了促进微生物产酶,并进一步提高酶活,从而提高木质纤维素的水解效率和酒精的转化率,并降低成本。同时与化学合成的非离子表面活性剂Tween 80作了比较。
     在液态发酵过程中,加入少量的鼠李糖脂和Tween 80就能对绿色木霉的产酶起到促进作用,尤其在产酶高峰期。添加鼠李糖脂分别使滤纸酶活(FPA)、羧甲基纤维素酶活(CMC酶活)、微晶纤维素酶活最大提高了1.08倍,1.6倍和1.03倍。添加Tween 80也能使酶活增大,效果略逊于鼠李糖脂,并且测得的酶活值整体上均比添加鼠李糖脂的样低。与Tween 80相比,加入鼠李糖脂使溶液的表面张力降得更低,并且在整个发酵过程中都将发酵液的表面张力保持在较低的水平,说明鼠李糖脂不会作为优先降解对象被过早降解,可以在整个发酵过程中发挥作用。
     固态发酵过程中添加不同浓度的鼠李糖脂对绿色木霉所产的纤维素酶活和木聚糖酶活有不同程度的促进作用。对纤维素酶系中的三种主要成分,绿色木霉所产的CMC酶活最高,但是表面活性剂对其的影响最小。鼠李糖脂和Tween 80对微晶纤维素酶和纤维二糖酶的促进作用较为明显。另外,与对纤维素酶的影响不同,两种表面活性剂在产酶高峰期对木聚糖酶的影响就很明显。
     在纤维素酶促水解的过程中,探讨了添加不同浓度的鼠李糖脂和Tween 80对稻草酶解过程的糖产率、酶稳定性、以及对动力学特征和酶在纤维素上吸附的影响。另外,还采用荧光探针法,以芘为荧光探针,研究了表面活性剂和纤维素酶之间的相互作用。结果表明,表面活性剂有利于增强酶的稳定性,能不同程度地提高反应过程的CMC酶活和FPA,而且对FPA的作用效果更好。加入表面活性剂能提高酶促反应的最大速度和米氏常数,降低了底物与酶的亲和力,提高了纤维素酶的利用效率。表面活性剂能显著减少酶在纤维素上的吸附,从而降低无效吸附酶的数量,增加游离酶与纤维素反应,同时也使纤维素酶更易于回收。另外,通过采用芘作为荧光探针,研究了表面活性剂和纤维素酶之间的作用关系。纤维素酶分子与表面活性剂分子之间有较强的作用力,从而有利于表面活性剂胶团的形成。和鼠李糖脂相比,Tween 80和纤维素酶之间的作用力相对较小,但随着Tween 80的浓度的增大,它和纤维素酶之间的作用力越来越大,尤其在浓度超过临界胶束浓度时。
     研究在同步糖化发酵反应条件最优的条件下添加表面活性剂的影响,因此,采用响应面法中的中心组合设计来对实验条件进行优化,得到影响同步糖化发酵进行的主要的四个影响因子的最优组合:酶用量为25FPU/gds,底物浓度为2.5%,pH为5.3,反应温度为39℃,其影响显著性为:酶用量>底物浓度>反应温度>pH值。在此条件下,酒精转化率的最大值为78.83%。对得到的回归方程进行方差分析,结果显示方程拟合度高,说明这个实验方法是可靠的。
     最后将两种表面活性剂应用在同步糖化发酵纤维素制酒精的过程中,验证了表面活性剂同样能在同步糖化发酵这个复杂的反应体系中起到促进作用。结果显示在反应的最优条件下,分别添加不同浓度的鼠李糖脂和Tween 80,酒精的转化率均有不同程度的提高。提高最大的是反应进行到第72h时,添加1cmc(临界胶束浓度,critical micelle concentration简写为cmc)鼠李糖脂和Tween 80,酒精转化率分别达到84.8%和91.7%,比对照样提高了12.2%和21.3%。
     总之,鼠李糖脂和Tween 80都能提高绿色木霉所产的纤维素酶和木聚糖酶的活性,有利于增强酶的稳定性,降低酶和底物的亲和力,减少酶在底物上的无效吸附,提高纤维素酶的利用率。应用在同步糖化发酵过程中,添加表面活性剂在最优的实验条件下仍然能进一步提高酒精的转化率。生物表面活性剂与化学表面活性剂相比具有一些特殊的优点,因此将生物表面活性剂应用于酶的生产及木质纤维素生物转化制酒精有很大的潜力。
The main obstacle of bioconversion of lignocellulose into ethanol is the low activity of cellulase, which result in the high production cost. For the first time, in the research the biosurfactant rhamnolipid was applied in the main process of bioconversion of lignocellulose into ethanol, that is, the production of cellulase by Trichoderma viride in liquid substrate fermentation and solid state fermentation, the enzymatic hydrolysis of cellulose, and Simultaneous saccharification and fermentation (SSF). The purpose of the research is to enhance the activity of cellulase, and then the degradation rate of lignocellulose and the conversion rate of ethanol can be increased. In this research, the effects of rhamnolipid were also compared with those of chemical nonionic surfactant Tween 80.
     The effects of rhamnolipid and Tween 80 on cellulase production by T. viride in liquid substrate fermentation process were investigated. The results showed that the surfactants could enhance the cellulase activity by T. viride. The Filter paper activity (FPA), Sodium carboxymethylcellulose activity (CMCase activity) and Avicelase activity were promoted 1.08, 1.6 and 1.03 times higher than the controls by rhamnolipid. The enhancement of the enzyme activity by rhamnolipid was much higher than that of Tween 80. At the same time, rhamnolipid could decrease the surface tension to a lower level than Tween 80 did, and the surface tension was kept at the lower level during the fermentation process, indicating that rhamnolipid was not degraded prior to other substrate.
     The addition of rhamnolipid and Tween 80 resulted in better cellulase and xylanase production and more efficient lignocellulose degradation during SSF, and rhamnolipid was more effective than Tween 80. The effects of the same surfactant on enzyme production varied for different enzymes of the same organism. Among three major components of cellulase system, CMCase activity secreted by T. viride was the highest, but the stimulatory effects of surfactants on CMCase were the least. Rhamnolipid and Tween 80 were more effective to enhance the activities of Avicelase and cellobiase. Furthermore, the two surfactants had a pronounced stimulatory effect on xylanase activity during the peak phase of enzyme production.
     Effects of rhamnolipid and Tween 80 on enzymatic hydrolysis of straw were studied. The effects of different concentrations of surfactants on reducing sugar yield, enzymatic stability and cellulose contents during the course of enzymatic hydrolysis as well as the impacts of maximal reaction rate and adsorption of cellulase on cellulose were evaluated. The results indicated that rhamnolipid and Tween 80 improved enzymatic stability effectively and promoted the enzyme activity of CMCase and FPA to different extents and the effects on FPA was more efficiency. Surfactants also enhanced conversion rate of cellulose, and that in the present of rhamnolipid, the conversion rate of cellulose was higher than that with Tween 80 distinctly. Moreover, surfactants promoted maximal velocity of enzymatic reaction and helped to reduce adsorption of cellulase on cellulose remarkably. Therefore the efficiency of cellulase was increased.
     In addition, the reciprocity between surfactants and cellulase was studied by fluorescence probe method with pyrene as the probe. The results showed that there was action force between the sufactant molecule and the enzyme molecule. Compared with rhamnolipid, the action force between Tween 80 and enzyme was on the small side, but with the increasing of concentration, the action force increased, especially the concentration going over the critical micelle concentration.
     The response surface methodology was used to optimize the four main factors affecting SSF. The optimal combination of the conditions was obtained, that is the enzyme dosage of 25FPU/gds, the substrate concentration of 2.5%, pH value of 5.3, and reaction temperature of 39℃. The impact prominence of the four factors is enzyme dosage > substrate concentration > reaction temperature > pH value. The model predicts that the maximum conversion rate of ethanol that can be obtained under the above optimum conditions of the variables is 78.83%. The variance of regression equation was analyzed. The results show that the models provide a better fit to the real data and the method is effective and reliable.
     According to the effects of surfactants on the main processes of bioconversion of lignocellulose into ethanol, the rhamnolipid and Tween 80 was applied into the production of ethanol from lignocellulose by SSF. The results showed that the conversion rate of ethanol was increased to different extents by the two surfactants at the optimal condition. The maximum enhancement was obtained at the reaction time of 72 hours, at which time the conversion rates of ethanol were 84.8% and 91.7% with presence of 1cmc (critical micelle concentration) of rhamnolipid and Tween 80, and the conversion rates were12.2% and 21.3% higher than the control respectively. The experiment proved that rhamnolipid and Tween 80 could also improve the complex system of SSF.
     In conclusion, surfactants could enhance the enzyme activities by Trichoderma viride and improve enzymatic stability and reduce ineffective adsorption of cellulase on lignocellulose. Therefore the efficiency of cellulase was increased. Two surfactants were applied in the main process of SSF and the conversion rate of ethanol also was increased under the optimum conditions of the variables. Biosurfactants are of some special advantages over chemical surfactants, therefore it is of a great potential to be applied in enzyme production and lignocellulose bioconversion into ethanol.
引文
[1] Galbe M, Zacchi G A. Review of the poduction of ehanol from softwood. Appl Microbiol Biotechnol, 2002, 59(6): 618–628
    [2] Bailey B K. Performance of ethanol as a transportation fuel. In: Handbook on bioethanol: production and utilization. Bristol: Taylor & Francis, 1996, 51–76
    [3] 黄宇彤,杜连祥. 美国的燃料酒精工业. 酿酒科技,2001,5:99–101
    [4] 刘耘,鄢满秀. 纤维素酒精发酵的研究进展. 广州食品工业科技,2000,15(2):51–54
    [5] Mooney H A. On the road to global ecology. Annu Rev Energy Environ, 1999, 24: 189–226
    [6] Tuomela M, Vikman M, Hatakka A. Biodegradation of lignin in a compost environment: a review. Bioresource Technol, 2000, 72(2): 169–183
    [7] Pérez J, Mu?oz-Dorado J, Rubia T. Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. Int Microbiol, 2002, 5(2): 53–63
    [8] 谢君,任路,李维,等. 白腐菌液体培养产生木质纤维素降解酶的研究. 四川大学学报(自然科学版),2000,37(增刊):161–166
    [9] 吴坤,张世敏. 木质素生物降解研究进展. 河南农业大学学报,2000,34(4):349–354
    [10] 陈洪章. 纤维素生物技术. 北京:化学工业出版社,2005,13–35
    [11] 李国学,张福锁. 固体废物堆肥化与有机复混肥生产. 北京:化学工业出版社,2000,56–83
    [12] 高洁,汤烈贵. 纤维素科学. 北京:科学出版社,1999,41–46
    [13] 瞿礼嘉,顾红雅,胡平,等. 现代生物技术导论. 北京:高等教育出版社,1998,42–61
    [14] 高培基,许平. 资源环境微生物技术. 北京: 化学工业出版社,2004,18–34
    [15] 于斌,齐鲁. 木质纤维素生产燃料乙醇的研究现状.化工进展,2006,25(3):244–249
    [16] 伍世文. 天然纤维素类物质的糖化及转化为酒精的研究. 西部粮油科技,2000,25(3):31–35
    [17] Torget R, Werdene P, Himmel M, et al. Dilute-acid pretreatment of short rotationwoody and herbaceous crops. Appl Biochem Biotechnol, 1990, 24(25): 115–126
    [18] Nguyen Q A, Tucker M P, Boynton B L, et al. Dilute acid pretreatment of softwoods. Appl Biochem Biotechnol, 1998, 70(72): 77–87
    [19] Sun X F, Xu F, Sun R C, Wang Y X, Fowler P, Baird M S. Characteristics of degraded lignins obtained from steam exploded wheat straw. Polym Degrad Stabil, 2004, 86(2): 245–256
    [20] Clark T A, Mackie K L. Steam explosion of the softwood Pinus radiata with sulphur dioxide addition I Process optimisation. J Wood Chem Technol, 1987, 7(3): 373–403
    [21] Clark T A, Mackie K L, Dare P H. Steam explosion of the softwood Pinus radiata with sulphur dioxide addition II Process characterisation. J Wood Chem Technol, 1989, 9(2): 135–166
    [22] Schwald W, Smarridge T, Chan M, et al. The influence of SO2 impregnation and fractionation on the product recovery and enzymatic hydrolysis of steam-treated sprucewood. In: Coughlan MP(ed) Enzyme systems for lignocellulose degradation. London: Elsevier, 1989, 231–242
    [23] Fein J E, Potts D, Good D, et al. Development of an optimal wood-to-fuel ethanol process utilizing best available technology. In: Klass DL(ed) Proceedings of the ASAE 1991 International Winter Meeting. Energy from biomass and wastes. Chicago, 1991, 745–765
    [24] Ramos L P, Breuil C, Saddler J N. Comparison of steam pretreatment of eucalyptus, aspen and spruce wood chips and their enzymatic hydrolysis. Appl Biochem Biotechnol, 1992, 34(35): 37–48
    [25] Cantarella M, Cantarella L, Gallifuoco A, et al. Comparison of different detoxification methods for steam-exploded poplar wood as a substrate for the bioproduction of ethanol in SHF and SSF. Process Biochem, 2004, 39(11): 1533–1542
    [26] Schell D J, Torget R, Power A, et al. A technical and economic analysis of acid-catalyzed steam explosion and dilute sulfuric acid pretreatments using wheat straw or aspen wood chips. Appl Biochem Biotechnol, 1991, 28(29): 87–97
    [27] Holtzapple M T, Jun J H, Ashok G, et al. The ammonia freeze explosion (AFEX) process: a practical lignocellulose pretreatment. Appl Biochem Biotechnol, 1991, 28(29): 59–74
    [28] Holtzapple M T, Ripley E P, Nikolaou M. Sacharification, fermentation andprotein recovery from low-temperature AFEX-treated coastal Bermudagrass. Biotechnol Bioeng, 1994, 44(9): 1122–1131
    [29] McMillan J D. Pretreatment of lignocellulosic biomass. In: Enzymatic Conversion of Biomass for Fuels Production. Washington DC: American Chemical Society, 1994, 292–324
    [30] Zheng Y Z, Lin H M, Tsao G T. Pretreatment for cellulose hydrolysis by carbon dioxide explosion. Biotechnol Prog, 1998, 14(6): 890–896
    [31] 熊键,叶君,梁文芷,等. 微波对纤维素Ⅰ超分子结构的影响. 华南理工大学学报(自然科学版),2000,28(3):85–89
    [32] 唐爱民,梁文芷. 超声波预处理对速生材木浆纤维结构的影响. 声学技术, 2000,19(2):78–85
    [33] Ben-Ghedalia D, Miron J. The effect of combined chemical and enzyme treatment on the saccharification and in vitro digestion rate of wheat straw. Biotechnol Bioeng, 1981, 23(4): 823–831
    [34] Neely W C. Factors affecting the pretreatment of biomass with gaseous ozone. Biotechnol Bioeng, 1984, 26(1): 59–65
    [35] Ben-Ghedalia D, Shefet G. Chemical treatments for increasing the digestibility of cotton straw. J Agric Sci, 1983, 100(2): 393–400
    [36] Vidal P F, Molinier J. Ozonolysis of lignin-improvement of in vitro digestibility of poplar sawdust. Biomass, 1988, 16(1): 1–17
    [37] Knauf B M, Moniruzzaman M. Lignocellulosic biomass processing: A perspective. Int Sugar J, 2004, 106 (1263): 147–150
    [38] S?derstr?m J, Pilcher L, Galbe M. Two-step steam pretreatment of softwood with SO2 impregnation for ethanol production. Appl Biochem Biotechnol, 2002, 98(1): 5–21
    [39] Stenberg K, Tengborg C, Galbe M, et al. Optimisation of steam pretreatment of SO2-impregnated mixed softwoods for ethanol production. J Chem Technol Biotechnol, 1998, 71(4): 299–308
    [40] Schurz J. Bioconversion of Cellulosic Substances into Energy. In: Chemicals and Microbial Protein Symposium Proceedings. New Delhi, 1978, 37–42
    [41] Fan L T, Gharpuray M M, Lee Y H. Cellulose Hydrolysis Biotechnology Monographs. Berlin: Springer, 1987, 57–69
    [42] Hatakka A I. Pretreatment of wheat straw by white-rot fungi for enzymatic saccharification of cellulose. Appl Microbiol Biotechnol, 1983, 18(6): 350–357
    [43] Ander P, Eriksson K E. Selective degradation of wood components by white-rotfungi. Physiol Plant, 1977, 41(4): 239–248
    [44] Boominathan K, Reddy C A. cAMP-mediated differential regulation of lignin peroxidase and manganese-dependent peroxidase production in the white-rot basidiomycete Phanerochaete chrysosporium. Proc Natl Acad Sci, 1992, 89(12): 5586–5590
    [45] Harris E E, Beglinger E. Madison wood sugar process. Ind Eng Chem, 1946, 38: 890–895
    [46] Keller F A. Integrated bioprocess development for bioethanol production. In: Handbook on bioethanol: production and utilization. Bristol: Taylor & Francis, 1996, 351–379
    [47] Liu J, Yuan X Z, Zeng G M, Shi J G, et al. Effect of biosurfactant on cellulase and xylanase production by Trichoderma viride in solid substrate fermentation. Process Biochem, 2006, 41 (11): 2347–2351
    [48] Katzen R A. 60 year journey through bioconversion of biomass to ethanol. In: Proceedings of the Fifth Brazilian symposium on the chemistry of lignins and other wood components. Brazil, 1997, 334–339
    [49] Jones J L, Semrau K T. Wood hydrolysis for ethanol production–previous experience and the economics of selected processes. Biomass, 1984, 5(2): 109–135
    [50] Larsson S, Palmqvist E, Hahn-H?gerdal B, et al. The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enzyme Microb Technol, 1999, 24(3): 151–159
    [51] Nguyen Q A, Tucker M P, Keller F A, et al. Dilute acid hydrolysis of softwoods: Scientific note. Appl Biochem Biotechnol, 1999, 77(79): 133–142
    [52] Godden B, BallA S, Helvenstein P, et al. Towards elucidation of the lignin degradation pathway in actinomycetes. J Gen Microbiol, 1992, 138(11): 2441–2448
    [53] Wyman C E. Production of low cost sugars from biomass: progress, opportunities, and challenges. In: Proceedings of the 4th Biomass Conference of the Americas. Oxford, 1999, 867–872
    [54] Duff S J B, Murray W D. Bioconversion of forest products industry waste cellulosics to fuel ethanol: a review. Bioresour Technol, 1996, 55(1): 1–33
    [55] Tassinari T, Macy C, Spano L. Energy requirement and process design consideration in compression milling pretreat of cellulosic wastes for enzymatic hydrolysis. Biotechnol Bioeng, 1980, 22(8): 1689–1705
    [56] Mandels M, Sternberg D. Recent advances in cellulase technology. Ferment Technol, 1976, 54(4): 267–286
    [57] Saddler J N, Gregg D J. Ethanol production from forest product wastes. In: Forest products biotechnology. London: Taylor & Francis, 1998, 45–65
    [58] Tengborg C, Stenberg K, Galbe M, et al. Comparison of SO2 and H2SO4 impregnation of softwood prior to steam pretreatmenton ethanol production. Appl Biochem Biotechnol, 1998, 70(72): 3–15
    [59] Converse A O, Matsuno R, Tanaka M . A model for enzyme adsorption and hydrolysis of microcrystalline cellulose with slow deactivation of the adsorbed enzyme. Biotechnol Bioeng, 1988, 32(1): 38–45
    [60] Ooshima H, Sakata M, Harano Y. Enhancement of enzymatic hydrolysis of cellulose by surfactant. Biotechnol Bioeng, 1986, 28(11): 1727–1734
    [61] Park J W, Takahata Y, Kajiuchi T, et al. Effects of nonionic surfactant on enzymatic-hydrolysis of used newspaper. Biotechnol Bioeng, 1992, 39(1): 117-120
    [62] Helle S S, Duff S J B, Cooper D G. Effect of surfactants on cellulose hydrolysis. Biotechnol Bioeng, 1993, 42(5): 611–617
    [63] Reese E T. Inactivation of cellulase by shaking and its prevention by surfactants. J Appl Biochem, 1980, 2: 36–39
    [64] Eriksson T, B?rjesson J, Tjerneld F. Mechanism of surfactant effect in enzymatic hydrolysis of lignocellulose. Enzyme Microb Technol, 2002, 31(3): 353–364
    [65] Kristensen J B, B?rjesson J, Bruun M H, et al. Use of surface active additives in enzymatic hydrolysis of wheat straw lignocellulose. Enzyme Microb Tech, 2007, 40(4): 888-895
    [66] Kurakake M, Ooshima H, Kato J. Pretreatment of bagasse by nonionic surfactant for the enzymatic hydrolysis. Bioresource Technol, 1994, 49(3): 247–251
    [67] Kaar W E, Holtzapple M. Benefits from Tween during enzymic hydrolysis of corn stover. Biotechnol Bioeng, 1998, 59(4): 419–427
    [68] Wu J, Ju L K. Enhancing enzymatic saccharification of waste newsprint by surfactant addition. Biotechnol Prog, 1998, 14(4): 649–652
    [69] Makkar R S, Cameotra S S. An update on the use of unconventional substrates for biosurfactant production and their new applications. Appl Microbiol Biotechnol, 2002, 58(4): 428–434
    [70] 刘佳,袁兴中,曾光明,等. 表面活性剂对绿色木霉产纤维素酶影响. 中国生物工程杂志,2006,26(8):36–40
    [71] Castanon M, Wilke C R. Effects of the surfactant Tween 80 on enzymatic hydrolysis of newspaper. Biotechnol Bioeng, 1981, 23: 1365–1372
    [72] Kawagoshi Y, Fujita M. Purification and properties of the polyvinyl alcohol-degrading enzyme 24-pentanedione hydrolase obtained from Pseudomonas vesicularis var. povalolyticus PH. World J Microbiol Biotechnol, 1998, 14(1): 95–100
    [73] Beldman G, Rombouts F M, Voragen A G J. Application of cellulase and pectinase from fungal origin for the liquefaction and saccharification of biomass. Enzyme Microb Technol, 1984, 6(11), 503–507
    [74] Excoffier G, Toussaint B, Vignon M R. Saccharification of steam-exploded poplar wood. Biotechnol Bioeng, 1991, 38(11): 1308–1317
    [75] Xin Z, Yinbo Q, Peiji G. Acceleration of ethanol production from paper mill waste fiber by supplementation with β-glucosidase. Enzyme Microb Technol, 1993, 15(1): 62–65
    [76] Sun Y, Cheng J. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresourse Technol, 2002, 83(1): 1–11
    [77] 王景林. 纤维素酶固定化的研究进展. 生命科学,1997,9(3):116–118
    [78] Karube I, Tanaka S. Hydrolysis of Cellulose in a Cellulase-Bead Fluidized-Bed Reactor. Biotechnol Bioeng, 1977, 19(8): 1183–1188
    [79] Jain P, Wilkins E S. Cellulase immobilized on modified nylon for saccharification of cellulose. Biotechnol Bioeng, 1987, 30(10): 1057–1062
    [80] Takeuchi T, Makino K. Smart polymers in biotechnology and medicine. Biotechnol Bioeng, 1987, 29 (20): 160–164
    [81] Bajipai P. Application of xylanase in probleaching of bamboo Kraft pulp. Tappi J, 1996, 79 (4): 225–230
    [82] Haltrich Dietmar. Production of Fungal xylanase. Bioresource Technol, 1996, 58(2): 137-161
    [83] 杨瑞鹏. 木聚糖酶高产菌株的筛选与鉴定. 华中农业大学学报,1990,9(3): 311–314
    [84] 陈惠忠. 产木聚糖酶菌株的选育及企业提发酵条件. 微生物学报,1990,30(5):351–357
    [85] 黄炜,方祥年,夏黎明. 固定化细胞发酵半纤维素水解液产木糖醇的研究. 林产化学与工业,2004,24(1):29–33
    [86] 朱启忠. 青霉菌胞外半纤维素酶的固定化研究. 微生物学杂志,2000,6(2):56–57
    [87] Demirbas A. Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energ Convers Manage, 2001, 42(11): 1357–1378
    [88] Bridgewater A V. Principles and practice of biomass fast pyrolysis processes for liquids. J Anal Appl Pyrol, 1999, 51(1): 3–22
    [89] Prosen E M, Radlein D, Piskorz J, et al. Microbial Utilization of Levoglucosan in Wood Pyrolysate as a Carbon and Energy Source. Biotechnol Bioeng, 1993, 42(4): 538–541
    [90] Nakagawa M, Sakai Y, Yasui T. Itaconic Acid Fermentation of Levoglucosan. J Ferment Technol, 1984, 62(2): 201–203
    [91] Zhuang X L, Zhang J Z, Yang H X, et al. Preparation of levoglucosan by pyrolysis of cellulose and its citric acid fermentation. Bioresource Technol, 2001, 79(1): 63–66
    [92] Bonn G. Analytical Determination of 1,6-anhydro-b-D-glucopyranose and Kinetic Studies under Hydrothermal Conditions. Carbohyd Chem, 1985, 4(3): 405–419
    [93] Bozell J J. Chemicals and Materials from Renewable Resources. Oxford: Oxford University Press, 2001, 122–132
    [94] VanRensburg P, VanZyl W H, Pretorius I S. Engineering yeast for efficient cellulose degradation. Yeast, 1998, 14(1): 67–76
    [95] Cho K M, Yoo Y J, Kang H S. δ-Integration of endo/exoglucanase and β-glucosidase genes into the yeast chromosomes for direct conversion of cellulose to ethanol. Enzyme Microb Technol, 1999, 25(1): 23–30
    [96] Murai T M, Ueda T, Kawaguchi M, et al. Assimilation of cellooligosaccharides by a cell surface-engineered yeast expressing β-glucosidase and carboxymethyl cellulase from Aspergillus aculeatus. Appl Environ Microbiol, 1998, 64(12): 4857–4861
    [97] Torrens J L, Herman D C, Miller-Maier R M. Biosurfactant (Rhamnolipid) sorption and the impact on rhamnolipid-facilitated removal of Cadmium from various soils under saturated flow conditions. Environ Sci Technol, 1998, 32(6): 776–781
    [98] Fujita Y, Takahashi S, Ueda M, et al. Direct and efficient production of ethanol from cellulosic material with a yeast strain displaying cellulolytic enzymes. Appl Environ Microbiol, 2002, 51(10): 5136–5141
    [99] 吕福英,闵航,陈美慈,等. 一个高温厌氧直接转化纤维素成乙醇的高纯富集物. 浙江大学学报(农业与自然科学版),2000,26(1):56–60
    [100] 陈伯铨,彭万峰. 纤维素直接发酵乙醇微生物的选育 III-里氏木霉与运动发酵单胞原生质体融合的研究. 纤维素科学与技术,1994,2(2):53–58
    [101] 林风. 纤维素酶的生物化学和分子生物学研究新进展. 生命科学,1994,6(1):18–24
    [102] Stenberg K, Tengborg C, Galbe M, et al. Recycling of process streams in ethanol production from softwood based on enzymatic hydrolysis. Appl Bioeng Biotechnol, 1998, 70(72): 697–708
    [103] 曲音波,高培基. 造纸厂废物发酵生产纤维素酶、酒精和酵母综合工艺的研究进展. 食品与发酵工业,1993,19(6):62–65
    [104] Krishna S, Prasanthi K, Chowdary G V, et al. Simultaneous saccharification and fermentation of pretreated sugar cane leaves to ethanol. Process Biochem, 1998, 33(8): 825–830
    [105] Eklund R, Zacchi G. Simultaneous saccharification and fermentation of steam-pretreated willow. Enzyme Microb Technol, 1995, 17(3): 255–259
    [106] Philippidis G P. Cellulose bioconversion technology. In: Handbook on Bioethanol: Production and Utilization. Washington DC: Taylor & Francis, 1996, 253–285
    [107] Ballesteros I, Ballesteros M, Cabanas A, et al. Selection of thermotolerant yeasts for simultaneous saccharification and fermentation (SSF) of cellulose to ethanol. Appl Biochem Biotechnol, 1991, 28(29), 307–315
    [108] Kadam K L, Schmidt S L. Evaluation of Candida acidothermophilum in ethanol production from lignocellulosic biomass. Appl Microbiol Biotechnol, 1997, 48(6): 709–713
    [109] Galbe M, Zacchi G. A review of the production of ethanol from softwood. Appl Microbiol Biotechnol, 2002, 59(6): 618–628
    [110] 吕伟民,王宇,傅国红. 玉米秸秆发酵生产燃料酒精. 酿酒,2002,29(5):35–39
    [111] 王瑞明,程殿林,马霞,等. 燃料酒精清洁生产工艺的初步研究. 酿酒,2002,29(3):52–57
    [112] Fan Z, South C, Lyford K, et al. Conversion of paper sludge to ethanol in a semicontinuous solids-fed reactor. Bioprocess Biosyst Eng, 2003, 26(2): 93-101
    [113] Wu Z, Lee Y Y. Nonisothermal simultaneous saccharification and fermentation for direct conversion of lignocellulosic biomass to ethanol. Appl Biochem Biotechnol, 1998, 70(72): 479–492
    [114] 肖炘,李佐虎. 纤维素制酒精的分散、耦合、并行系统. 生物技术通报,1999,4:27–29
    [115] 肖炘,李佐虎. 分散、耦合、并行强化的纤维素酒精生物转化. 化工冶金,2000,21(3):283–287
    [116] Zhou S, Ingram L O. Engineering endoglucanase-secreting strains of ethanologenic Klebsiella oxytoca P2. J Ind Microbiol Biot, 1999, 22(6): 600–607
    [117] 姜永明. 固定化生物催化剂的研究动向. 生物化学与生物物理进展,1991,18(1):26–31
    [118] 邓旭,郑重鸣,岑沛霖. 固定化酵母的双底物乙醇连续发酵. 化学反应工程与工艺,1995,11(3):297–301
    [119] Tanaka H, Kurosawa H, Murakami H. Ethanol production from starch by a coimmobilized mixed culture system of Aspergillus awamori and Zymomonas mobilis. Biotechnol Bioeng, 1986, 28(12): 1761–1768
    [120] Moersen A, Rehm HJ. Degradation of phenol by a defined mixed culture immobilized by adsorption on activated carbon and sintered glass. Appl Microbiol Biotechnol, 1990, 33(2): 206–212
    [121] Fujii N, Oki T, Sakurai A, et al. Ethanol production from starch by immobilized Aspergillus Awamori and Saccharomyces Pastorianus using cellulose carriers. J Ind Microbiol Biot, 2001, 27(1): 52–57
    [122] 夏黎明,丁红卫,余世袁. 固定化增殖酵母发酵半纤维素糖类的研究. 食品与发酵工业,1994,20(1):1–6
    [123] 李廷生,李魁,刘玉其. 糖化酶与酵母共固定化酒精连续发酵研究初报. 郑州工程学院学报,2001,22(3):6–8
    [124] 全易,夏天喜,刘红. 酶水解小麦秸秆纤维素研究. 江苏工业学院学报,2003,15(1):4–6
    [125] Wagner F H, Kretschmer A. Production and chemical characterization of surfactants from Rhidococcus eruthropolis and Pseudomonas sp. MUB grown on hydrocarbons, Microbial enhanced oil recovery. In: America Tucson Ariz: Pebbwell Publishing, 1983, 55–66
    [126] 曾光明,黄国和,袁兴中,等. 堆肥环境生物与控制. 北京:科学出版社,2006,137–188
    [127] Bognolo G. Biosurfactants as emulsifying agents for hydrocarbons. Colloid Surface A, 1999, 152(1): 41–52
    [128] Siegmund L. Biological amphiphiles (microbial biosurfactants). Curr OpinCollid In, 2002, 7(1): 12–25
    [129] Balba M T, Al-Shayji Y, Al-Awadhi N. Isolation and characterization of biosurfactant-producing bacteria from oil-contaminated soil. Soil Sediment Contam, 2002, 11(1): 41–56
    [130] ?zdemir G, Peker S, Helvaci S S. Effect of pH on the surface and interfacial behavior of rhamnolipids R1 and R2. Colloid Surface A, 2004, 234(1): 135–143
    [131] Eliora Z R, Eugene R. Biosurfactants and oil bioremediation. Curr Opin Biotech, 2002, 13(2): 249–265
    [132] Mulligan C N, Yong R N, Gibbs B F. Remediation technologies for metal-contaminated soils and groundwater: an evaluation. Eng Geol, 2001, 60(1): 193–211
    [133] Mulligan C N, Yong R N, Gibbs B F. Heavy metal removal from sediments by biosurfactants. J Hazard Mater, 2001, 85(1): 111–130
    [134] Shi J G, Yuan X Z, Zeng G M, et al. Removal of Cadmium and Lead from Sediment by Rhamnolipid. In: Proceedings of EnerEnv’2003-The First International Conference on Energy and Environment. Changsha, 2003, 793–798
    [135] 张景存. 三次采油. 北京:石油工业出版社,1995,90–116
    [136] Atlas R M. Microbial hydrocarbon degradation-bioremediation of oil spills. J Chem Technol Biotechnol, 1991, 52(2): 149–156
    [137] 陈坚,华兆哲,伦世仪. 生物表面活性剂在环境生物工程中的应用. 环境科学,1996,17(4):84–87
    [138] 华兆哲,陈坚,朱文昌,等. 假丝酵母生产生物表面活性剂及降解正构烷烃的研究. 南京大学学报,1998,34(2):149–153
    [139] VanDyke M I, CoutureI P, Brauer M, et al. Pseudomonas aeruginosa UG2 rhamnolipid biosurfactants: structural characterization and their use in removing hydrophobic compounds from soil. Can J Microbiol, 1993, 39(1): 1071–1078
    [140] 方云,夏咏梅. 生物表面活性剂. 北京:中国轻工业出版社,1992,1–160
    [141] 伍晓林,陈坚,伦世仪,等. 生物表面活性剂在提高原油采收率方面的应用. 生物学杂志,2000,17(6):25–28
    [142] Peypoux F. Recent trends in the biochemistry of surfactin. Appl Microbial Biotechnol, 1999, 51(5): 553–563
    [143] Rapp P, Bock H, Wager F, et al. Use of trehalose lipids in enhanced oil recovery.Biotechnol, 1977, 81: 177–185
    [144] Uchida Y, Misava S, Nakahara T, et al. Factors affecting the production of succinoyltrehalose lipids by Rhodococcus erythropolis SD274 grown on n-alkanes. Agric Bio Chem, 1989, 53(3): 765–769
    [145] White R T, Damm D, Miller J, et al. Isolation and characterization of the human pulmonary surfactant apoprotein gene. Nature, 1985, 317(6035): 316–320
    [146] Mulligan C N, Gibbs B F. Biosurfactants: production, properties, applications. NewYork: Marel Dekker Inc, 1993, 329–371
    [147] 张德强,黄镇亚,张志毅. 绿色木霉纤维素酶 AS33032 液态发酵的研究. 北京林业大学学报,2001,23(1):56–58
    [148] Pardo A G. Effect of surfactants on cellulase production by Nectria catalinensis. Curr Microbiol, 1996, 33(4): 275–278
    [149] Ahuja S K, Ferreira G M, Moreira A R. Production of an endoglucanase by the shipworm bacterium, Teredinobacter turnirae. J Ind Microbiol Biotechnol, 2004, 31(1): 41–47
    [150] 时进钢,袁兴中,曾光明,等. 生物表面活性剂的合成与提取研究进展?. 微生物学通报,2003,30(1):68–72
    [151] Goering H K, Van Soest P J. Forage fiber analyses: apparatus, reagentes procedures and some applications. In: Agricultural handbook No. 379. Washington: USDA, 1970, 20–45
    [152] Mandels M. Enzymatic hydrolysis of cellulose: evaluation of cellulase culture filtrates under use condition. Biotechnol Bioeng, 1981, 23: 2009–2026
    [153] Ghose T K. Measurement of cellulase activities. Pure Appl Chem, 1987, 59(2): 257–268
    [154] Reddy R M, Reddy P G and Seenayya G. Enhanced production of thermostable β-amylase and pullulanase in the presence of surfactants by Clostridium thermosulfurogenes SV2. Process Biochem, 1999, 34(1): 87–92
    [155] Tengerdy R P, Szakacs G. Bioconversion of lignocellulose in solid substrate fermentation. Biochem Eng J, 2003, 13(2): 169–179
    [156] Xia L, Cen P. Cellulase production by solid state fermentation on lignocellulosic waste from the xylose industry. Process Biochem, 1999, 34(9): 909–912
    [157] Adsul M G, Ghule J E, Shaikh H, et al. Polysaccharides from bagasse: applications in cellulase and xylanase production. Carbohyd Polym, 2004,57(1): 67–72
    [158] Mandviwala T N, Khire J M. Production of high activity thermostable phytase from thermotolerant Aspergillus niger in solid state fermentation. Journal of Ind Microbiol Biotechnol, 2000, 24(4): 237–243
    [159] Goes A P, Sheppard J D. Effect of surfactants on α-amylase production in a solid substrate fermentation process. J Chem Technol Biotechnol, 1999, 74(7): 709–712
    [160] Ebune A, Al-Asheh S, Duvnjak Z. Effect of phosphate, surfactants and glucose on phytase production and hydrolysis of phytic acid in canola meal by Aspergilllus ficuum during solid-state fermentation. Bioresource Technol, 1995, 54(3): 241–247
    [161] Benincasa M, Contiero J, Manresa M A. Rhamnolipid production by Pseudomonas aeruginosa LBI growing on soapstock as the sole carbon source. J Food Eng, 2002, 54(4): 283–288
    [162] Berrocal M M, Rodr?guez J, Hern?ndez M, et al. The analysis of handsheets from wheat straw following solid substrate fermentation by Streptomyces cyaneus and soda cooking treatment. Bioresource Technol, 2004, 94 (1): 27–31
    [163] Kiran S N, Sridhar M , Venkateswar R L, et al. Ethanol production in solid substrate fermentation using thermotolerant yeast. Process Biochem, 1999, 34 (1): 115–119
    [164] 张德强,黄镇亚,张志毅. 绿色木霉纤维素酶 AS33032 固态发酵的研究. 北京林业大学学报,2001,23(2):57–60
    [165] 周晓宏,陈洪章,李佐虎. 固态发酵中纤维素基质降解过程初步研究. 过程工程学报,2003,3(5):447–452
    [166] Saha B C, Iten B L, Cotta M A. Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. Process Biochem, 2005, 40(12): 3693–3700
    [167] Goes A P. The effects of surfactants on the solid substrate fermentation of potato starch: [PhD thesis], Canada: McGill University, 1999, 84–102
    [168] Montgomery H J, Monreal C M, Young J C. Determinination of soil fungal biomass from soil ergosterol analyses. Soil Biol Biochem, 2000, 32(8): 207–1217
    [169] Ruzicka S, Norman M D P, Harris J A. Rapid ultrasonication method to determine ergosterol concentration in soil. Soil Biol Biochem, 1995, 27(9): 1215–1217
    [170] Sun Y, Cheng J J. Dilute acid pretreatment of rye straw and bermudagrass for ethanol production. Bioresource Technol, 2005, 96(14): 1599–1606
    [171] Miller G L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem, 1959, 31: 426–428
    [172] Savelli G, Spreti N, Profio D. Enzyme activity and stability control by amphiphilic self-organizing systems in aqueous solutions. Curr Opin Colloid In, 2000, 5(1): 111–117
    [173] 袁晓华,杨中汉. 植物生理化学实验. 北京:高等教育出版社,1985,1–11
    [174] Kim M H, Lee S B, Ryu D D Y. Surface deactivation of cellulose and its prevention. Enzyme Micro Technol, 1982, 4: 99–103
    [175] 宁正祥. 食品成分分析手册. 北京:中国轻工业出版社,1998,688–690
    [176] Fágáin C ó. Enzyme stabilization-recent experimental progress. Enzyme Microb Technol, 2003, 33(2): 137–149
    [177] Womack M D, Kendall D A, MacDonald R C. Detergent effects on enzyme activity and solubilization of lipid bilayer membranes. Biochem Biophys Acta, 1983, 733(2): 210–215
    [178] Mizutani C, Sethumadhavan K, Howley P, et al. Effect of a nonionic surfactant on Trichoderma cellulose treatments of regenerated cellulose and cotton yarns. Cellulose, 2002, 9(1): 83–89
    [179] Henrissat B. Cellulases and their interactions with cellulose. Cellulose, 1994, 1(3): 169–196
    [180] Gusakov A V , Sinitsyn A P, Klyosov A A. Kinetics of the enzymatic hydrolysis of cellulose: 2.A mathematical model for the process in a plug-flow column reactor. Enzyme Microb Technol, 1985, 7(8): 383–388
    [181] 陈洪章,李佐虎. 影响纤维素酶解的因素和纤维素酶被吸附性能的研究. 化学反应工程与工艺,2000,16(1):33–34
    [182] Lee S B, Shin H S, Ryu D D Y, et al. Adsorption of cellulase on cellulose: Effect of physicochemical properties of cellulose on adsorption and rate of hydrolysis. Biotechnol Bioeng, 1982, 24(10): 2137-2153
    [183] 宋宇,张小清,黄雨荪. 滤膜、过滤器的选择及其在制药除菌中的应用. 中国药业,2001,10(5):63–64
    [184] Zhu S, Wu Y, Yu Z. Simultaneous saccharification and fermentation of microwave/alkali pre-treated rice straw to ethanol. Biosystems Eng, 2005, 92(2): 229–235
    [185] Cameron M D, Aust S D. Degradation of chemicals by reactive radicalsproduced by cellobiose dehydrogenase from Phanerochaete chrysosporium. Arch Biochem Biophys, 1999, 367(1): 115–121
    [186] 慕运动. 响应面法及其在食品工业中的应用. 郑州工程学院学报,2001,22(3):91–94
    [187] Balusu R, Paduru R R, Kuravi S K, et al. Optimization of critical medium components using response surface methodology for ethanol production from cellulosic biomass by Clostridium thermocellum SS19. Process Biochem, 2005, 40(9): 3025–3030
    [188] 刘建忠,熊亚红,翁丽萍,等. 生物过程的优化. 中山大学学报(自然科学版),2002,41(增刊):132–136
    [189] Qian Y, Zuo C, Tan J, et al. Structural analysis of bio-oils from sub and supercritical water liquefaction of woody biomass. Energy, 2007, 32(3): 196–202
    [190] 蒋挺大. 木质素. 北京:化学工业出版社,2001,42–43
    [191] 孟卓,郑正,杨世关,等. 木质纤维素原料预处理技术研究近况. 四川环境,2007,126(14):113–118
    [192] Akhnazarova S, Kefarov V. Experiment optimization in chemistry and chemical engineering. Moscow: Mir Publishers, 1982, 57–89
    [193] Khuri A I, Cornell J A. Response surfaces: design and analysis. New York: Marcel Dekker Inc, 1987, 132–146
    [194] Box G E P, Hunter W G, Hunter J S. Statistics for experimenters. New York: Wiley, 1978, 291–334
    [195] Vohra A, Satyanarayana T. Statistical optimization of the medium components by response surface methodology to enhance phytase production by Pichia anomala. Process Biochem, 2002, 37(9): 999–1004
    [196] Tanyildizi M S, MuratElibol D. Optimization of α-amylase production by Bacillus sp using response surface methodology. Process Biochem, 2005, 40(7): 2291–2296

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700