多孔金属氧化物半导体材料的构建与性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
TiO2由于具有高化学稳定性、良好的光活性、低成本和无毒等特点而成为一种非常理想的半导体材料。但是由于TiO2禁带宽度很大(3.2eV),因此其仅能被太阳光中少于4%的紫外光所激发,严重限制其对于太阳光利用率。如何提高TiO2光的响应范围和量子效率成为光电材料研究的热点。本论文主要制备了几种非常有效的可见光催化剂:利用溶胶凝胶法制备N掺杂的TiO2反蛋白石结构薄膜;通过连续离子层吸附法制备了在CdS敏化N-TiO2反蛋白石薄膜;另外我们还通过一步溶剂热的方法制备了一种松果状多孔Fe3O4@Cu2O/Cu复合物,具有很高的光催化活性和稳定性。论文主要研究内容如下:
     1.通过乳液聚合的方法制备了多种不同粒径的PS微球,然后利用垂直沉积的方法将PS球的胶体光子晶体模板组装到载玻片或FTO导电玻璃上,然后采用溶胶凝胶法在PS球光子晶体膜表面生成N掺杂-TiO2的前躯体,最后通过煅烧形成N-TiO2的反蛋白石薄膜结构。主要讨论了不同钛源的溶胶前驱体对薄膜的性质的影响,以及前驱体溶胶浓度对反蛋白石结构的影响。
     2.利用连续离子层吸附的方法在N-TiO2反蛋白石骨架上复合CdS半导体材料。紫外可见漫反射光谱的测试显示CdS半导体材料的敏化增强了TiO2反蛋白石薄膜的光响应范围,提高了TiO2对于光的吸收率。光电流测试表明,CdS敏化的N-TiO2反蛋白石薄膜产生的光电流强度是TiO2反蛋白石薄膜的8倍,是N-TiO2反蛋白石薄膜的4倍。这种复合光电薄膜有望在太阳能电池和光解水等方面有得到应用。
     3.通过一步溶剂热的方法制备了一种松果状多孔Fe3O4@Cu2O/Cu复合物,这种产物是由许多厚度为100nm的纳米片组成的空心结构。该复合物对甲基橙染料具有非常好的光催化降解效率,在光照20分钟后降解效率达到96%。另外该复合物具有比Fe3O4@Cu2O更好的光降解效率和稳定性,表明Cu存在于Fe3O4@Cu2O表面,不仅提高了Cu2O的催化活性,而且对Cu2O的光腐蚀具有抑制作用,提高了复合物的稳定性。磁性材料Fe3O4可以使产物通过磁性分离有效的回收和循环利用。这种新型的Fe3O4@Cu2O/Cu复合材料有望在染料污水处理和环境清洁方面得到应用。
Because of excellent chemical stability, high photoactivity, relatively low cost, and nontoxicity, TiO2has been considered as a promising semiconductor photocatalyst for energy and environment-related applications. However, as a large bandgap semiconductor (3.2eV), TiO2could only be activated by UV light which makes up only4%of the solar spectrum. To more efficiently utilize solar energy, it is highly desired to extend the photoresponse of TiO2-based materials to visible light region. This thesis focuses on developing some efficient visible light photocatalysts including N-dope TiO2inverse opals, CdS sensitized N-TiO2inverse opals and pine cone-like porous Fe3O4@Cu2O/Cu composites.
     The main contents are summarized as follows:
     1. The first chapter describes a facile emulsion polymerization approach to synthesize highly monodisperse polystyrene (PS) spheres using potassium persulfate as the initiator and polyvinylpyrrolidone (PVP) as a stabilizer, respectively. The PS colloidal photonic crystals films were fabricated on a microscope slides or FTO glass substrate by using vertical deposition method at45℃. Then a sol-gel process was used to assemble N-TiO2onto the PS photonic crystals films, followed by a calcination process to remove PS templates. The effects of titanium source and concentration on the resulting structure were investigated. Enhanced visible light photocatalytic activity was observed in this unique structure.
     2. In the second chapter, CdS sensitized nitrogen doped titanium oxide inverse opal structure has been synthesized by an ionic layer adsorption and reaction (SILAR) route. The3D percolated periodical inverse opal structure provides numerous nucleation sites for the following CdS deposition. Also, the high surface area is beneficial for the photocatalysis process. Uv-vis diffuse reflectance spectra indicates that the CdS-N-TiO2inverse opals exhibits a good visible light absorption ability.The photocurrent density is enhanced by8times through CdS QD sensitization in comparison to the pristine TiO2inverse opal photoanodes. The as-obtained film may have potential applications in solar cells, hydrogen generation and so on.
     3. In the last chapter, novel pine cone-like Fe3O4@Cu2O/Cu nanocomposites (NCs) with photomagnetic difunction were successfully synthesized via a one-pot solvothermal method on Fe3O4without any additional linker or reducer. The products were orderly assembled into many sheets with an average thickness of~100nm, possessing a porous structure. The samples show excellent photocatalytic activity such that MO degradation efficiency is about96%at an irradiation time of20min under visible light. Also, the composites present higher stability than Fe3O4@Cu2O. The above results demonstrate that Cu could improve the photocatalytic activity of NCs and also inhibit the photocorrosion behavior of NCs. These novel Fe3O4@Cu2O/Cu composite materials are ideal candidates in water treatment and environmental cleaning as well as in magnetic applications, etc.
引文
[1]Y. Yamauchi; N. Suzuki; L. Radhakrishnan, et al. Breakthrough and future: nanoscale controls of compositions, morphologies, and mesochannel orientations toward advanced mesoporous materials [J]. The Chemical Record,2009,9(6): 321-339.
    [2]A. Fujishima. Electrochemical photolysis of water at a semiconductor electrode [J]. nature,1972,238:37-38.
    [3]P. Rodenas; T. Song; P. Sudhagar, et al. Quantum Dot Based Heterostructures for Unassisted Photoelectrochemical Hydrogen Generation [J]. Advanced Energy Materials,2013,3(2):176-182.
    [4]Z.H. Zhang; R. Dua; L.B. Zhang, et al. Carbon-Layer-Protected Cuprous Oxide Nanowire Arrays for Efficient Water Reduction [J]. ACS Nano,2013,7(2): 1709-1717.
    [5]J. Hensel; G.M. Wang; Y. Li, et al. Synergistic Effect of CdSe Quantum Dot Sensitization and Nitrogen Doping of TiO2 Nanostructures for Photoelectrochemical Solar Hydrogen Generation [J]. Nano Letters,2010,10(2):478-483.
    [6]Y. Myung; D.M. Jang; T.K. Sung, et al. Composition-Tuned ZnO-CdSe Core-Shell Nanowire Arrays[J]. ACS Nano,2010,4(7):3789-3800.
    [7]A. Wolcott; W.A. Smith; T.R. Kuykendall, et al. Photoelectrochemical Study of Nanostructured ZnO Thin Films for Hydrogen Generation from Water Splitting [J]. Advanced Functional Materials,2009,19(12):1849-1856.
    [8]K. Tanaka; M.F.V. Capule, T. Hisanaga. Effect of crystallinity of TiO2 on its photocatalytic action [J]. Chemical Physics Letters,1991,187(1-2):73-76.
    [9]A. Rothschild; F. Edelman; Y. Komem, et al. Sensing behavior of TiO2 thin films exposed to air at low temperatures [J]. Sensors and Actuators B:Chemical,2000, 67(3):282-289.
    [10]G. Koller; S. Berkebile; J.R. Krenn, et al. Oriented Sexiphenyl Single Crystal Nanoneedles on TiO2 (110) [J]. Advanced Materials,2004,16(23-24):2159-2162.
    [11]O. Carp; C.L. Huisman, A. Reller. Photoinduced reactivity of titanium dioxide [J]. Progress in Solid State Chemistry,2004,32(1-2):33-177.
    [12]X. Chen, S.S. Mao. Titanium dioxide nanomaterials:Synthesis, properties, modifications, and applications [J]. Chemical Reviews,2007,107(7):2891-2959.
    [13]A. Fujishima; X.T. Zhang, D.A. Tryk. TiO2 photocatalysis and related surface phenomena [J]. Surface Science Reports,2008,63(12):515-582.
    [14]M. Law; L.E. Greene; J.C. Johnson, et al. Nanowire dye-sensitized solar cells [J]. Nature Materials,2005,4(6):455-459.
    [15]M.K. Nazeeruddin; P. Pechy; T. Renouard, et al. Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells [J]. Journal of the American Chemical Society,2001,123(8):1613-1624.
    [16]Z. Ai; W. Ho; S. Lee, et al. Efficient Photocatalytic Removal of NO in Indoor Air with Hierarchical Bismuth Oxybromide Nanoplate Microspheres under Visible Light [J]. Environmental Science & Technology,2009,43(11):4143-4150.
    [17]A.L. Linsebigler; G. Lu, J.T. Yates. Photocatalysis on TiO2 Surfaces:Principles, Mechanisms, and Selected Results[J]. Chemical Reviews,1995,95(3):735-758.
    [18]M.R. Hoffmann; S.T. Martin; W. Choi, et al. Environmental Applications of Semiconductor Photocatalysis [J]. Chemical Reviews,1995,95(1):69-96.
    [19]R. Asahi; T. Morikawa; T. Ohwaki, et al. Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides [J]. Science,2001,293(5528):269-271.
    [20]M. Harb; P. Sautet, P. Raybaud. Origin of the Enhanced Visible-Light Absorption in N-Doped Bulk Anatase TiO2 from First-Principles Calculations [J]. The Journal of Physical Chemistry C,2011,115(39):19394-19404.
    [21]S.Z. Hu; F.Y. Li, Z.P. Fan. Enhanced Photocatalytic Activity of S-Doped TiO2 Prepared via a Modified Sol-Gel Process [J]. Asian Journal of Chemistry,2012, 24(10):4389-4392.
    [22]G.D. Yang; Z.F. Yan, T.C. Xiao. Low-temperature solvothermal synthesis of visible-light-responsive S-doped TiO2 nanocrystal [J]. Applied Surface Science, 2012,258(8):4016-4022.
    [23]F. Dong; S. Guo; H. Wang, et al. Enhancement of the Visible Light Photocatalytic Activity of C-Doped TiO2 Nanomaterials Prepared by a Green Synthetic Approach [J]. Journal of Physical Chemistry C,2011,115(27): 13285-13292.
    [24]N.O. Gopal; H.H. Lo; T.F. Ke, et al. Visible Light Active Phosphorus-Doped TiO2 Nanoparticles:An EPR Evidence for the Enhanced Charge Separation [J]. Journal of Physical Chemistry C,2012,116(30):16191-16197.
    [25]L. Li; Y.L. Yang; X.R. Liu, et al. A direct synthesis of B-doped TiO2 and its photocatalytic performance on degradation of RhB [J]. Applied Surface Science, 2013,265(36-40.
    [26]X.K. Wang; C. Wang; W.Q. Jiang, et al. Sonochemical synthesis and characterization of Cl-doped TiO2 and its application in the photodegradation of phthalate ester under visible light irradiation [J]. Chemical Engineering Journal, 2012,189:288-294.
    [27]C.L. Yu; Q.Z. Fan; Y. Xie, et al. Sonochemical fabrication of novel square-shaped F doped TiO2 nanocrystals with enhanced performance in photocatalytic degradation of phenol [J]. Journal of Hazardous Materials,2012,237: 38-45.
    [28]S. Tosoni; O. Lamiel-Garcia; D.F. Hevia, et al. Electronic Structure of F-Doped Bulk Rutile, Anatase, and Brookite Polymorphs of TiO2 [J]. Journal of Physical Chemistry C,2012,116(23):12738-12746.
    [29]S.Q. Liu; G.P. Dai; Y. Liang, et al. Fabrication and Visible-Light Photocatalytic Activity of In situ Carbon and Nitrogen Co-Doped TiO2 Hollow Sphere [J]. Acta Physico-Chimica Sinica,2013,29(3):585-589.
    [30]A.E. Giannakas; E. Seristatidou; Y. Deligiannakis, et al. Photocatalytic activity of N-doped and N-F co-doped TiO2 and reduction of chromium(Ⅵ) in aqueous solution:An EPR study [J]. Applied Catalysis B-Environmental,2013,132(460-468.
    [31]T.L. Thompson, J.T. Yates. Surface science studies of the photoactivation of TiO2-new photochemical processes [J].Chemical Reviews,2006,106(10): 4428-4453.
    [32]K. Elghniji; A. Atyaoui; S. Livraghi, et al. Synthesis and characterization of Fe3+ doped TiO2 nanoparticles and films and their performance for photocurrent response under UV illumination [J]. Journal of Alloys and Compounds,2012,541: 421-427.
    [33]J.L. Kang; L.F. Yao; Y.P. Chen, et al. Preparation and Photocatalytic Activities of Fe3+-Bi3+Co-doped TiO2 Nano-composite Films [J]. Rare Metal Materials and Engineering,2012,41:587-590.
    [34]X.Q. Meng; C. Han; F.M. Wu, et al. Er3+-Yb3+ co-doped TiO2 nanoparticles embedded in amorphous matrix with strong up-conversion emissions [J]. Journal of Alloys and Compounds,2012,536:210-213.
    [35]J. Choi; H. Park, M.R. Hoffmann. Effects of Single Metal-Ion Doping on the Visible-Light Photoreactivity of TiO2 [J]. The Journal of Physical Chemistry C,2009, 114(2):783-792.
    [36]S. Nishimura;N. Abrams;B.A. Lewis, et al. Standing Wave Enhancement of Red Absorbance and Photocurrent in Dye-Sensitized Titanium Dioxide Photoelectrodes Coupled to Photonic Crystals [J]. Journal of the American Chemical Society,2003,125(20):6306-6310.
    [37]C. Cheng; S.K. Karuturi; L. Liu, et al. Quantum-Dot-Sensitized TiO2 Inverse Opals for Photoelectrochemical Hydrogen Generation [J]. Small,2012,8(1):37-42.
    [38]A. Mihi; M.E. Calvo; J.A. Anta, et al. Spectral Response of Opal-Based Dye-Sensitized Solar Cells [J]. The Journal of Physical Chemistry C,2007,112(1): 13-17.
    [39]L.S. Zhou; F.P. Shen; X.K. Tian, et al. Stable Cu2O nanocrystals grown on functionalized graphene sheets and room temperature H2S gas sensing with ultrahigh sensitivity [J].Nanoscale,2013,5(4):1564-1569.
    [40]D.W. Cao; C.Y. Wang; F.G. Zheng, et al. High-Efficiency Ferroelectric-Film Solar Cells with an n-type Cu2O Cathode Buffer Layer [J]. Nano Letters,2012,12(6): 2803-2809.
    [41]P.D. Tran; S.K. Batabyal; S.S. Pramana, et al. A cuprous oxide-reduced graphene oxide (Cu2O-rGO) composite photocatalyst for hydrogen generation: employing rGO as an electron acceptor to enhance the photocatalytic activity and stability of Cu2O [J]. Nanoscale,2012,4(13):3875-3878.
    [42]W.C. Huang; L.M. Lyu; Y.C. Yang, et al. Synthesis of Cu2O Nanocrystals from Cubic to Rhombic Dodecahedral Structures and Their Comparative Photocatalytic Activity [J]. Journal of the American Chemical Society,2012,134(2):1261-1267.
    [43]J. Kondo. Cu2O as a photocatalyst for overall water splitting under visible light irradiation [J]. Chemical Communications,1998,3):357-358.
    [44]J. Shi; J. Li; X. Huang, et al. Synthesis and enhanced photocatalytic activity of regularly shaped Cu2O nanowire polyhedra [J]. Nano Research,2011,4(5):448-459.
    [45]B. Zhou; H. Wang; Z. Liu, et al. Enhanced photocatalytic activity of flowerlike Cu2O/Cu prepared using solvent-thermal route [J]. Materials Chemistry and Physics, 2011,126(3):847-852.
    [46]Y. Bessekhouad;D. Robert, J. Weber. Photocatalytic activity of Cu2O/TiO2, Bi2O3/TiO2 and ZnMn2O4/TiO2 heterojunctions [J]. Catalysis Today,2005,101(3-4): 315-321.
    [47]H. Zhu; M.L. Du; D.L. Yu, et al. A new strategy for the surface-free-energy-distribution induced selective growth and controlled formation of Cu2O-Au hierarchical heterostructures with a series of morphological evolutions [J]. Journal of Materials Chemistry A,2013,1(3):919-929.
    [48]N. Meir; I.J.L. Plante; K. Flomin, et al. Studying the chemical, optical and catalytic properties of noble metal (Pt, Pd, Ag, Au)-Cu2O core-shell nanostructures grown via a general approach [J]. Journal of Materials Chemistry A,2013,1(5): 1763-1769.
    [49]Q. Chen; J. Li; X. Li, et al. Visible-Light Responsive Photocatalytic Fuel Cell Based on WO3/W Photoanode and CU2O/Cu Photocathode for Simultaneous Wastewater Treatment and Electricity Generation [J]. Environmental Science & Technology,2012,46(20):11451-11458.
    [50]Y. Pan; S. Deng; L. Polavarapu, et al. Plasmon-Enhanced Photocatalytic Properties of CU2O Nanowire-Au Nanoparticle Assemblies [J]. Langmuir,2012, 28(33):12304-12310.
    [1]A. Fujishima. Electrochemical photolysis of water at a semiconductor electrode [J]. nature,1972,238(37-38).
    [2]W.W. Zhao; Z.Y. Ma; D.Y. Yan, et al. In Situ Enzymatic Ascorbic Acid Production as Electron Donor for CdS Quantum Dots Equipped TiO2 Nanotubes:A General and Efficient Approach for New Photoelectrochemical Immunoassay [J]. Analytical Chemistry,2012,84(24):10518-10521.
    [3]G. Zhu; L.K. Pan; J. Yang, et al. Electrospun nest-shaped TiO2 structures as a scattering layer for dye sensitized solar cells [J]. Journal of Materials Chemistry, 2012,22(46):24326-24329.
    [4]A.E. Shalan; M.M. Rashad; Y.H. Yu, et al. A facile low temperature synthesis of TiO2 nanorods for high efficiency dye sensitized solar cells [J]. Applied Physics a-Materials Science & Processing,2013,110(1):111-122.
    [5]A.L. Linsebigler; G. Lu, J.T. Yates. Photocatalysis on TiO2 Surfaces:Principles, Mechanisms, and Selected Results [J]. Chemical Reviews,1995,95(3):735-758.
    [6]T.C. Jagadale; S.P. Takale; R.S. Sonawane, et al. N-Doped TiO2 Nanoparticle Based Visible Light Photocatalyst by Modified Peroxide Sol-Gel Method [J]. The Journal of Physical Chemistry C,2008,112(37):14595-14602.
    [7]A. Kubacka; B.N. Bachiller-Baeza; G. ColoN, et al. W,N-Codoped TiO2-Anatase: A Sunlight-Operated Catalyst for Efficient and Selective Aromatic Hydrocarbons Photo-Oxidation [J]. The Journal of Physical Chemistry C,2009,113(20): 8553-8555.
    [8]W. Guo; Y. Shen; L. Wu, et al. Effect of N Dopant Amount on the Performance of Dye-Sensitized Solar Cells Based on N-Doped TiO2 Electrodes [J]. The Journal of Physical Chemistry C,2011,115(43):21494-21499.
    [9]J.Y. Park; J.R. Renzas; B.B. Hsu, et al. Interfacial and Chemical Properties of Pt/TiO2, Pd/TiO2, and Pt/GaN Catalytic Nanodiodes Influencing Hot Electron Flow [J]. The Journal of Physical Chemistry C,2007,111(42):15331-15336.
    [10]H. Zhang; G. Wang; D. Chen, et al. Tuning Photoelectrochemical Performances of Ag-TiO2 Nanocomposites via Reduction/Oxidation of Ag [J]. Chemistry of Materials,2008,20(20):6543-6549.
    [11]J. Hensel; G.M. Wang; Y. Li, et al. Synergistic Effect of CdSe Quantum Dot Sensitization and Nitrogen Doping of TiO2 Nanostructures for Photoelectrochemical Solar Hydrogen Generation [J]. Nano Letters,2010,10(2):478-483.
    [12]J. Hensel; G. Wang; Y. Li, et al. Synergistic effect of CdSe quantum dot sensitization and nitrogen doping of TiO2 nanostructures for photoelectrochemical solar hydrogen generation [J]. Nano Letters,2010,10(2):478-483.
    [13]X. Du, J. He. Facile size-controllable syntheses of highly monodisperse polystyrene nano-and microspheres by polyvinylpyrrolidone-mediated emulsifier-free emulsion polymerization [J]. Journal of Applied Polymer Science, 2008,108(3):1755-1760.
    [14]Y.A. Vlasov; X.-Z. Bo; J.C. Sturm, et al. On-chip natural assembly of silicon photonic bandgap crystals [J]. nature,2001,414(6861):289-293.
    [15]A.S. Dimitrov, K. Nagayama. Continuous Convective Assembling of Fine Particles into Two-Dimensional Arrays on Solid Surfaces [J]. Langmuir,1996,12(5): 1303-1311.
    [16]O. Popov; V. Lirtsman; F. Kopnov, et al. Self-assembled colloidal photonic crystals:light channels in cracks [J]. Synthetic Metals,2003,139(3):643-647.
    [17]X. Sun; H. Liu; J. Dong, et al. Preparation and Characterization of Ce/N-Codoped TiO2 Particles for Production of H2 by Photocatalytic Splitting Water Under Visible Light [J]. Catalysis Letters,2010,135(3-4):219-225.
    [1]J. Yang; X. Zhang; H. Liu, et al. Heterostructured TiO2/WO3 porous microspheres:Preparation, characterization and photocatalytic properties [J]. Catalysis Today,2013,201:195-202.
    [2]M.-C. Shin; J.-S. Cha; B. Shin, et al. Activities of CeO2/TiO2 catalyst for SCR of NO with NH3 at low temperature according to operating conditions [J]. Electronic Materials Letters,2013,9(1):71-76.
    [3]U.V. Desai; C. Xu; J. Wu, et al. Hybrid TiO2-SnO2 Nanotube Arrays for Dye-Sensitized Solar Cells [J]. The Journal of Physical Chemistry C,2013,117(7): 3232-3239.
    [4]L.B. Reutergadh, M. Iangphasuk. Photocatalytic decolourization of reactive azo dye:A comparison between TiO2 and us photocatalysis [J]. Chemosphere,1997, 35(3):585-596.
    [5]X.T. Sui; H.Z. Tao; X.C. Lou, et al. CdS quantum dots-sensitized TiO2 nanotube arrays for solar cells [J]. Journal of Wuhan University of Technology-Materials Science Edition,2013,28(1):17-21.
    [6]U. Shaislamov; H. Kim, B.L. Yang. CdS-sensitized TiO2 photoelectrodes for quantum dots-based solar cells [J]. Journal of Materials Research,2013,28(3): 497-501.
    [7]C. Cheng; S.K. Karuturi; L. Liu, et al. Quantum-Dot-Sensitized TiO2 Inverse Opals for Photoelectrochemical Hydrogen Generation [J]. Small,2012,8(1):37-42.
    [8]P. Rodenas; T. Song; P. Sudhagar, et al. Quantum Dot Based Heterostructures for Unassisted Photoelectrochemical Hydrogen Generation [J]. Advanced Energy Materials,2013,3(2):176-182.
    [9]Y. Guo; H. Zhang; Y. Wang, et al. Controlled Growth and Photocatalytic Properties of CdS Nanocrystals Implanted in Layered Metal Hydroxide Matrixes [J]. The Journal of Physical Chemistry B,2005,109(46):21602-21607.
    [1]Z. Seddigi. Removal of Alizarin Yellow Dye from Water Using Zinc Doped WO3 Catalyst [J]. Bulletin of Environmental Contamination and Toxicology,2010,84(5): 564-567.
    [2]M.A. Rauf, S.S. Ashraf. Radiation induced degradation of dyes—An overview [J]. Journal of Hazardous Materials,2009,166(1):6-16.
    [3]P. Lei; F. Wang; X. Gao, et al. Immobilization of TiO2 nanoparticles in polymeric substrates by chemical bonding for multi-cycle photodegradation of organic pollutants [J]. Journal of Hazardous Materials,2012,227-228(0):185-194.
    [4]M. Pang, H.C. Zeng. Highly Ordered Self-Assemblies of Submicrometer Cu2O Spheres and Their Hollow Chalcogenide Derivatives [J].Langmuir,2010,26(8): 5963-5970.
    [5]S.-K. Li; X. Guo; Y. Wang, et al. Rapid synthesis of flower-like Cu2O architectures in ionic liquids by the assistance of microwave irradiation with high photochemical activity [J]. Dalton Transactions,2011,40(25):6745-6750.
    [6]Y. Bessekhouad; D. Robert, J.V. Weber. Photocatalytic activity of Cu2O/TiO2, Bi2O3/TiO2 and ZnMn2O4/TiO2 heterojunctions [J]. Catalysis Today,2005, 101(3-4):315-321.
    [7]B. Zhou; H. Wang; Z. Liu, et al. Enhanced photocatalytic activity of flowerlike Cu2O/Cu prepared using solvent-thermal route [J]. Materials Chemistry and Physics, 2011,126(3):847-852.
    [8]L. Kong; W. Chen; D. Ma, et al. Size control of Au@Cu2O octahedra for excellent photocatalytic performance [J]. Journal of Materials Chemistry,2012, 22(2):719-724.
    [9]C.-H. Kuo; Y.-C. Yang; S. Gwo, et al. Facet-Dependent and Au Nanocrystal-Enhanced Electrical and Photocatalytic Properties of Au-Cu2O Core-Shell Heterostructures [J]. Journal of the American Chemical Society,2010, 133(4):1052-1057.
    [10]Z. Wang; S. Zhao; S. Zhu, et al. Photocatalytic synthesis of M/Cu2O (M=Ag, Au) heterogeneous nanocrystals and their photocatalytic properties [J]. CrystEngComm,2011,13(7):2262-2267.
    [11]Z. Li; J. Liu; D. Wang, et al. Cu2O/Cu/TiO2 nanotube Ohmic heterojunction arrays with enhanced photocatalytic hydrogen production activity [J]. International Journal of Hydrogen Energy,2012,37(8):6431-6437.
    [12]Q. Hua; F. Shi; K. Chen, et al. Cu2O-Au nanocomposites with novel structures and remarkable chemisorption capacity and photocatalytic activity [J]. Nano Research,2011,4(10):948-962.
    [13]T. Zeng; X.L. Zhang; Y.R. Ma, et al. A novel Fe3O4-graphene-Au multifunctional nanocomposite:green synthesis and catalytic application [J]. Journal of Materials Chemistry,2012,22(35):18658-18663.
    [14]M. Zhang; X.W. He; L.X. Chen, et al. Preparation of IDA-Cu functionalized core-satellite Fe3O4/polydopamine/Au magnetic nanocomposites and their application for depletion of abundant protein in bovine blood [J]. Journal of Materials Chemistry,2010,20(47):10696-10704.
    [15]A. Tschope; M.L. Trudeau, J.Y. Ying. Redox Properties of Nanocrystalline Cu-Doped Cerium Oxide Studied by Isothermal Gravimetric Analysis and X-ray Photoelectron Spectroscopy [J]. The Journal of Physical Chemistry B,1999,103(42): 8858-8863.
    [16]Y. Sun; B. Gates; B. Mayers, et al. Crystalline Silver Nanowires by Soft Solution Processing [J]. Nano Letters,2002,2(2):165-168.
    [17]J. Li, H.C. Zeng. Hollowing Sn-Doped TiO2 Nanospheres via Ostwald Ripening [J]. Journal of the American Chemical Society,2007,129(51): 15839-15847.
    [18]Y. Zhang; B. Deng; T. Zhang, et al. Shape Effects of Cu2O Polyhedral Microcrystals on Photocatalytic Activity [J]. The Journal of Physical Chemistry C, 2010,114(11):5073-5079.
    [19]Z. Ai; W. Ho; S. Lee, et al. Efficient Photocatalytic Removal of NO in Indoor Air with Hierarchical Bismuth Oxybromide Nanoplate Microspheres under Visible Light [J]. Environmental Science & Technology,2009,43(11):4143-4150.
    [20]L. Huang; F. Peng; H. Yu, et al. Preparation of cuprous oxides with different sizes and their behaviors of adsorption, visible-light driven photocatalysis and photocorrosion [J]. Solid State Sciences,2009,11(1):129-138.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700