腺病毒载体介导的靶向性肿瘤基因治疗研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基因转运技术是肿瘤基因治疗的重要环节之一,寻找合适的基因转运载体一直是人们的研究热点。腺病毒载体因具有宿主范围宽广、感染效率高、可插入外源基因片断大、病毒相对容易制备和不会与受染细胞发生整合等诸多优点而受到特别的重视,成为肿瘤基因治疗中应用最为广泛的载体系统。目前有多种策略和方法用于对腺病毒进行改造,使其对肿瘤细胞具有靶向性和杀伤力,包括改造病毒衣壳蛋白或利用双功能连接物把腺病毒靶向导入肿瘤细胞;利用一些肿瘤特异性启动子、组织特异性启动子和可调控性启动子进行转录水平的基因表达调控。
     根据杀伤肿瘤细胞的作用机理的不同,可把腺病毒分为复制缺陷型腺病毒和条件增殖型腺病毒两大类。复制缺陷型腺病毒能起到运输载体的作用,携带外源基因(抑癌基因、细胞凋亡诱导基因、免疫调节因子、血管生成抑制因子、自杀基因等等)靶向转导入肿瘤细胞,从而引起细胞的死亡;条件增殖型腺病毒是一类经过转录调节修饰的病毒,可以以高度的特异性在靶细胞中复制增殖并最终裂解该细胞,同时释放出子代病毒再感染邻近的细胞,直至把所有肿瘤细胞杀死为止,而对非靶细胞无杀伤力。
     本课题主要是基于腺病毒载体就靶向性肿瘤基因治疗开展了相关的工作。主要研究内容可分为两大部分:
     第一部分:双重调控的靶向性肿瘤增殖腺病毒的构建及抗瘤研究。本课题引入两个在绝大多数肿瘤细胞中均高表达而在正常组织中低表达甚至不表达的肿瘤特异性启动子人端粒酶催化亚单位启动子和人环氧合酶-2启动子来分别调控腺病毒早期必需基因E1A和E1B,使经过改造的重组增殖腺病毒只能在同时表达人端粒酶和人环氧合酶-2的细胞内增殖并裂解该细胞,而在正常的细胞内不能有效增殖。在本实验中,通过将腺病毒穿梭质粒载体pD306/H181-C409和骨架质粒载体pBHGE3共转染工具细胞Hek293,经过在细胞内随机同源重组后,成功得到了一种新型的由人端粒酶催化亚单位启动子和人环氧合酶-2启动子共同调控的条件增殖型腺病毒Ad5-HC。通过Western blot法检测表明E1A和E1B可在多种被Ad5-HC作用后的肿瘤细胞中表达,而在正常细胞中不表达;病毒增殖试验表明Ad5-HC可在多种肿瘤细胞内大量扩增,其扩增倍数是正常细胞的上万倍;细胞杀伤试验表明Ad5-HC对多种不同类型的肿瘤细胞有强大的杀伤效果;当Ad5-HC联合化疗药物作用于肿瘤细胞时,它能与包括5-FU、表柔比星、紫杉醇在内的多种化疗药物产生协同疗效;裸鼠移植瘤抗瘤活性试验表明Ad5-HC在动物体内能有效抑制瘤体的生长。本实验采用一系列体外试验和体内试验,全面验证了由hTERT启动子和Cox-2启动子双重调控的肿瘤增殖腺病毒Ad5-HC良好的肿瘤细胞特异性和细胞杀伤作用,从而为肿瘤的病毒基因治疗提供了一种新的思路和方法。
     第二部分:由AFP启动子调控且携带人工合成微小RNA的重组腺病毒的构建及抗瘤研究。本课题用人工合成的方式合成多段能直接静默细胞正常新陈代谢所必需的基因的微小RNA序列,包括磷酸甘油醛脱氢酶(glyceraldehyde phosphatedehydrogenase,GAPDH)、真核起始因子4E(eukaryotic translation initiation factor4E,eIF4E)和DNA聚合酶α(DNA polymeraseα)。通过利用复制缺陷型腺病毒载体携带这些人工合成的微小RNA进入细胞,同时利用AFP启动子在肝癌细胞内特异性高表达的特性来调控外源基因的表达,使得这些微小RNA能被靶向导入到AFP阳性的肝癌细胞内,从而下调靶基因的表达进而影响其生理功能。在本实验中,一系列携带微小RNA的复制缺陷型腺病毒被成功构建,包括Ad5-miRNA5G、Ad5-miRNA6E、Ad5-miRNA6P和Ad5-GFP。通过采用一系列体外试验(包括RT-PCR检测靶基因的mRNA水平、Western blot检测靶基因蛋白的表达、病毒细胞毒性试验、细胞活性检测)和体内试验(裸鼠移植瘤抗瘤活性试验),全面验证了重组腺病毒良好的肝癌细胞特异性和杀伤力;通过对病毒感染后的细胞进行细胞周期分析、ATP酶含量检测、总蛋白含量检测等方法进一步从作用机理上进行了分析,发现携带微小RNA的重组腺病毒不仅可导致肿瘤细胞在G2/M期阻滞,还可使细胞内ATP酶和总蛋白含量下降。总之,利用腺病毒的载体作用携带人工合成的微小RNA,通过组织特异性启动子靶向转导基因表达,可以使重组腺病毒在靶细胞内发挥明显的细胞杀伤作用。
The technology of transferring genetic materials to the targeted tissues successfully is the main objective in cancer gene therapy.During the past two decades, enormous research in the area of gene delivery has been conducted worldwide.Due to the ability of infecting both dividing and non-dividing cells,the efficient nuclear entry mechanism and its low pathogenicity for humans,adenovirus-based vectors have become widely used vehicles for cancer gene therapy.By now,quite a range of different transductional targeting strategies have been successfully developed in order to improve the efficiency of adenovirus-mediated gene delivery to tumor cells, including genetically encoded or chemically engineered structural modification of the capsid and the use of bispecific adaptor molecules directing vector attachment to alternative cell surface receptors;using some tissue-specific promoters to regulate the gene expression in target cells.
     According to the mechanism of action,the adenovirus can be divided into two types,replication-defective adenovirus and conditionally replication-competent adenovirus.The replication-defective adenovirus can not replicate in cells.It always acts as a vehicle carrying some exogenous genes,e.g.,tumor suppressor genes, apoptosis inducer genes,immune regulate factors,angiogenesis inhibitors,suicide genes, to target cells and inducing cell death eventually.The conditionally replication-competent adenovirus has the ability of replicating within target cells only.It can infect,usurp host replication machinery,and release newly made progeny to infect other target cells after lysing and killing the host cell.
     In our study,two types of adenovirus vectors are utilized for cancer gene therapy.
     Those including:
     Part one:The construction of a dually-regulated oncolytic adenovirus and its antitumor efficacy on most human solid cancers.Human telomerase reverse transcriptase(hTERT) and cyclooxygenase-2(Cox-2) are always over expressed in tumor cells but not expressed in normal tissue.In our study,we developed a novel therapy strategy using oncolytic adenovirus containing the E1A controlled by hTERT promoter and E1B controlled by Cox-2 promoter.The adenovirus vector pBHGE3 was co-transfected with adenovirus shuttle plasmid pD306/H181-C409 into Hek293 cells using the transfection reagent Lipofectamine~(TM)2000.After homologously recombining in Hek293 cells,the oncolytic adenovirus Ad5-HC was obtained.A series of in vitro and in vivo assay were performed to evaluate the specificity and cytotoxicity of Ad5-HC,including western blot analysis,adenovirus yield assay,cell viability assay and animal study.The results demonstrated that the oncolytic adenovirus Ad5-HC regulated by both hTERT promoter and Cox-2 promoter has a tumor-specific replication ability and cytolytic ability to a wide range of cancer cells which were positive for telomerase activity and Cox-2 expression.The novel dually-regulated oncolytic adenovirus Ad5-HC has a great potential of destroying tumors and improving the survival of cancer patients.
     Part two:The construction of replication-defective adenovirus containing artificial multi-microRNAs regulated by AFP enhancer/promoter and its antitumor efficacy on HCC cells.In our study,three types of artificial multi-microRNAs were constructed.Some essential genes for cells metabolism are silenced by these miRNAs, including glyceraldehyde phosphate dehydrogenase(GAPDH),which is an enzyme that catalyzes the process of glycolysis and thus serves to break down glucose for energy and carbon molecules;eukaryotic translation initiation factor 4E(eIF4E), which plays a crucial role in gene expression by controlling protein synthesis at the level of translation initiation;DNA polymerase a,which is a key replicative enzyme, plays an essential role in initiation of both leading- and lagging-strand synthesis.We systematically analyzed the tissue specificity,effect of gene silencing and cytotoxicity of these new-type replication defective adenovirus in order to explore a novel effective strategy for HCC gene therapy.The results demonstrated that the replication-defective adenovirus containing artificial multi-microRNAs regulated by AFP enhancer/promoter can knockdown the target genes which are essential in cells metabolism effectively,and they had a potent ability of inhibiting the HCC cells growth in a tumor-specific manner.The combination of tumor-specific promoter and artificial multi-miRNAs will be a novel strategy in targeted cancer gene therapy and may become a promising approach in future.
引文
1.Kung HC.,Hoyert DL,Xu J,Murphy SL.Deaths:final data for 2005.Natl Vital Stat Rep.2008;56:1-120.
    2.Müller MW,Friess H,K(o|¨)ninger J,et al.Factors influencing survival after bypass procedures in patients with advanced pancreatic adenocarcinomas.Am J Surg.2008;195:221-228.
    3.Tse RV,Dawson LA,Wei A,Moore M.Neoadjuvant treatment for pancreatic cancer-a review.Crit Rev Oncol Hematol.2008;65:263-274.
    4.Krstevska V,Stojkovski I.Chemotherapy in locoregionally advanced nasopharyngeal carcinoma-a review.J Buon.2008;13:495-503.
    5.Verma IM,Weitzman MD.Gene therapy:twenty-first century medicine.Annu Rev Biochem.2005;74:711-738.
    6.Volpers C.,Kochanek S.Adenoviral vectors for gene transfer and therapy.J Gene Med.2004;Suppl 1:S164-171.
    7.St George JA.Gene therapy progress and prospects:adenoviral vectors.Gene Ther.2003;10:1135-1141.
    8.Johnson L,Shen A,Boyle L,et al.Selectively replicating adenoviruses targeting deregulated E2F activity are potent,systemic antitumor agents.Cancer Cell.2002;1:325-337.
    9.Khuri F,Nemunaitis J,Ganly I,et al.A controlled trial of intratumoral ONYX-015,a selectively-replicating adenovirus,in combination with cisplatin and 5-fluorouracil in patients with recurrent head and neck cancer.Nat Med.2000;6,879-885.
    10.Bischoff JR,Kirn DH,Williams A,et al.An adenovirus mutant that replicates selectively in p53-deficient human tumor cells.Science.1996;274:373-376.
    11.Antonio Chiocca E.Oncolytic viruses.Nat Rev Cancer.2002;2:938-950.
    12.Li Y,Yu DC.,Chen Y,et al.A hepatocellular carcinoma-specific adenovirus variant,CV 890,eliminates distant human liver tumors in combination with doxorubicin.Cancer Res.2001;61:6428-6436.
    13.Chen Y,DeWeese T,Dilley J,et al.CV706,a prostate cancer-specific adenovirus variant,in combination with radiotherapy produces synergistic antitumor efficacy without increasing toxicity.Cancer Res.2001;61:5453-5460.
    14.Li Y,Dilley J,Yu DC.Replication competent oncolytic adenovirus for colon cancer therapy.Proc Am Assoc Cancer Res.2002;43:Abs 4251.
    15.Wang Z,Powell S,Cardoza L,et al.hTERT promoter-driven conditionally replicative adenovirus mediated gene therapy induces efficacious tumor regression in Vivo.Proc Am Assoc Cancer Res.2002;3:Abs 418.
    16.Zou W,Luo C.,Zhang Z,et al.A novel oncolytic adenovirus targeting to telomerase activity in tumor cells with potent.Oncogene.2004;23:457-464.
    17.Hemminki A,Drmitriev 1,Liu B,et al.Targeting oncolytic adenoviral agents to the epidermal growth factor pathway with a secretory fusioin molecule.Cancer Res,2001;61:6377-6381.
    18.Blasco MA.Telomeres and human disease:ageing,cancer and beyond.Nat Rev Genet.2005;6:611-622.
    19.Ducrest AL,Amacker M,Mathieu YD,et al.Regulation of human telomerase activity:Repression by normal chromosome 3 abolishes nuclear telomerase reverse transcriptase transcripts but does not affect c-Myc activity.Cancer Res.2001;61:7594-7602.
    20.Khuri FR,Wu H,Lee JJ,et al.Cyclooxygenase-2 overexpression is a marker of poor prognosis in stage I non-small cell lung cancer.Clin Cancer Res.2001;7:861-867.
    21.Zhang H,Sun XF.Overexpression of cyclooxygenase-2 correlates with advanced stages of colorectal cancer.Am J Gastroenterol.2002;97:1037-1041.
    22.郭贵龙,姚祥,吴坚。环氧化酶-2基因在人乳腺癌中的表达及临床意义。中华医学杂志。2003;83:1661-1664。
    23.Yoshimura R,Sano H,Masuda C,et al.Expression of cylooxygenase-2 in prostate carcinoma.Cancer.2000;89:589-596.
    24.Akhtar M,Cheng Y,Magno RM,et al.Promoter methylation regulates helicobacter pyloristinulated cyclooxygenase-2 expression in gastric epithelial cells.Cancer Res.2001;61:2399-2403.
    25.Young JL,Jazaeri AA,Darus CJ,Modesitt SC.Cyclooxygenase-2 in cervical neoplasia:A review.Gynecol Oncol.2008;109:140-145.
    26.Masato Y,Ramon A,Yasuo A,et al.Characterization of the cyclooxygenase-2promoter in an adenoviral vector and its application for the mitigation of toxicity in suicide gene therapy of gastrointestinal cancers.Mol Ther.2001;3:385-394.
    27.Su CQ,Sham J,Xue HB,et al.Potent antitumoral efficacy of a novel replicative adenovirus CNHK300 targeting telomerase-positive cancer cells.J Cancer Res Cli Oncol.2004;130:591-603.
    28.Shirakawa T,Hamada K,Zhang Z,et al.A cox-2 promoter-based replication-selective adenoviral vector to target the cox-2-expressing human bladder cancer cells.Clin Cancer Res.2004;10:4342-4348.
    29.He TC,Zhou S,Costa da LT,et al.A simplified system for generation recombinant adenoviruses.Proc Natl Acad Sci USA.1998;95:2509-2514.
    30.Luo J,Deng ZL,Luo X,et al.A protocol for rapid generation of recombinant adenoviruses using the AdEasy system.Nat Protoc.2007;2:1236-1247.
    31.Reddy PS,Ganesh S,Hawkins L,et al.Generation of recombinant adenovirus using the Escherichia coli BJ5183 recombination system.Methods Mol Med.2007;130:61-68.
    32.Hardy S,Kitamura M,Harris Stansil T,et al.Construction of adenovirus vectors through cre-lox recombinant.Virol.1997;71:1842-1849.
    33.Kumar S,Gao L,Yeagy B,Reid T.Virus combinations and chemotherapy for the treatment of human cancers.Curr Opin Mol Ther.2008;10:371-379.
    34.Cheong SC.,Wang Y,Meng JH,et al.El A-expressing adenoviral E3B mutants act synergistically with chemotherapeutics in immunocompetent tumor models.Cancer Gene Ther.2008;15:40-50.
    35.Pan QW,Zhong SY,Liu BS,et al.Enhanced sensitivity of hepatocellular carcinoma cells to chemotherapy with a Smac-armed oncolytic adenovirus.Acta Pharmacol Sin.2007;28:1996-2004.
    36.Raki M,Sarkioja M,Desmond RA,et al.Oncolytic adenovirus Ad5/3-delta24 and chemotherapy for treatment of orthotopic ovarian cancer.Gynecol Oncol.2008;108:166-172.
    37.Liu XY.Targeting gene-virotherapy of cancer and its prosperity.Cell Res.2006;16:879-886.
    38.Zhang Q,Nie M,Sham J,er al.Effective gene-viral therapy for telomerase-positive cancers by selective replicative-competent adenovirus combining with endostatin gene.Cancer Res.2004;64:5390-5397.
    39.Ahn M,Lee SJ,Li X,et al.Enhanced combined tumor-specific oncolysis and suicide gene therapy for prostate cancer using M6 promoter.Cancer Gene Ther.2009;16:73-82.
    40.Choi KJ,Kim JH,Lee YS,et al.Concurrent delivery of GM-CSF and B7-1 using an oncolytic adenovirus elicits potent antitumor effect.Gene Ther.2006;13:1010-1020.
    41.Muruve DA.The innate immune response to adenovirus vectors.Hum Gene Ther.2004;15:1157-1116.
    42.Reyes-Sandoval A,Fitzgerald JC.,Grant R,et al.Human immunodeficiency virus type 1-specific immune responses in primates upon sequential immunization with adenoviral vaccine carriers of human and simian serotypes.J Virol.2004;78:7392-7399.
    43.Weaver EA,Barry MA.Effects of Shielding Adenoviral Vectors with Polyethylene Glycol(PEG)on Vector-specific and Vaccine-mediated Immune Responses.Hum Gene Ther.2008;Sep 8.[Epub ahead of print]
    44.Lenaerts L,De Clercq E,Naesens L.Clinical features and treatment of adenovirus infections.Rev Med Virol.2008;18:357-374.
    45.Muruve DA.The innate immune response to adenovirus vectors.Hum Gene Ther.2004;15:1157-1166.
    46.Reynolds PN,Feng M,Curiel DT.Chimeric viral vectors—the best of both worlds? Mol Med Today.1999;5:25-31.
    47.Lundstrom K.Latest development in viral vectors for gene therapy.Trends Biotechnol.2003;21:117-122.
    48.Volpers C.,Kochanek S.Adenoviral vectors for gene transfer and therapy.J Gene Med.2004;6:S164-S171.
    49.Hitt M,Bett AJ,Addison CL,et al.Techniques for human adenovirus vector construction and characterization.Methods Mol Genet.1995;7:13-30.
    50.Armentano D,Sookdeo CC.,Hehir KM,et al.Characterization of an adenovirus gene transfer vector containing an E4 deletion.Hum Gene Ther.1995;6:1343-1353.
    51.Kochanek S,Schiedner G,Volpers C.High-capacity“gutless”adenoviral vectors.Curr Opin Mol Ther.2001;3:454-463.
    52.Kanerva A,Wang M,Bauerschmitz GJ,el al.Gene transfer to ovarian cancer versus normal tissues with fiber-modified adenoviruses.Mol Ther.2002;5:695-704.
    53.Leissner P,Legrand V,Schlesinger Y,et al.Influence of adenoviral fiber mutations on viral encapsidation,infectivity and in vivo tropism.Gene Ther.2001;8:49-57.
    54.Heideman DA,Snijders PJ,Craanen ME,et al.Selective gene delivery toward gastric and esophageal adenocarcinoma cells via EpCAM-targeted adenoviral vectors.Cancer Gene Ther.2001;8:342-351.
    55.Nicklin SA,Reynolds PN,Brosnan MJ,et al.Analysis of cell specific promoters for viral gene therapy targeted at the vascular endothelium.Hypertension.2001;38:65-70.
    56.Nettelbeck DM,Rivera AA,Balague C.,et al.Novel oncolytic adenoviruses targeted to melanoma:specific viral replication and cytolysis by expression of ElA mutants from the tyrosinase enhancer / promoter.Cancer Res.2002;62:4663-4670.
    57.Tsukuda K,Wiewrodt R,Molnar-Kimber K,et al.An E2F-responsive replication-selective adenovirus targeted to the defective cell cycle in cancer cells:potent antitumoral efficacy but no toxicity to normal cell.Cancer Res.2002;62:3438-3447.
    58.Pang RW,Joh JW,Johnson PJ,et al.Biology of hepatocellular carcinoma.Ann Surg Oncol.2008;15:962-971.
    59.Nakabayashi H,Koyama Y,Suzuki H,et al.Functional mapping of tissue-specific elements of the human alpha-fetoprotein gene enhancer.Biochem Biophys Res Commun.2004;318:773-785.
    60.Ternovoi VV,Curiel DT,Smith BF,et al.Adenovirus-mediated p53 tumor suppressor gene therapy of osteosarcoma.Lab Invest.2006;86:748-766.
    61.Tanaka M,Rosser CJ,Grossman HB.PTEN gene therapy induces growth inhibition and increases efficacy of chemotherapy in prostate cancer.Cancer Detect Prev.2005;29:170-174.
    62.Wu CH,Kao CH,Safa AR.TRAIL recombinant adenovirus triggers robust apoptosis in multidrug-resistant HL-60/Vinc cells preferentially through death receptor DR5.Hum Gene Ther.2008;19:731-743.
    63.Fu Y,Zhang Z,Zhang G,Liu Y,et al.Adenovirus-mediated gene transfer of tissue factor pathway inhibitor induces apoptosis in vascular smooth muscle cells.Apoptosis.2008;13:634-640.
    64.Ren SP,Wang L,Wang H,Wu B,et al.Gene therapy for human nasopharyngeal carcinoma by adenovirus-mediated transfer of human p53,GM-CSF,and B7-1 genes in a mouse xenograft tumor model.Cancer Biother Radiopharm.2008;23:591-602.
    65.Wei XL,Lin L,Hou Y,et al.Construction of recombinant adenovirus co-expression vector carrying the human transforming growth factor-bet al and vascular endothelial growth factor genes and its effect on anterior cruciate ligament fibroblasts.Chin Med J(Engl).2008;121:1426-1432.
    66.Griffiths-Jones S,Grocock RJ,van Dongen S et al.miRBase:microRNA sequences,targets and gene nomenclature.Nucleic Acids Res.2006;34:D140-D144.
    67.Zeng Y,Cullen BR.Efficient processing of primary microRNA hairpins by Drosha requires flanking nonstructured RNA sequences.J Biol Chem.2005;280:27595-27603.
    68.Zeng Y,Wagner EJ,Cullen BR.Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells.Mol Cell.2002;9:1327-1333.
    69.Sun D,Melegari M,Sridhar S,et al.Multi-miRNA hairpin method that improves gene knockdown efficiency and provides linked multi-gene knockdown. Biotechniques.2006;41:59-63.
    70.Sirover MA.Role of the glycolytic protein,glyceraldehyde-3-phosphate dehydrogenase,in normal cell function and in cell pathology.J Cell Biochem.1997;66:133-140.
    71.Sonenberg N.eIF4E,the mRNA cap-binding protein:from basic discovery to translation^ research.Biochem Cell Biol.2008;86:178-183.
    72.Pollok S,Stoepel J,Bauerschmidt C.,et al.Regulation of eukaryotic DNA replication at the initiation step.Biochem Soc Trans.2003;31:266-269.
    73.Preall JB,He Z,Gorra JM,et al.Short interfering RNA strand selection is independent of dsRNA processing polarity during RNAi in Drosophila.Curr Biol.2006;16:530-535.
    74.Silva JM,Li MZ,Chang K,et al.Second-generation shRNA libraries covering the mouse and human genomes.Nat Genet.2005;37:1281-1288.
    75.Miyagishi M,Taira K.U6 promoter-driven siRNAs with four uridine 3' overhangs efficiently suppress targeted gene expression in mammalian cells.Nat Biotechnol.2002;20:497-500.
    76.Lee Y,Kim M,Han J,et al.MicroRNA genes are transcribed by RNA polymerase Ⅱ.EMBO J.2004;23:4051-4060.
    77.Xia XG,Zhou H,Xu Z.Multiple shRNAs expressed by an inducible pol Ⅱ promoter can knock down the expression of multiple target genes.Biotechniques.2006;41:64-68.
    78.Brosh R,Shalgi R,Liran A,et al.p53-Repressed miRNAs are involved with E2F in a feed-forward loop promoting proliferation.Mol Syst Biol.2008;4:229.
    79.Kim DH,Saetrom P,Sruave O Jr,et al.MicroRNA-directed transcriptional gene silencing in mammalian cells.Proc Natl Acad Sci U S A.2008;105:16230-16235.
    80.McLaughlin J,Cheng D,Singer O,et al.Sustained suppression of Bcr-Abl-driven lymphoid leukemia by microRNA mimics.Proc Natl Acad Sci U S A.2007;104:20501-20506.
    81.Tisdale EJ.Glyceraldehyde-3-phosphate dehydrogenase is phosphorylated by protein kinase ciota /lambda and plays a role in microtubule dynamics in the early secretory pathway.J Biol Chem.2002;277:3334-3341.
    82.Brown VM,Krynetski EY,Krynetskaia NF,et al.A novel CRM1-mediated nuclear export signal governs nuclear accumulation of glyceraldehydes-3-phosphate dehydrogenase following genotoxic stress.J BiolChem.2004;279:5984-5992.
    83.Krynetski EY,Krynetskaia NF,BianchiME,et al.A nuclear protein complex containing high mobility group proteins Bl and B2,heat shock cognate protein 70,ERp60,and glyceraldehyde-3-phosphate dehydrogenase is involved in the cytotoxic response to DNA modified by incorporation of anticancer nucleoside analogues.CancerRes.2003;63:100-106.
    84.ZhengL,RoederRG,LuoY.S phase activation of the histone H2B promoter by OCA-S,a coactivator complex that contains GAPDH as a key component.Cell.2003;114:255-266.
    85.Lazaris-Karatzas A,Smith MR,Frederickson RM,et al.Ras mediates translation initiation factor 4E-induced malignant transformation.Genes Dev.1992;6:1631-1642.
    86.Richter JD,Sonenberg N.Regulation of cap-dependent translation by eIF4E inhibitory protein.Nature.2005;433:477-480.
    87.Wolfort R,Denedetti A,Nuthalapaty S,et al.Up-regulation of TLKIB by eIF4E overexpression predicts cancer recurrence in irradiated patients with breast cancer.Surgery.2006;140:161-169.
    88.Daniele B,Bencivenga A,Megna AS,et al.Alpha-fetoprotein and ultrasonography screening for hepatocellular carcinoma.Gastroenterology.2004;127:S108-S112.
    89.Freimuth P,Philipson L,Carson SD.The coxsackievirus and adenovirus receptor.Curr Top Microbiol Immunol.2008;323:67-87.
    1.EI-Aneed A.An overview of current delivery systems in cancer gene therapy.J Control Release.2004,94(1):1-14.
    2.Wilson DR.Viral-mediated gene transfer for cancer treatment.Curr Pharm Biotechnol.2002,3(2):151-164.
    3.Vblpers C.,Kochanek S.Adenoviral vectors for gene transfer and therapy.J Gene Med.2004,Suppl 1:S164-171.
    4.St George JA.Gene therapy progress and prospects:adenoviral vectors.Gene Ther.2003,10(14):1135-1141.
    5.Cusack S.Adenovirus complex structures.Curr Opin Struct Biol.2005,15(2):237-243.
    6.Hitt M,Bett AJ,Addison CL,et al.Techniques for human adenovirus vector construction and characterization.Methods Mol Genet.1995,7(2):13-30.
    7.Armentano D,Sookdeo CC.,Hehir KM,et al.Characterization of an adenovirus gene transfer vector containing an E4 deletion.Hum Gene Ther.1995,6(10):1343-1353.
    8.Kochanek S,Schiedner G,Volpers C.High-capacity“gutless”adenoviral vectors.Curr Opin Mol Ther.2001,3(5):454-463.
    9.Bergelson JM,Cunningham JA,Droguett G,et al.Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5.Science.1997,275(5304)1320-1323.
    10.Kirby I,Davison E,Beavil AJ,et al.Identification of contact residues and definition of the CAR-binding site of adenovirus type 5 fiber protein.J Virol.2000,74(6):2804-2813.
    11.Johnson L,Shen A,Boyle L,et al.Selectively replicating adenoviruses targeting deregulated E2F activity are potent,systemic antitumor agents.Cancer Cell.2002,1(4):325-337.
    12.Khuri F,Nemunaitis J,Ganly I,et al.A controlled trial of intratumoral ONYX-015,a selectively-replicating adenovirus,in combination with cisplatin and 5-fluorouracil in patients with recurrent head and neck cancer.Nat Med.2000,6(8),879-885.
    13.Bischoff JR,Kirn DH,Williams A,et al.An adenovirus mutant that replicates selectively in p53-deficient human tumor cells.Science.1996,274(5286):373-376.
    14.Antonio Chiocca E.Oncolytic viruses.Nat Rev Cancer.2002,2(12):938-950.
    15.Li Y,Yu DC.,Chen Y,et al.A hepatocellular carcinoma-specific adenovirus variant,CV 890,eliminates distant human liver tumors in combination with doxorubicin.Cancer Res.2001,61(17):6428-6436.
    16.Chen Y,DeWeese T,Dilley J,et al.CV706,a prostate cancer-specific adenovirus variant,in combination with radiotherapy produces synergistic antitumor efficacy without increasing toxicity.Cancer Res.2001,61(14):5453-5460.
    17.Li Y,Dilley J,Yu DC.Replication competent oncolytic adenovirus for colon cancer therapy.Proc Am Assoc Cancer Res.2002,43(12):Abs 4251.
    18.Wang Z,Powell S,Cardoza L,et al.hTERT promoter-driven conditionally replicative adenovirus mediated gene therapy induces efficacious tumor regression in Vivo.Proc Am Assoc Cancer Res.2002,3(1):Abs 418.
    19.Zou W,Luo C.,Zhang Z,et al.A novel oncolytic adenovirus targeting to telomerase activity in tumor cells with potent.Oncogene.2004,23(2):457-464.
    20.Hemminki A,Drmitriev 1,Liu B,et al.Targeting oncolytic adenoviral agents to the epidermal growth factor pathway with a secretory fusioin molecule.Cancer Res,2001,61(17):6377-6381.
    21.Bewley MC.,Springer K,Zhang YB,et al.Structural analysis of the mechanism of adenovirus binding to its human cellular receptor,CAR.Science.1999,286(5444):1579-1583.
    22.Nakamura T,Sato K,Hamada H.Reduction of natural adenovirus tropism to the liver by both ablation of fiber-coxsackievirus and adenovirus receptor interaction and use of replaceable short fiber.J Virol.2003,77(4):2512-2521.
    23.Gaden F,Franqueville L,Magnusson MK,et al.Gene transduction and cell entry pathway of fiber-modified adenovirus type 5 vectors carrying novel endocytic peptide ligands selected on human tracheal glandular cells.J Virol.2004,78(13):7227-7247.
    24.Papanikolopoulou K,Forge V,Goeltz P,et al.Formation of highly stable chimeric trimers by fusion of an adenovirus fiber shaft fragment with the foldon domain of bacteriophage t4 fibritin.J Biol Chem.2004,279(10):8991-8998.
    25.Mizuguchi H,Koizumi N,Hosono T,et al.A simplified system for constructing recombinant adenoviral vectors containing heterologous peptides in the HI loop of their fiber knob.Gene Ther.2001,8(9):730-735.
    26.Dmitriev I,Krasnykh V,Miller CR,et al.An adenovirus vector with genetically modified fibers demonstrates expanded tropism via utilization of a coxsackievirus and adenovirus receptor-independent cell entry mechanism.J Virol.1998,72(12):9706-9713.
    27.Kasono K,Blackwell JL,Douglas JT,et al.Selective gene delivery to head and neck cancer cells via an integrin targeted adenoviral vector.Clin Cancer Res.1999,5(9):2571-2579.
    28.Grill J,Van Beusechem VW,Van Der Valk P,et al.Combined targeting of adenoviruses to integrins and epidermal growth factor receptors increases gene transfer into primary glioma cells and spheroids.Clin Cancer Res.2001,7(3):641-650.
    29.Volk AL,Rivera AA,Kanerva A,et al.Enhanced adenovirus infection of melanoma cells by fiber-modification:incorporation of RGD peptide or Ad5/3 chimerism.Caneer Biol Ther.2003,2(5):511-515.
    30.Dehari H,Ito Y,Nakamura T,et al.Enhanced antitumor effect of RGD fiber-modified adenovirus for gene therapy of oral cancer.Cancer Gene Ther.2003,10(1):75-85.
    31.Marsman WA,Buskens CJ,Wesseling JG,et al.Gene therapy for esophageal carcinoma:the use of an explant model to test adenoviral vectors ex vivo.Cancer Gene Ther.2004,11(4):289-296.
    32.McDonald GA,Zhu G,Li Y,et al.Efficient adenoviral gene transfer to kidney cortical vasculature utilizing a fiber modified vector.J Gene Med.1999,1(2):103-110.
    33.Campbell M,Qu s,Wells S,et al.An adenoviral vector containing an arg-gly-asp(RGD)motif in the fiber knob enhances protein product levels from transgenes refractory to expression.Cancer Gene Ther.2003,10(7):559-570.
    34.Short JJ,Pereboev AV,Kawakami Y,et al.Adenovirus serotype 3 utilizes CD80(B7.1)and CD86(B7.2)as cellular attachment receptors.Virology.2004,322(2):349-359.
    35.Burmeister WP,Guilligay D,Cusack S,et al.Crystal structure of species D adenovirus fiber knobs and their sialic acid binding sites.J Virol.2004,78(14):7727-7736.
    36.Kanerva A,Wang M,Bauerschmitz GJ,el al.Gene transfer to ovarian cancer versus normal tissues with fiber-modified adenoviruses.Mol Ther.2002,5(6):695-704.
    37.Rea D,Havenga MJ,Van Den Assem M,et al.Highly efficient transduction of human monocyte-derived dendritic cells with subgroup B fiber-modified adenovirus vectors enhances transgene-encoded antigen presentation to cytotoxie T cells.J Immunol.2001,166(8):5236-5244.
    38.Leissner P,Legrand V,Schlesinger Y,et al.Influence of adenoviral fiber mutations on viral encapsidation,infectivity and in vivo tropism.Gene Ther.2001.8(1):49-57.
    39.Smith T,Idamakanti N,Kylefjord H,et al.In vivo hepatic adenoviral gene delivery occurs independently of the coxsackievirus-adenovirus receptor.Mol Ther.2002,5(6):770-779.
    40.Rancourt C.,Rogers BE,Sosnowski BA,et al.Basic fibroblast growth factor enhancement of adenovirus-mediated delivery of the herpes simplex virus thymidine kinase gene results in augmented therapeutic benefit in a murine model of ovarian cancer.Clin Cancer Res.1998,4(10):2455—2461.
    41.Dirven CM,Grill J,Lamfers ML,et al.Gene therapy for meningioma:improved gene delivery with targeted adenoviruses.J Neurosurg.2002,97(2):441-449.
    42.Heideman DA,Snijders PJ,Craanen ME,et al.Selective gene delivery toward gastric and esophageal adenocarcinoma cells via EpCAM-targeted adenoviral vectors.Cancer Gene Ther.2001,8(5):342-351.
    43.Dmitriev I,Kashentseva E,Rogers BE,et al.Ectodomain of coxsackievirus and adenovirus receptor genetically fused to epidermal growth factor mediates adenovirus targeting to epidermal growth factor receptor-positive cells.J Virol.2000,74(15):6875-6884.
    44.Muruve DA.The innate immune response to adenovirus vectors.Hum Gene Ther.2004,15(12):1157-1166.
    45.Reyes-Sandoval A,Fitzgerald JC.,Grant R,et al.Human immunodeficiency virus type 1-specific immune responses in primates upon sequential immunization with adenoviral vaccine carriers of human and simian serotypes.J Virol.2004,78(14):7392-7399.
    46.Leblois H,Roche C.,Di Falco N,et al.Stable transduction of actively dividing cells via a novel adenoviral/episomal vector.Mol Ther.2000,1(4):314-322.
    47.Reynolds PN,Feng M,Curiel DT.Chimeric viral vectors—the best of both worlds? Mol Med Today.1999,5(1):25-31.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700