分子氧参与钯催化烯烃与胺的氧化反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
过渡金属催化的化学反应在有机合成化学中具有广泛的应用。特别是钯催化的反应过程通常具有成键的多样性,较高的化学、区域和立体选择性,以及较好的官能团耐受性等特点,因此成为一种高效的合成多官能团化复杂化合物的有效方法。钯催化剂的催化活性和选择性可以通过反应体系中配体、溶剂、温度和添加剂等条件的改变来调控。
     氧化反应是有机化学的重要组成部分,并且高选择性以及条件温和的氧化反应成为现代有机合成化学的发展方向。钯催化的氧化反应体系目前所用的氧化剂有Cu2+盐、苯醌、DDQ、PhI(OAc)2、K2S2O8等,这些氧化剂不仅价格昂贵而且通常会产生对环境有害的副产物。毫无疑问,氧气是一种资源丰富、廉价易得、原子经济性高并且环境友好的理想氧化剂,反应结束后以H2O的形式释放出来从而减少了对环境的污染。
     近年来,分子氧参与钯催化的反应引起了全世界化学工作者的广泛关注。这类反应通常能够降低成本、提高反应的原子经济性以及简化产物的分离过程,并且在大多情况下都能够改善反应的选择性。Pd(II)/O2催化体系在实验室研究以及工业生产上都有着广泛的应用。本课题致力于以绿色化学为导向,以简单烯烃为原料的钯催化氧气氧化的新型有机合成方法学研究,实现了多种含氮功能有机分子的高效构建。这些新颖的合成方法在天然产物全合成,医药、农药以及功能材料等领域有广泛的应用前景。具体的研究内容如下:
     (1)基于分子氧参与钯催化Csp2─Csp2键构建的氧化环化反应,高效地构建了一系列2-取代和2,3-二取代喹啉类衍生物。该方法作为经典Povarov反应的补充,提供了一种多取代喹啉类化合物的高效合成策略。此外,该反应的底物适用性比较好,具有原料廉价易得、条件温和、原子经济性高等优点。
     (2)分子氧参与钯催化芳基胺、醛和末端烯烃的选择性氧化环化反应,简便地构建一系列1,4-二氢吡啶类化合物。我们也对非对称1,4-二氢吡啶的合成进行了初步的探索。通过控制性实验研究,我们发现顺式烯胺化合物是该反应的一个重要中间体。
     (3)分子氧参与钯催化活化烯烃的去氢胺卤化反应。该反应具有非常好的区域和立体选择性以及官能团的耐受性,并且直接以简单的芳香胺作为氮源。该反应提供了一种非常简便的合成策略来构建用其他方法很难制备的卤代烯胺骨架结构,反应条件也比较温和。
     (4)分子氧参与钯催化芳基伯胺与烯烃的氧化偶联反应。该反应能够高效地、高区域和立体选择性地构建一系列顺式烯胺类化合物,并且这些化合物可用来合成多种含氮杂环化合物(如吲哚、吡唑、吡咯、1,4-二氢吡啶)。反应体系中的添加剂LiBr对反应的顺利进行起了非常重要的作用,它可以抑制由芳基伯胺与钯催化剂的强配位作用而导致的催化剂失活
     (5)溶剂调控的选择性钯催化烯烃与芳基胺的氧化反应。在30%H2O2以及1个大气压氧气共同作氧化剂的条件下,使用DMF作溶剂时能够选择性地发生烯烃的去氢胺卤化反应;使用THF作溶剂时能够选择性地发生苯环上溴代以及与烯烃的氧化偶联反应。
Transition-metal-catalyzed transformations have been found extensive applications inSynthetic Organic Chemistry. Especially, palladium-catalyzed reactions generally featureddiversity in chemical bond formation, excellent chemo-, regio-, stereoselectivities, as well asgreat tolerance of functional groups. Therefore, it constitutes an efficient strategy tosynthesize multifunctional compounds. The catalytic activity and selectivity of palladiumcatalysts could be modulated by changing the reaction conditions, such as the ligand, solvent,temperature, and additive.
     Oxidative reactions have been an important part of organic chemistry, and high selectivityand mild conditions of these processes become the current goals in modern synthetic organicchemistry. A number of oxidants have been employed in palladium catalytic systems, such asCu2+, BQ, DDQ, PhI(OAc)2, K2S2O8, which are not only expensive but also usually produceenvironmentally harmful byproducts. There is no doubt that molecular oxygen is an abundant,inexpensive, and environmentally friendly ideal oxidant with high atom economy, andharmless H2O was released after the reaction.
     In recent years, palladium-catalyzed reactions under molecular oxygen have attracted muchattention of chemistry researchers worldwide. These transformations generally could reducecosts, simplify products’ separation processes, enhance the atom economy, and improve theselectivities in most cases. The Pd(II)/O2catalytic systems have been employed in a widerange of laboratory and industrial research field. In our research, palladium-catalyzedreactions under molecular oxygen involving the oxidation of simple alkene substrates havebeen systematically studied based on the principle of “green chemistry”, and a variety ofnitrogen-containing organic molecules have been efficiently constructed. These novelstrategies would have broad application prospects in fields of the total synthesis of naturalproducts, pharmaceuticals, pesticides, as well as functional materials. The details aresummarized as follows:
     (1) Palladium-catalyzed selective oxidative cyclization based on the sequential formationof Csp2─Csp2bonds under molecular oxygen for the construction of a series of2-substitutedand2,3-disubstituted quinolines. This methodology provides an efficient strategy for the synthesis of diversely substituted quinolines, apart from Povarov reactions. Moreover, thisreaction has a broad substrate scope, and features inexpensive starting materials, mildconditions, as well as high atom efficiency.
     (2) Palladium-catalyzed selective oxidative cyclization of arylamines, aldehydes, andterminal olefins under molecular oxygen for the construction of a series of1,4-dihydropyridines. Preliminary exploration to synthesize unsymmetric1,4-dihydropyridineproduct was also made. Controlled experiments revealed that the (Z)-enamine was a keyintermediate of the reaction.
     (3) Palladium-catalyzed dehydrogenative aminohalogenation of alkenes with molecularoxygen as the sole oxidant. This protocol directly employs simple aromatic amines as thenitrogen sources, and provides highly convenient access to brominated enamine scaffoldunder mild conditions which was difficult to prepare by traditional methodologies, withunprecedented regio-and stereoselectivity as well as exceptional functional group tolerance.
     (4) Palladium-catalyzed oxidative coupling of aromatic primary amines and alkenesunder molecular oxygen. It provides an efficient access to (Z)-enamine compounds withexcellent regio-and stereoselectivity, and the resultant enamines could be convenientlytransformed into a series of N-containing heterocycles, such as indoles, pyrazoles, pyrroles,and1,4-dihydropyridines. The addition of LiBr was crucial to the success of thetransformation, due to its important role in avoiding the deactivation of palladium catalystarising from the strong coordination of aromatic primary amines to it.
     (5) Solvent-switched selectivity on palladium-catalyzed oxidative reactions involvingaromatic amines and alkenes. In the presence of30%H2O2as a co-oxidant, highly selectivedehydrogenative aminohalogenation of alkenes could be achieved with DMF as the solventunder molecular oxygen (1atm). On the other hand, highly selective bromination of aromaticamines and subsequent oxidative coupling with alkenes could be achieved with THF as thesolvent under similar conditions.
引文
[1](a) Beccalli E.M.; Broggini G.; Martinelli M., et al. C–C, C–O, C–N Bond Formation onsp2Carbon by Pd(II)-Catalyzed Reactions Involving Oxidant Agents [J]. Chem. Rev.2007,107:5318-5365;(b) McDonald R.I.; Liu G.; Stahl S.S. Palladium(II)-Catalyzed AlkeneFunctionalization via Nucleopalladation: Stereochemical Pathways and EnantioselectiveCatalytic Applications [J]. Chem. Rev.2011,111:2981-3019;(c) Zeni G.; Larock R.C.Synthesis of Heterocycles via Palladium-Catalyzed Oxidative Addition [J]. Chem. Rev.2006,106:4644-4680.
    [2](a) Punniyamurthy T.; Velusamy S.; Iqbal J. Recent Advances in Transition MetalCatalyzed Oxidation of Organic Substrates with Molecular Oxygen [J]. Chem. Rev.2005,105:2329-2363;(b) Shi Z.; Zhang C.; Tanga C., et al. Recent Advances in Transition-MetalCatalyzed Reactions Using Molecular Oxygen as the Oxidant [J]. Chem. Soc. Rev.2012,41:3381-3430.
    [3](a) Stahl S.S. Palladium Oxidase Catalysis: Selective Oxidation of Organic Chemicals byDirect Dioxygen-Coupled Turnover [J]. Angew. Chem., Int. Ed.2004,43:3400-3420;(b)Stahl S.S. Palladium-Catalyzed Oxidation of Organic Chemicals with O2[J]. Science2005,309:1824-1826;(c) Gligorich K.M.; Sigman M.S. Recent Advancements and Challenges ofPalladiumii-Catalyzed Oxidation Reactions with Molecular Oxygen as the Sole Oxidant [J].Chem. Commun.2009:3854-3867;(d) Wu W.; Jiang H. Palladium-Catalyzed Oxidation ofUnsaturated Hydrocarbons Using Molecular Oxygen [J]. Acc. Res. Chem.2012,45:1736-1748;(e) Campbell A.N.; Stahl S.S. Overcoming the “Oxidant Problem”: Strategies toUse O2as the Oxidant in Organometallic C–H Oxidation Reactions Catalyzed by Pd (and Cu)[J]. Acc. Res. Chem.2012,45:851-863.
    [4] Larock R.C.; Hightower T.R. Synthesis of Unsaturated Lactones via Palladium-CatalyzedCyclization of Alkenoic Acids [J]. J. Org. Chem.1993,58:5298-5300.
    [5] van Benthem R.A.T.M.; Hiemstra H.; Michels J.J., et al. Palladium(II)-CatalysedOxidation of Allylic Amines with Molecular Oxygen [J]. J. Chem. Soc. Chem. Commun.1994:357-359.
    [6] van Benthem R.A.T.M.; Hiemstra H.; van Leeuwen P.W.N.M., et al. Sulfoxide-StabilizedGiant Palladium Clusters in Catalyzed Oxidations [J]. Angew. Chem., Int. Ed. Engl.1995,34:457-460.
    [7] Davies I.W.; Matty L.; Hughes D.L., et al. Are Heterogeneous Catalysts Precursors toHomogeneous Catalysts [J]. J. Am. Chem. Soc.2001,123:10139-10140.
    [8] Steinhoff B.A.; Fix S.R.; Stahl S.S. Mechanistic Study of Alcohol Oxidation by thePd(OAc)2/O2/DMSO Catalyst System and Implications for the Development of ImprovedAerobic Oxidation Catalysts [J]. J. Am. Chem. Soc.2002,124:766-767.
    [9] Larock R.C.; Hightower T.R.; Kraus G.A., et al. A Simple, Effective, New,Palladium-Catalyzed Conversion of Enol Silanes to Enones and Enals [J].Tetrahedron Lett.1995,36:2423-2426.
    [10](a) Zhou C.; Larock R.C. Synthesis of Tetrasubstituted Olefins by Pd-Catalyzed Additionof Arylboronic Acids to Internal Alkynes [J]. Org. Lett.2005,7:259-262;(b) Zhou C.;Larock R.C. Tetrasubstituted Olefin Synthesis via Pd-Catalyzed Addition of ArylboronicAcids to Internal Alkynes Using O2as an Oxidant [J]. J. Org. Chem.2006,71:3184-3191.
    [11] Brasche G.; García-Fortanet J.; Buchwald S.L. Twofold C–H Functionalization:Palladium-Catalyzed Ortho Arylation of Anilides [J]. Org. Lett.2008,10:2207-2210.
    [12] ten Brink G.-J.; Arends I.W.C.E.; Sheldon R.A. Green, Catalytic Oxidation of Alcoholsin Water [J]. Science,2000,287:1636-1639.
    [13] Nishimura T.; Uemura S. Novel Palladium Catalytic Systems for OrganicTransformations [J]. Synlett2004:0201-0216.
    [14] Steinhoff B.A.; Stahl S.S. Ligand-Modulated Palladium Oxidation Catalysis:Mechanistic Insights into Aerobic Alcohol Oxidation with the Pd(OAc)2/Pyridine CatalystSystem [J]. Org. Lett.2002,4:4179-4181.
    [15] Fix S.R.; Brice J.L.; Stahl S.S. Efficient Intramolecular Oxidative Amination of Olefinsthrough Direct Dioxygen-Coupled Palladium Catalysis [J]. Angew. Chem., Int. Ed.2002,41:164-166.
    [16] Trend R.M.; Ramtohul Y.K.; Ferreira E.M., et al. Palladium-Catalyzed Oxidative WackerCyclizations in Nonpolar Organic Solvents with Molecular Oxygen: AStepping Stone toAsymmetric Aerobic Cyclizations [J]. Angew. Chem., Int. Ed.2003,42:2892-2895.
    [17](a) Nishimura T.; Ohe K.; Uemura S. Palladium(II)-Catalyzed Oxidative Ring Cleavageof tert-Cyclobutanols under Oxygen Atmosphere [J]. J. Am. Chem. Soc.1999,121:2645-2646;(b) Nishimura T.; Ohe K.; Uemura S. Oxidative Transformation oftert-Cyclobutanols by Palladium Catalysis under Oxygen Atmosphere [J]. J. Org. Chem.2001,66:1455-1465.
    [18](a) Sheldon R.A.; Arends I.W.C.E.; ten Brink G.-J., et al. Green, Catalytic Oxidations ofAlcohols [J]. Acc. Chem. Res.2002,35:774-781;(b) ten Brink G.-J.; Arends I.W.C.E.;Sheldon R.A. Catalytic Conversions in Water. Part21: Mechanistic Investigations on thePalladium-Catalysed Aerobic Oxidation of Alcohols in Water [J]. Adv. Synth. Catal.2002,344:355-369;(c) ten Brink G.-J.; Arends I.W.C.E.; Hoogenraad M., et al. CatalyticConversions in Water. Part22: Electronic Effects in the (Diimine)palladium(II)-CatalysedAerobic Oxidation of Alcohols [J]. Adv. Synth. Catal.2003,345:497-505.
    [19] Jensen D.R.; Pugsley J.S.; Sigman M.S. Palladium-Catalyzed EnantioselectiveOxidations of Alcohols Using Molecular Oxygen [J]. J. Am. Chem. Soc.2001,123:7475-7476.
    [20] Ferreira E.M.; Stoltz B.M. The Palladium-Catalyzed Oxidative Kinetic Resolution ofSecondary Alcohols with Molecular Oxygen [J]. J. Am. Chem. Soc.2001,123:7725-7726.
    [21](a) Bagdanoff J.T.; Ferreira E.M.; Stoltz B.M. Org. Lett. Palladium-CatalyzedEnantioselective Oxidation of Alcohols: A Dramatic Rate Acceleration by Cs2CO3/t-BuOH[J]. Org. Lett.2003,5:835-837;(b) Jensen D.R.; Sigman M.S. Palladium Catalysts forAerobic Oxidative Kinetic Resolution of Secondary Alcohols Based on Mechanistic Insight[J]. Org. Lett.2003,5:63-65.
    [22] Mandal S.K.; Jensen D.R.; Pugsley J.S., et al. Scope of EnantioselectivePalladium(II)-Catalyzed Aerobic Alcohol Oxidations with (─)-Sparteine [J]. J. Org. Chem.2003,68:4600-4603.
    [23](a) Mueller J.A.; Jensen D.R.; Sigman M.S. Dual Role of (─)-Sparteine in thePalladium-Catalyzed Aerobic Oxidative Kinetic Resolution of Secondary Alcohols [J]. J. Am.Chem. Soc.2002,124:8202-8203;(b) Mueller J.A.; Sigman M.S. Mechanistic Investigationsof the Palladium-Catalyzed Aerobic Oxidative Kinetic Resolution of Secondary AlcoholsUsing (─)-Sparteine [J]. J. Am. Chem. Soc.2003,125:7005-7013.
    [24] Mandal S.K.; Sigman M.S. Palladium-Catalyzed Aerobic Oxidative Kinetic Resolutionof Alcohols with an Achiral Exogenous Base [J]. J. Org. Chem.2003,68:7535-7537.
    [25] Mueller J.A.; Cowell A.; Chandler B.D., et al. Origin of Enantioselection in ChiralAlcohol Oxidation Catalyzed by Pd[(─)-sparteine]Cl2[J]. J. Am. Chem. Soc.2005,127:14817-14824.
    [26] Dearden M.J.; Firkin C.R.; Hermet J.-P.R., et al. A Readily-Accessible (+)-SparteineSurrogate [J]. J. Am. Chem. Soc.2002,124:11870-11871.
    [27] Bagdanoff J.T.; Stoltz B.M. Palladium-Catalyzed Oxidative Kinetic Resolution withAmbient Air as the Stoichiometric Oxidation Gas [J]. Angew. Chem., Int. Ed.2004,43:353-357.
    [28] Trend R.M.; Stoltz B.M. An Experimentally Derived Model for Stereoselectivity in theAerobic Oxidative Kinetic Resolution of Secondary Alcohols by (Sparteine)PdCl2[J]. J. Am.Chem. Soc.2004,126:4482-4483.
    [29] Caspi D.D.; Ebner D.C.; Bagdanoff J.T., et al. The Resolution of ImportantPharmaceutical Building Blocks by Palladium-Catalyzed Aerobic Oxidation of SecondaryAlcohols [J]. Adv. Synth. Catal.2004,346:185-189.
    [30] Gligorich K.M.; Schultz M.J.; Sigman M.S. Palladium(II)-Catalyzed AerobicHydroalkoxylation of Styrenes Containing a Phenol [J]. J. Am. Chem. Soc.2006,128:2794-2795.
    [31] Balija A.M.; Stowers K.J.; Schultz M.J., et al. Pd(II)-Catalyzed Conversion of StyreneDerivatives to Acetals: Impact of (─)-Sparteine on Regioselectivity [J]. Org. Lett.2006,8:1121-1124.
    [32] Cornell C.N.; Sigman M.S. Discovery of a Practical Direct O2-Coupled WackerOxidation with Pd[(─)-sparteine]Cl2[J]. Org. Lett.2006,8:4117-4120.
    [33] Schultz M.J.; Park C.C.; Sigman M.S. A Convenient Palladium-Catalyzed AerobicOxidation of Alcohols at Room Temperature [J]. Chem. Commun.2002:3034-3035.
    [34] Jensen D.R.; Schultz M.J.; Mueller J.A., et al. A Well-Defined Complex forPalladium-Catalyzed Aerobic Oxidation of Alcohols: Design, Synthesis, and MechanisticConsiderations [J]. Angew. Chem., Int. Ed.2003,42:3810-3813.
    [35] Iwasawa T.; Tokunaga M.; Obora Y., et al. Homogeneous Palladium CatalystSuppressing Pd Black Formation in Air Oxidation of Alcohols [J]. J. Am. Chem. Soc.2004,126:6554-6555.
    [36] Paavola S.; Zetterberg K.; Privalov T., et al. Aerobic Oxidation of1-PhenylethanolCatalyzed by Palladaheterocycles [J]. Adv. Synth. Catal.2004,346:237-244.
    [37] Steinhoff B.A.; Stahl S.S. Mechanism of Pd(OAc)2/DMSO-Catalyzed Aerobic AlcoholOxidation: Mass-Transfer-Limitation Effects and Catalyst Decomposition Pathways [J]. J.Am. Chem. Soc.2006,128:4348-4355.
    [38] Gligorich K.M.; Sigman M.S. Mechanistic Questions about the Reaction of MolecularOxygen with Palladium in Oxidase Catalysis [J]. Angew. Chem., Int. Ed.2006,45:6612-6615.
    [39] Stahl S.S.; Thorman, J. L.; Nelson, R. C., et al. Oxygenation of Nitrogen-CoordinatedPalladium(0): Synthetic, Structural, and Mechanistic Studies and Implications for AerobicOxidation Catalysis [J]. J. Am. Chem. Soc.2001,123:7188-7189.
    [40] Konnick M.M.; Guzei I.A.; Stahl S.S. Characterization of Peroxo and HydroperoxoIntermediates in the Aerobic Oxidation of N-Heterocyclic-Carbene-Coordinated Palladium(0)[J]. J. Am. Chem. Soc.2004,126:10212-10213.
    [41] Landis C.R.; Morales C.M.; Stahl S.S. Insights into the Spin-Forbidden Reactionbetween L2Pd0and Molecular Oxygen [J]. J. Am. Chem. Soc.2004,126:16302-16303.
    [42] Konnick M.M.; Gandhi B.A.; Guzei I.A., et al. Reaction of Molecular Oxygen with aPdII-Hydride to Produce a PdII–Hydroperoxide: Acid Catalysis and Implications forPd-Catalyzed Aerobic Oxidation Reactions [J]. Angew. Chem., Int. Ed.2006,45:2904-2907.
    [43] Popp B.V.; Stahl S.S. Insertion of Molecular Oxygen into a Palladium-Hydride Bond:Computational Evidence for Two Nearly Isoenergetic Pathways [J]. J. Am. Chem. Soc.2007,129:4410-4422.
    [44] Konnick M.M.; Stahl S.S. Reaction of Molecular Oxygen with a PdII-Hydride to Producea PdII-Hydroperoxide: Experimental Evidence for an HX-Reductive-Elimination Pathway [J].J. Am. Chem. Soc.2008,130:5753–5762.
    [45] Konnick M.M.; Decharin N.; Popp B.V., et al. O2Insertion into A Palladium(II)-HydrideBond: Observation of Mechanistic Crossover between HX-Reductive-Elimination andHydrogen-Atom-Abstraction Pathways [J]. Chem. Sci.2011,2:326-330.
    [46] Sigman M.S.; Jensen D.R. Ligand-Modulated Palladium-Catalyzed Aerobic AlcoholOxidations [J]. Acc. Chem. Res.2006,39:221-229.
    [47] Denney M.C.; Smythe N.A.; Cetto K.L., et al. Insertion of Molecular Oxygen into aPalladium(II) Hydride Bond [J]. J. Am. Chem. Soc.2006,128:2508-2509.
    [48] Wick D.D.; Goldberg K.I. Insertion of Dioxygen into a Platinum-Hydride Bond to Forma Novel Dialkylhydroperoxo Pt(IV) Complex [J]. J. Am. Chem. Soc.1999,121:11900-11901.
    [49] Hiatt R.R.; Mill T.; Mayo F.R. Homolytic Decompositions of Hydroperoxides. I.Summary and Implications for Autoxidation [J]. J. Org. Chem.1968,33:1416-1420.
    [50] Keith J.M.; Nielsen R.J.; Oxgaard J., et al. Pd-Mediated Activation of Molecular Oxygenin a Nonpolar Medium [J]. J. Am. Chem. Soc.2005,127:13172-13179.
    [51] Decharin N.; Popp B.V.; Stahl S.S. Reaction of O2with [(─)-Sparteine]Pd(H)Cl:Evidence for an Intramolecular [H-L]+“Reductive Elimination” Pathway [J]. J. Am. Chem.Soc.2011,133:13268–13271.
    [52](a) Smidt J.; Hafner W.; Jira R., et al. The Oxidation of Olefins with Palladium ChlorideCatalysts [J]. Angew. Chem., Int. Ed. Engl.1962,1:80-88;(b) Sigman M.S.; Schultz M.J.The Renaissance of Palladium(II)-Catalyzed Oxidation Chemistry [J]. Org. Biomol. Chem.2004,2:2551-2554.
    [53] ten Brink G.-J.; Arends I.W.C.E.; Papadogianakis G., et al. Catalytic Conversions inWater. Part10. Aerobic Oxidation of Terminal Olefins to Methyl Ketones Catalysed by WaterSoluble Palladium Complexes [J]. Chem. Commun.1998:2359-2360.
    [54] Cornell C.N.; Sigman M.S. Recent Progress in Wacker Oxidations: Moving towardMolecular Oxygen as the Sole Oxidant [J]. Inorg. Chem.2007,46:1903-1909.
    [55] Nishimura T.; Kakiuchi N.; Onoue T., et al. Palladium(II)-Catalyzed Oxidation ofTerminal Alkenes to Methyl Ketones Using Molecular Oxygen [J]. J. Chem. Soc. PerkinTrans.12000:1915-1918.
    [56] Mimoun H.; Charpentier R.; Mitschler A., et al. Palladium(II) tert-Butyl PeroxideCarboxylates. New Reagents for the Selective Oxidation of Terminal Olefins to MethylKetones. On the Role of Peroxymetalation in Selective Oxidative Processes [J]. J. Am. Chem.Soc.1980,102:1047-1054.
    [57] Mitsudome T.; Umetani T.; Nosaka N., et al. Convenient and Efficient Pd-CatalyzedRegioselective Oxyfunctionalization of Terminal Olefins by Using Molecular Oxygen as SoleReoxidant [J]. Angew. Chem., Int. Ed.2006,45:481-485.
    [58] Mitsudome T.; Mizumoto K.; Mizugaki T., et al. Wacker-Type Oxidation of InternalOlefins Using a PdCl2/N,N-Dimethylacetamide Catalyst System under Copper-Free ReactionConditions [J]. Angew. Chem., Int. Ed.2010,49:1238-1240.
    [59] Campbell A.N.; White P.B.; Guzei I.A., et al. Allylic C–H Acetoxylation with a4,5-Diazafluorenone-Ligated Palladium Catalyst: A Ligand-Based Strategy To AchieveAerobic Catalytic Turnover [J]. J. Am. Chem. Soc.2010,132:15116-15119.
    [60] Schultz M.J.; Sigman M.S. Palladium(II)-Catalyzed Aerobic Dialkoxylation of Styrenes:A Profound Influence of an o-Phenol [J]. J. Am. Chem. Soc.2006,128:1460-1461.
    [61] Zhang Y.; Sigman M.S. Palladium(II)-Catalyzed Enantioselective AerobicDialkoxylation of2-Propenyl Phenols: A Pronounced Effect of Copper Additives onEnantioselectivity [J]. J. Am. Chem. Soc.2007,129:3076-3077.
    [62] Wang A.; Jiang H.; Chen H. Palladium-Catalyzed Diacetoxylation of Alkenes withMolecular Oxygen as Sole Oxidant [J]. J. Am. Chem. Soc.2009,131:3846-3847.
    [63] Wang A.; Jiang H. Palladium-Catalyzed Direct Oxidation of Alkenes with MolecularOxygen: General and Practical Methods for the Preparation of1,2-Diols, Aldehydes, andKetones [J]. J. Org. Chem.2010,75:2321-2326.
    [64] Wang A.; Jiang H.; Li X. Palladium-Catalyzed Carbonation Diketonization of TerminalAromatic Alkenes via CarbonNitrogen Bond Cleavage for the Synthesis of1,2-Diketones [J].J. Org. Chem.2011,76:6958-6961.
    [65](a) Timokhin V.I.; Anastasi N.R.; Stahl S.S. Dioxygen-Coupled Oxidative Amination ofStyrene [J]. J. Am. Chem. Soc.2003,125:12996-12997;(b) Brice J.L.; Harang J.E.;Timokhin V.I., et al. Aerobic Oxidative Amination of Unactivated Alkenes Catalyzed byPalladium [J]. J. Am. Chem. Soc.2005,127:2868-2869;(c) Rogers M.M.; Kotov V.;Chatwichien J., et al. Palladium-Catalyzed Oxidative Amination of Alkenes: ImprovedCatalyst Reoxidation Enables the Use of Alkene as the Limiting Reagent [J]. Org. Lett.2007,9:4331-4334.
    [66] Timokhin V.I.; Stahl S.S. Br nsted Base-Modulated Regioselectivity in the AerobicOxidative Amination of Styrene Catalyzed by Palladium [J]. J. Am. Chem. Soc.2005,127:17888-17893.
    [67] Lee J.M.; Ahn D.-S.; Jung D.Y., et al. Hydrogen-Bond-Directed Highly StereoselectiveSynthesis of (Z)-Enamides via Pd-Catalyzed Oxidative Amidation of Conjugated Olefins [J].J. Am. Chem. Soc.2006,128:12954-12962.
    [68] Obora Y.; Shimizu Y.; Ishii Y. Intermolecular Oxidative Amination of Olefins withAmines Catalyzed by the Pd(II)/NPMoV/O2System [J]. Org. Lett.2009,11:5058-5061.
    [69] Wu G.; Su W. Regio-and Stereoselective Direct N-Alkenylation of Indoles viaPd-Catalyzed Aerobic Oxidation [J]. Org. Lett.2013,15:5278-5281.
    [70] Liu G.; Yin G.; Wu L. Palladium-Catalyzed Intermolecular Aerobic Oxidative Aminationof Terminal Alkenes: Efficient Synthesis of Linear Allylamine Derivatives [J]. Angew. Chem.,Int. Ed.2008,47:4733-4736.
    [71] Shimizu Y.; Obora Y.; Ishii Y. Intermolecular Aerobic Oxidative Allylic Amination ofSimple Alkenes with Diarylamines Catalyzed by the Pd(OCOCF3)2/NPMoV/O2System [J].Org. Lett.2010,12:1372-1374.
    [72] Matoba K.; Motofusa S.; Cho C.S., et al. Palladium(II)-Catalyzed Phenylation ofUnsaturated Compounds Using Phenylantimony Chlorides under Air [J]. J. Organomet.Chem.1999,574:3-10.
    [73] Parrish J.P.; Jung Y.C.; Shin S.I., et al. Mild and Efficient Aryl-Alkenyl Coupling viaPd(II) Catalysis in the Presence of Oxygen or Cu(II) Oxidants [J]. J. Org. Chem.2002,67:7127-7130.
    [74] Jung Y.C.; Mishra R.K.; Yoon C.H., et al. Oxygen-Promoted Pd(II) Catalysis for theCoupling of Organoboron Compounds and Olefins [J]. Org. Lett.2003,5:2231-2234.
    [75] Andappan M.M.S.; Nilsson P.; Larhed M. The First Ligand-Modulated Oxidative HeckVinylation. Efficient Catalysis with Molecular Oxygen as Palladium(0) Oxidant [J]. Chem.Commun.2004:218-219.
    [76](a) Andappan M.M.S.; Nilsson P.; Von Schenck H., et al. Dioxygen-PromotedRegioselective Oxidative Heck Arylations of Electron-Rich Olefins with Arylboronic Acids[J]. J. Org. Chem.2004,69:5212-5218;(b) Enquist P.-A.; Lindh J.; Nilsson P., et al.Open-Air Oxidative Heck Reactions at Room Temperature [J]. Green Chem.2006,8:338-343;(c) Lindh J.; Enquist P.-A.; Pilotti A., et al. Efficient Palladium(II) Catalysis underAir. Base-Free Oxidative Heck Reactions at Room Temperature or with Microwave Heating[J]. J. Org. Chem.2007,72:7957-7962.
    [77] Yoo K.S.; Yoon C.H.; Jung K.W. Oxidative Palladium(II) Catalysis: A Highly Efficientand Chemoselective Cross-Coupling Method for Carbon-Carbon Bond Formation underBase-Free and Nitrogenous-Ligand Conditions [J]. J. Am. Chem. Soc.2006,128:16384-16393.
    [78] Akiyama K.; Wakabayashi K.; Mikami K. Enantioselective Heck-Type ReactionCatalyzed by tropos-Pd(II) Complex with Chiraphos Ligand [J]. Adv. Synth. Catal.2005,347:1569-1575.
    [79] Yoo K.S.; Park C.P.; Yoon C.H., et al. Asymmetric Intermolecular Heck-Type Reactionof Acyclic Alkenes via Oxidative Palladium(II) Catalysis [J]. Org. Lett.2007,9,3933-3935.
    [80] Enquist P.-A.; Nilsson P.; Sj berg P., et al. ESI-MS Detection of Proposed ReactionIntermediates in the Air-Promoted and Ligand-Modulated Oxidative Heck Reaction [J]. J.Org. Chem.2006,71:8779-8786.
    [81] Sakaguchi S.; Yoo K.S.; O’Neill J., et al. Chiral Palladium(II) Complexes Possessing aTridentate N-Heterocyclic Carbene Amidate Alkoxide Ligand: Access to Oxygen-BridgingDimer Structures [J]. Angew. Chem., Int. Ed.2008,47:9326-9329.
    [82](a) Jia C.; Kitamura T.; Fujiwara Y. Catalytic Functionalization of Arenes and Alkanesvia C–H Bond Activation [J]. Acc. Chem. Res.2001,34:633-639; Correction: Jia C.;Kitamura T.; Fujiwara Y. Acc. Chem. Res.2001,34,844;(b) Ritleng V.; Sirlin C.; Pfeffer M.Ru-, Rh-, and Pd-Catalyzed C–C Bond Formation Involving C–H Activation and Addition onUnsaturated Substrates: Reactions and Mechanistic Aspects [J]. Chem. Rev.2002,102:1731-1769.
    [83] Shue R.S. Catalytic Coupling of Aromatics and Olefins by Homogeneous Palladium(II)Compounds under Oxygen [J]. J. Chem. Soc. Chem. Commun.1971:1510-1511.
    [84] Dams M.; De Vos D.E.; Celen S., et al. Toward Waste-Free Production of Heck Productswith a Catalytic Palladium System under Oxygen [J]. Angew. Chem., Int. Ed.2003,42:3512-3515.
    [85] Zhang Y.-H.; Shi B.-F.; Yu J.-Q. Pd(II)-Catalyzed Olefination of Electron-DeficientArenes Using2,6-Dialkylpyridine Ligands [J]. J. Am. Chem. Soc.2009,131:5072-5074.
    [86] Wang D.-H.; Engle K.M.; Shi B.-F., et al. Ligand-Enabled Reactivity and Selectivity in aSynthetically Versatile Aryl C–H Olefination [J]. Science,2010,327,315-319.
    [87] Nishimura T.; Araki H.; Maeda Y., et al. Palladium-Catalyzed Oxidative Alkynylation ofAlkenes via C–C Bond Cleavage under Oxygen Atmosphere. Org. Lett.2003,5,2997-2999.
    [88] Jiang H.-F.; Shen Y.-X.; Wang Z.-Y. Palladium-Catalyzed Aerobic Oxidation of TerminalOlefins with Electron-Withdrawing Groups in ScCO2[J]. Tetrahedron2008,64:508-514.
    [89] Shen Y.; Jiang H.; Chen Z. PdCl2(HNMe2)2-Catalyzed Highly Selective Cross [2+2+2]Cyclization of Alkynoates and Alkenes under Molecular Oxygen [J]. J. Org. Chem.2010,75:1321-1324.
    [90] Zhou P.; Huang L.; Jiang H., et al. Highly Chemoselective Palladium-CatalyzedCross-Trimerization between Alkyne and Alkenes Leading to1,3,5-Trienes or1,2,4,5-Tetrasubstituted Benzenes with Dioxygen [J]. J. Org. Chem.2010,75:8279-8282.
    [91] Zhou P.; Jiang H.-F.; Huang L.-B., et al. Acetoxypalladation of Unactivated Alkynes andCapture with Alkenes to Give1-Acetoxy-1,3-dienes Taking Dioxygen as Terminal Oxidant.Chem. Commun.2011,47:1003-1005.
    [92] Hegedus L.S. Transition Metals in the Synthesis and Functionalization of Indoles [J].Angew. Chem., Int. Ed. Engl.1988,27:1113-1126.
    [93] Ferreira E.M.; Stoltz B.M. Catalytic C–H Bond Functionalization with Palladium(II):Aerobic Oxidative Annulations of Indoles [J]. J. Am. Chem. Soc.2003,125:9578-9579.
    [94] Feng C.; Loh T.-P. Palladium-Catalyzed Bisolefination of C–C Triple Bonds: A FacileMethod for the Synthesis of Naphthalene Derivatives [J]. J. Am. Chem. Soc.2010,132:17710-17712.
    [95] Kandukuri S.R.; Schiffner J.A.; Oestreich M. Aerobic Palladium(II)-Catalyzed5-endo-trig Cyclization: An Entry into the Diastereoselective C-2Alkenylation of Indoleswith Tri-and Tetrasubstituted Double Bonds [J]. Angew. Chem., Int. Ed.2012,51:1265-1269.
    [96] Wei Y.; Deb I.; Yoshikai N. Palladium-Catalyzed Aerobic Oxidative Cyclization ofN-Aryl Imines: Indole Synthesis from Anilines and Ketones [J]. J. Am. Chem. Soc.2012,134,9098-9101.
    [97](a) Shi Z.; Suri M.; Glorius F. Aerobic Synthesis of Pyrroles and Dihydropyrroles fromImines: Palladium(II)-Catalyzed Intramolecular C–H Dehydrogenative Cyclization [J].Angew. Chem., Int. Ed.2013,52:4892-4896;(b) Chen Z.; Lu B.; Ding Z., et al. αPalladation of Imines as Entry to Dehydrogenative Heck Reaction: Aerobic OxidativeCyclization of N Allylimines to Pyrroles [J]. Org. Lett.2013,15,1966-1969;(c) Meng L.;Wu K.; Liu C., et al. Palladium-catalysed aerobic oxidative Heck-type alkenylation ofCsp3–H for pyrrole synthesis [J]. Chem. Commun.2013,49:5853-5855.
    [98] Hosokawa T.; Miyagi S.; Murahashi S.-I., et al. Oxidative Cyclization of2-Allylphenolsby Palladium(II) Acetate. Changes in Product Distribution [J]. J. Org. Chem.1978,43:2752-2757.
    [99] Reiter M.; Ropp S.; Gouverneur V. Oxidative Cyclization of β-Hydroxyenones withPalladium(II): A Novel Entry to2,3-Dihydro-4H-pyran-4-ones [J]. Org. Lett.2004,6:91-94.
    [100] Mu iz K. Palladium-Carbene Catalysts for Aerobic, Intramolecular Wacker-TypeCyclisation Reactions [J]. Adv. Synth. Catal.2004,346:1425-1428.
    [101] Rogers M.M.; Wendlandt J.E.; Guzei I.A., et al. Aerobic Intramolecular OxidativeAmination of Alkenes Catalyzed by NHC-Coordinated Palladium Complexes [J]. Org. Lett.2006,8,2257-2260.
    [102](a) Liu G.; Stahl S.S. Two-Faced Reactivity of Alkenes: cis-versustrans-Aminopalladation in Aerobic Pd-Catalyzed Intramolecular Aza-Wacker Reactions [J]. J.Am. Chem. Soc.2007,129:6328-6335;(b) Ye X.; White P.B.; Stahl S.S. Mechanistic Studiesof Wacker-Type Amidocyclization of Alkenes Catalyzed by (IMes)Pd(TFA)2(H2O): Kineticand Stereochemical Implications of Proton Transfer [J]. J. Org. Chem.2013,78:2083-2090.
    [103] White P.B.; Stahl S.S. Reversible Alkene Insertion into the Pd–N Bond ofPd(II)-Sulfonamidates and Implications for Catalytic Amidation Reactions [J]. J. Am. Chem.Soc.2011,133:18594-18597.
    [104] Wu L.; Qiu S.; Liu G. Br nsted Base-Modulated Regioselective Pd-CatalyzedIntramolecular Aerobic Oxidative Amination of Alkenes: Formation of Seven-MemberedAmides and Evidence for Allylic C–H Activation [J]. Org. Lett.2009,11,2707-2710.
    [105] McDonald R.I.; White P.B.; Weinstein A.B., et al. Enantioselective Pd(II)-CatalyzedAerobic Oxidative Amidation of Alkenes and Insights into the Role of Electronic Asymmetryin Pyridine-Oxazoline Ligands [J]. Org. Lett.2011,13,2830-2833.
    [106] Lu Z.; Stahl S.S. Intramolecular Pd(II)-Catalyzed Aerobic Oxidative Amination ofAlkenes: Synthesis of Six-Membered N-Heterocycles [J]. Org. Lett.2012,14,1234-1237.
    [107] Yang G.; Zhang W. Regioselective Pd-Catalyzed Aerobic Aza-Wacker Cyclization forPreparation of Isoindolinones and Isoquinolin-1(2H)-ones [J]. Org. Lett.2012,14,268-271.
    [108] Nakamura I.; Yamamoto Y. Transition-Metal-Catalyzed Reactions in HeterocyclicSynthesis [J]. Chem. Rev.2004,104:2127-2198.
    [109] Cho S.H.; Kim J.Y.; Kwak J., et al. Recent Advances in the Transition Metal-CatalyzedTwofold Oxidative C–H Bond Activation Strategy for C–C and C–N Bond Formation [J].Chem. Soc. Rev.2011:40,5068-5083.
    [110](a) Michael J.P. Quinoline, Quinazoline and Acridone Alkaloids [J]. Nat. Prod. Rep.2008,25:166-187;(b) Bax B.D.; Chan P.F.; Eggleston D.S., et al. Type IIA TopoisomeraseInhibition by A New Class of Antibacterial Agents [J]. Nature2010,466:935-940;(c)Andrews S.; Burgess S.J.; Skaalrud D., et al. Reversal Agent and Linker Variants of ReversedChloroquines: Activities Against Plasmodium Falciparum [J]. J. Med. Chem.2010,53:916-919;(d) Behenna D.C.; Stockdill J.L.; Stoltz B.M. The Biology and Chemistry of theZoanthamine Alkaloids [J]. Angew. Chem., Int. Ed.2008,47:2365-2386;(e) Andries K.;Verhasselt P.; Guillemont J., et al. A Diarylquinoline Drug Active on the ATP Synthase ofMycobacterium tuberculosis [J]. Science2005,307:223-227.
    [111](a) Kaila N.; Janz K.; DeBernardo S., et al. Synthesis and Biological Evaluation ofQuinoline Salicylic Acids As P-Selectin Antagonists [J]. J. Med. Chem.2007,50:21-39;(b)Krishnamurthy M.; Simon K.; Orendt A.M., et al. Macrocyclic Helix-Threading Peptides forTargeting RNA [J]. Angew. Chem., Int. Ed.2007,46:7044-7047;(c) Krishnamurthy M.;Gooch B.D.; Beal P.A. Peptide Quinoline Conjugates: A New Class of RNA-BindingMolecules [J]. Org. Lett.2004,6:63-66;(d) Chaires J.B.; Ren J.; Henary M., et al. TriplexSelective2-(2-Naphthyl)quinoline Compounds: Origins of Affinity and New DesignPrinciples [J]. J. Am. Chem. Soc.2003,125:7272-7283.
    [112](a) Matsubara Y.; Hirakawa S.; Yamaguchi Y., et al. Angew. Chem., Int. Ed.2011,50:7670-7673;(b) Richter H.; Manche o O.G. TEMPO Oxoammonium Salt-MediatedDehydrogenative Povarov/Oxidation Tandem Reaction of N-Alkyl Anilines [J]. Org. Lett.2011,13:6066-6069;(c) Shan G.; Sun X.; Xia Q., et al. A Facile Synthesis of Substituted2-Alkylquinolines through [3+3] Annulation between3-Ethoxycyclobutanones and AromaticAmines at Room Temperature [J]. Org. Lett.2011,13:5770-5773;(d) Gao G.-L.; Niu Y.-N.;Yan Z.-Y., et al. Unexpected Domino Reaction via Pd-Catalyzed Sonogashira Coupling ofBenzimidoyl Chlorides with1,6-Enynes and Cyclization To Synthesize Quinoline Derivatives[J]. J. Org. Chem.2010,75:1305-1308.
    [113](a) Cai S.; Zeng J.; Bai Y., et al. Access to Quinolines through Gold-CatalyzedIntermolecular Cycloaddition of2-Aminoaryl Carbonyls and Internal Alkynes [J]. J. Org.Chem.2012,77:801-807;(b) Zhang X.; Liu B.; Shu X., et al. Silver-Mediated C HActivation: Oxidative Coupling/Cyclization of N-Arylimines and Alkynes for the Synthesisof Quinolines [J]. J. Org. Chem.2012,77:501-510;(c) Patil N.T.; Raut V.S. CooperativeCatalysis with Metal and Secondary Amine: Synthesis of2-Substituted Quinolines viaAddition/Cycloisomerization Cascade [J]. J. Org. Chem.2010,75:6961-6964;(d) Huo Z.;Gridnev I.D.; Yamamoto Y. A Method for the Synthesis of Substituted Quinolines viaElectrophilic Cyclization of1-Azido-2-(2-propynyl)benzene [J]. J. Org. Chem.2010,75:1266-1270.
    [114] Povarov L.S. α,β-Unsaturated Ethers and Their Analogues in Reactions of DieneSynthesis [J]. Russ. Chem. Rev.1967,36:656-670.
    [115] Shindoh N.; Tokuyama H.; Takemoto Y., et al. Auto-Tandem Catalysis in the Synthesisof Substituted Quinolines from Aldimines and Electron-Rich Olefins: CascadePovarov-Hydrogen-Transfer Reaction [J]. J. Org. Chem.2008,73:7451-7456.
    [116](a) Mitscher L.A. Bacterial Topoisomerase Inhibitors: Quinolone and PyridoneAntibacterial Agents [J]. Chem. Rev.2005,105:559-592;(b) Ghodsi R.; Zarghi A.; Daraei B.,et al. Design, Synthesis and Biological Evaluation of New2,3-Diarylquinoline Derivatives asSelective Cyclooxygenase-2Inhibitors [J]. Bioorg. Med. Chem.2010,18:1029-1033;(c)Chuang T.-H.; Yang C.-H.; Kao P.-C. Efficient Red-Emitting Cyclometalated Iridium(III)Complex and Applications of Organic Light-Emitting Diode [J]. Inorg. Chim. Acta2009,362:5017-5022;(d) Narender P.; Srinivas U.; Ravinder M., et al. Synthesis of MultisubstitutedQuinolines from Baylis–Hillman Adducts Obtained from Substituted2-Chloronicotinaldehydes and Their Antimicrobial Activity [J]. Bioorg. Med. Chem.2006,14:4600-4609.
    [117] Qiang L.G.; Baine N.H. A Convenient Synthesis of Substituted Quinolines by ThermalElectrocyclic Rearrangement of o-Vinyl Anils under Nonacidic Conditions [J]. J. Org. Chem.1988,53:4218-4222.
    [118](a) Wang Z.; Zhang Z.; Lu X. Effect of Halide Ligands on the Reactivity ofCarbon-Palladium Bonds: Implications for Designing Catalytic Reactions [J].Organometallics2000,19:775-780;(b) Zhang Z.; Lu X.; Xu Z., et al. Role of Halide Ions inDivalent Palladium-Mediated Reactions: Competition between β-Heteroatom Elimination andβ-Hydride Elimination of a Carbon-Palladium Bond [J]. Organometallics2001,20:3724-3728.
    [119] Berman A.M.; Lewis J.C.; Bergman R.G., et al. Rh(I)-Catalyzed Direct Arylation ofPyridines and Quinolines [J]. J. Am. Chem. Soc.2008,130:14926-14927.
    [120] Tobisu M.; Hyodo I.; Chatani N. Nickel-Catalyzed Reaction of Arylzinc Reagents withN-Aromatic Heterocycles: A Straightforward Approach to C–H Bond Arylation ofElectron-Deficient Heteroaromatic Compounds [J]. J. Am. Chem. Soc.2009,131:12070-12071.
    [121] Gilman H.; Soddy T.S. Some Organolithium Compounds of Quinoline and2-Phenylquinoline [J]. J. Org. Chem.1958,23:1584-1585.
    [122] Su W.; Yu J.; Li Z., et al. Unexpected and Divergent Reactions ofN-Formyl-1,2-dihydroquinolines with Sodium Azide: Highly Chemoselective Formation of2-Substituted Quinolines and Isoxazolo[4,3-c]quinolines [J]. Synlett2010,8:1281-1284.
    [123] Martínez R.; Ramón D.J.; Yus M. Transition-Metal-Free Indirect Friedl nder Synthesisof Quinolines from Alcohols [J]. J. Org. Chem.2008,73:9778-9780.
    [124] Egi M.; Liebeskind L.S. Heteroaromatic Thioether-Organostannane Cross-Coupling [J].Org. Lett.2003,5:801-802.
    [125](a) Sangu K.; Fuchibe K.; Akiyama T. A Novel Approach to2-Arylated Quinolines:Electrocyclization of Alkynyl Imines via Vinylidene Complexes [J]. Org. Lett.2004,6:353-355;(b) Epling G.A.; Ayengar N.K.N.; Lopes A., et al. Photochemical Reduction andDecarboxylation of2-Phenylquinoline-4-carboxylic Acids [J]. J. Org. Chem.1978,43:2928-2930.
    [126] Gómez C.M.M.; Kouznetsov V.V.; Sort ino M.A., et al. In Vitro Antifungal Activity ofPolyfunctionalized2-(Hetero)Arylquinolines Prepared through Imino Diels–Alder Reactions[J]. Bioorg. Med. Chem.2008,16:7908-7920.
    [127] Li A.-H.; Ahmed E.; Chen X., et al. A Highly Effective One-Pot Synthesis ofQuinolines from o-Nitroarylcarbaldehydes [J]. Org. Biomol. Chem.2007,5:61-64.
    [128] Atwell G.J.; Baguley B.C.; Denny W.A. Potential Antitumor Agents.57.2-Phenylquinoline-8-carboxamides as “Minimal” DNA-Intercalating Antitumor Agents within Vivo Solid Tumor Activity [J]. J. Med. Chem.1989,32:396-401.
    [129] Gowrisankar S.; Lee H.S.; Kim J.M., et al. Pd-Mediated Synthesis of2-Arylquinolinesand Tetrahydropyridines from Modified Baylis–Hillman Adducts [J]. Tetrahedron Lett.2008,49:1670-1673.
    [130] Bunce R.A.; Nago T.; Sonobe N.(±)-2-Alkyl-1,2,3,4-Tetrahydroquinoline-3-Carboxylic Esters by A Catalyst and Pressure Dependent Tandem Reduction-ReductiveAmination Reaction [J]. J. Heterocycl. Chem.2007,44:1059-1064.
    [131] Armesto D.; Gallego M.G.; Horspool W.M. Photochemical Synthesis of QuinolineDerivatives by Cyclization of4-Aryl-N-Benzoyloxy-2,3-Diphenyl-1-Azabuta-1,3-Dienes [J].J. Chem. Soc., Perkin Trans.11989:1623-1626.
    [132] Jia C.-S.; Zhang Z.; Tu S.-J., et al. Rapid and Efficient Synthesis of Poly-SubstitutedQuinolines Assisted by p-Toluene Sulphonic Acid under Solvent-Free Conditions:Comparative Study of Microwave Irradiation Versus Conventional Heating [J]. Org. Biomol.Chem.2006,4:104-110.
    [133] Cao K.; Zhang F.-M.; Tu Y.-Q., et al. Iron-Catalyzed and Air-Mediated TandemReaction of Aldehydes, Alkynes and Amines: An Efficient Approach to SubstitutedQuinolines [J]. Chem.-Eur. J.2009,15:6332-6334.
    [134] Li Z.; Xu L.; Su W. Synthesis of2,4-Diarylquinolines: Nickel-Catalysed Ligand-FreeCross-Couplings of4-Chloro-2-Arylquinolines with Arylmagnesium Halides in2-Methyltetrahydrofuran [J]. J. Chem. Res.2011,35:240-243.
    [135] Youn S.W.; Song J.-H.; Jung D.-I. Rhodium-Catalyzed Tandem ConjugateAddition-Mannich Cyclization Reaction: Straightforward Access to Fully SubstitutedTetrahydroquinolines [J]. J. Org. Chem.2008,73:5658-5661.
    [136](a) Balme G. Pyrrole Syntheses by Multicomponent Coupling Reactions [J]. Angew.Chem., Int. Ed.2004,43:6238-6241;(b) D mling A. Recent Developments in IsocyanideBased Multicomponent Reactions in Applied Chemistry [J]. Chem. Rev.2006,106:17-89;(c)Tejedor D.; González-Cruz D.; Santos-Expósito A., et al. Multicomponent Domino ProcessesBased on the Organocatalytic Generation of Conjugated Acetylides: Efficient SyntheticManifolds for Diversity-Oriented Molecular Construction [J]. Chem.-Eur. J.2005,11:3502-3510.
    [137] Hantzsch A. Ueber die Synthese pyridinartiger Verbindungen aus Acetessig ther undAldehydammoniak [J]. Justus Liebigs Ann. Chem.1882,215:1-82.
    [138](a) Stout D.M.; Meyers A.I. Recent Advances in the Chemistry of Dihydropyridines [J].Chem. Rev.1982,82:223-243;(b) Horton D.A.; Bourne G.T.; Smythe M.L. TheCombinatorial Synthesis of Bicyclic Privileged Structures or Privileged Substructures [J].Chem. Rev.2003,103:893-930;(c) Arhancet G.B.; Woodard S.S.; Iyanar K., et al. Discoveryof Novel Cyanodihydropyridines as Potent Mineralocorticoid Receptor Antagonists [J]. J.Med. Chem.2010,53:5970-5978.
    [139](a) Rudler H.; Parlier A.; Sandoval-Chavez C., et al. Overall “Pseudocationic”Trifluoromethylation of Dihydropyridines with Triflic Anhydride [J]. Angew. Chem., Int. Ed.2008,47:6843-6846;(b) Pelletier G.; Bechara W.S.; Charette A.B. Controlled andChemoselective Reduction of Secondary Amides [J]. J. Am. Chem. Soc.2010,132:12817-12819.
    [140](a) Sun J.; Xia E.-Y.; Wu Q., et al. Synthesis of Polysubstituted Dihydropyridines byFour-Component Reactions of Aromatic Aldehydes, Malononitrile, Arylamines, andAcetylenedicarboxylate [J]. Org. Lett.2010,12:3678-3681;(b) Wan J.-P.; Gan S.-F.; SunG.-L., et al. Novel Regioselectivity: Three-Component Cascade Synthesis of Unsymmetrical1,4-and1,2-Dihydropyridines [J]. J. Org. Chem.2009,74:2862-2865;(c) Jiang H.; Mai R.;Cao H., et al. L-Proline-Catalyzed Synthesis of Highly Functionalized Multisubstituted1,4-Dihydropyridines [J]. Org. Biomol. Chem.2009,7:4943-4953.
    [141](a) Richter M.; Molnár J.; Hilgeroth A. Biological Evaluation ofBishydroxymethyl-Substituted Cage Dimeric1,4-Dihydropyridines as a Novel Class ofP-Glycoprotein Modulating Agents in Cancer Cells [J]. J. Med. Chem.2006,49:2838-2840;(b) Loughlin W.A.; Tyndall J.D.A.; Glenn M.P., et al. Beta-Strand Mimetics [J]. Chem. Rev.2010,110: PR32-PR69;(c) Hilgeroth, A.; Baumeister, U. Formation of Novel Photodimersfrom4-Aryl-1,4-dihydropyridines [J]. Chem.-Eur. J.2001:4599-4603.
    [142](a) Kikuchi S.; Iwai M.; Murayama H., et al. Catalytic Synthesis of1,4-Dihydropyridine Derivatives Using Scandium(III) Triflate [J]. Tetrahedron Lett.2008,49:114-116;(b) Yang J.; Wang C.; Xie X., et al. Acid-Catalyzed Cascade Reactions ofEnaminones with Aldehydes: C–H Functionalization To Afford1,4-Dihydropyridines [J]. Eur.J. Org. Chem.2010:4189-4193;(c) Cui S.-L.; Wang J.; Lin X.-F., et al. Domino Reaction of3-(2-Formylphenoxy)propenoates and Amines: A Novel Synthesis of1,4-Dihydropyridinesfrom Salicaldehydes, Ethyl Propiolate, and Amines [J]. J. Org. Chem.2007,72:7779-7782.
    [143] Bozell J.J.; Hegedus L.S. Palladium-Assisted Functionalization of Olefins: A NewAmination of Electron-Deficient Olefins [J]. J. Org. Chem.1981,46:2561-2563.
    [144](a) McDonald R.I.; Liu G.; Stahl S.S. Palladium(II)-Catalyzed Alkene Functionalizationvia Nucleopalladation: Stereochemical Pathways and Enantioselective Catalytic Applications[J]. Chem. Rev.2011,111:2981-3019;(b) Jensen K.H.; Sigman M.S. MechanisticApproaches to Palladium-Catalyzed Alkene Difunctionalization Reactions [J]. Org. Biomol.Chem.2008,6:4083-4088.
    [145] Li G.; Kotti S.R.S.S.; Timmons C. Recent Development of Regio-and StereoselectiveAminohalogenation Reaction of Alkenes [J]. Eur. J. Org. Chem.2007,2745-2758.
    [146](a) Cai Y.; Liu X.; Jiang J., et al. Catalytic Asymmetric Chloroamination Reaction ofα,β-Unsaturated γ-Keto Esters and Chalcones [J]. J. Am. Chem. Soc.2011,133:5636-5639;(b) Huang S.-X.; Ding K. Asymmetric Bromoamination of Chalcones with a PrivilegedN,N’-Dioxide/Scandium(III) Catalyst [J]. Angew. Chem., Int. Ed.2011,50:7734-7736;(c)Cai Y.; Liu X.; Hui Y., et al. Catalytic Asymmetric Bromoamination of Chalcones: HighlyEfficient Synthesis of Chiral α-Bromo-β-Amino Ketone Derivatives [J]. Angew. Chem., Int.Ed.2010,49:6160-6164.
    [147](a) Alix A.; Lalli C.; Retailleau P., et al. Highly Enantioselective Electrophilicα-Bromination of Enecarbamates: Chiral Phosphoric Acid and Calcium Phosphate SaltCatalysts [J]. J. Am. Chem. Soc.2012,134:10389-10392;(b) Chen Z.-G.; Wang Y.; Wei J.-F.,et al. K3PO4-Catalyzed Regiospecific Aminobromination of β-Nitrostyrene Derivatives withN-Bromoacetamide as Aminobrominating Agent [J]. J. Org. Chem.2010,75:2085-2088.
    [148](a) Ji X.; Duan Z.; Qian Y., et al. Highly Regioselective Aminobromination ofα,β-Unsaturated Nitro Compounds with Benzyl Carbamate/N-Bromosuccinimide asNitrogen/Bromine Source [J]. RSC Adv.2012,2:5565-5570;(b) Raghavan S.; Mustafa S.;Sridhar B.A Versatile Route to (E)-and (Z)-2-Hydroxy-3,4-unsaturated DisubstitutedSulfilimines and Their Haloamidation Reaction [J]. J. Org. Chem.2009,74:4499-4507.
    [149] Chen X.; Chen D.; Lu Z., et al. Palladium-Catalyzed Coupling of Haloalkynes withAllyl Acetate: A Regio-and Stereoselective Synthesis of (Z)-β-Haloenol Acetates [J]. J. Org.Chem.2011,76:6338-6343.
    [150](a) Tummatorn J.; Dudley G.B. Stereodefined Homopropargyl Amines by TandemNucleophilic Addition/Fragmentation of Dihydropyridone Triflates [J]. Org. Lett.2011,13:158-160;(b) Bartoli G.; Cimarelli C.; Marcantoni E., et al. Chemo-and DiastereoselectiveReduction of β-Enamino Esters: A Convenient Synthesis of Both cis-and trans-γ-AminoAlcohols and β-Amino Esters [J]. J. Org. Chem.1994,59:5328-5335.
    [151](a) Sengoden M.; Punniyamurthy T.“On Water”: Efficient Iron-CatalyzedCycloaddition of Aziridines with Heterocumulenes [J]. Angew. Chem., Int. Ed.2013,52,572-575;(b) Kalow J.A.; Schmitt D.E.; Doyle A.G. Synthesis of β-Fluoroamines by LewisBase Catalyzed Hydrofluorination of Aziridines [J]. J. Org. Chem.2012,77,4177-4183;(c)Huang L.; Wulff W.D. Catalytic Asymmetric Synthesis of Trisubstituted Aziridines Li Huang[J]. J. Am. Chem. Soc.2011,133,8892-8895.
    [152](a) Liu C.; Zhang H.; Shi W., et al. Bond Formations between Two Nucleophiles:Transition Metal Catalyzed Oxidative Cross-Coupling Reactions [J]. Chem. Rev.2011,111:1780-1824;(b) Yeung C.S.; Dong V.M. Catalytic Dehydrogenative Cross-Coupling: FormingCarbon-Carbon Bonds by Oxidizing Two Carbon-Hydrogen Bonds [J]. Chem. Rev.2011,111:1215-1292;(c) Li C.-J. Cross-Dehydrogenative Coupling (CDC): Exploring C–C BondFormations beyond Functional Group Transformations [J]. Acc. Res. Chem.2009,42:335-344.
    [153](a) Anastas P.; Eghbali N. Green Chemistry: Principles and Practice [J]. Chem. Soc. Rev.2010,39:301-312;(b) Piera J.; B ckvall J.-E. Catalytic Oxidation of Organic Substrates byMolecular Oxygen and Hydrogen Peroxide by Multistep Electron Transfer—A BiomimeticApproach [J]. Angew. Chem., Int. Ed.2008,47:3506-3523.
    [154](a) Stanovnik B.; Svete J. Synthesis of Heterocycles from Alkyl3-(Dimethylamino)propenoates and Related Enaminones [J]. Chem. Rev.2004,104,2433-2480;(b) Toh K.K.; Wang Y.-F.; Jian Ng E.P., et al. Copper-Mediated Aerobic Synthesisof3-Azabicyclo[3.1.0]hex-2-enes and4-Carbonylpyrroles from N-Allyl/Propargyl EnamineCarboxylates [J]. J. Am. Chem. Soc.2011,133,13942-13945;(c) Hesp K.D.; Bergman R.G.;Ellman J.A. Expedient Synthesis of N-Acyl Anthranilamides and β-Enamine Amides by theRh(III)-Catalyzed Amidation of Aryl and Vinyl C–H Bonds with Isocyanates [J]. J. Am.Chem. Soc.2011,133,11430-11433.(d) Neumann J.J.; Suri M.; Glorius F. EfficientSynthesis of Pyrazoles: Oxidative C–C/N–N Bond-Formation Cascade [J]. Angew. Chem., Int.Ed.2010,49,7790-7794;(e) Würtz S.; Rakshit S.; Neumann J.J., et al. Palladium-CatalyzedOxidative Cyclization of N-Aryl Enamines: From Anilines to Indoles [J]. Angew. Chem., Int.Ed.2008,47,7230-7233;(f) Guan Z.-H.; Li L.; Ren Z.-H., et al. A Facile and EfficientSynthesis of Multisubstituted Pyrroles from Enaminoesters and Nitroolefins [J]. Green Chem.2011,13,1664-1668.
    [155](a) Burk M.J. Modular Phospholane Ligands in Asymmetric Catalysis [J]. Acc. Chem.Res.2000,33:363-372;(b) Blaser H.-U.; Malan C.; Pugin B., et al. Selective Hydrogenationfor Fine Chemicals: Recent Trends and New Developments [J]. Adv. Synth. Catal.2003,345:103-151.
    [156](a) Ueno S.; Shimizu R.; Kuwano R. Nickel-Catalyzed Formation of aCarbon–Nitrogen Bond at the β Position of Saturated Ketones [J]. Angew. Chem., Int. Ed.2009,48:4543-4545;(b) Bolshan Y.; Batey R.A. Enamide Synthesis by Copper-CatalyzedCross-Coupling of Amides and Potassium Alkenyltrifluoroborate Salts [J]. Angew. Chem., Int.Ed.2008,47:2109-2112;(c) Gooβen L.J.; Salih K.S.M.; Blanchot M. Synthesis of SecondaryEnamides by Ruthenium-Catalyzed Selective Addition of Amides to Terminal Alkynes [J].Angew. Chem., Int. Ed.2008,47:8492-8495;(d) Shen R.; Lin C.T.; Bowman E.J., et al.Lobatamide C: Total Synthesis, Stereochemical Assignment, Preparation of SimplifiedAnalogues, and V-ATPase Inhibition Studies [J]. J. Am. Chem. Soc.2003,125:7889-7901;(e)Wang L.; Liu C.; Bai R., et al. Easy Access to Enamides: A Mild Nickel-Catalysed AlkeneIsomerization of Allylamides [J]. Chem. Commun.2013,49:7923-7925.
    [157] Kotov V.; Scarborough C.C.; Stahl S.S. Palladium-Catalyzed Aerobic OxidativeAmination of Alkenes: Development of Intra-and Intermolecular Aza-Wacker Reactions [J].Inorg. Chem.2007,46:1910-1923.
    [158] Mizuta Y.; Yasuda K.; Obora Y. Palladium-Catalyzed Z Selective Oxidative Aminationof ortho-Substituted Primary Anilines with Olefins under an Open Air Atmosphere [J]. J. Org.Chem.2013,78:6332-6337.
    [159] Thorwirth R.; Stolle A. Solvent-Free Synthesis of Enamines from Alkyl Esters ofPropiolic or But-2-yne Dicarboxylic Acid in a Ball Mill [J]. Synlett2011,15:2200-2202.
    [160] Matsumoto S.; Mori T.; Akazome M. Formation of1,2-Dihydroquinoline-3-carboxylicAcid Derivatives from Methyl3-(Arylamino)acrylates with Hydrogen Iodide [J]. Synthesis2010,21:3615-3622.
    [161] Yamazaki K.; Nakamura Y.; Kondo Y. Solid-Phase Synthesis of IndolecarboxylatesUsing Palladium-Catalyzed Reactions [J]. J. Org. Chem.2003,68:6011-6019.
    [162] Toyota M.; Fukumoto K. Tandem Michael Addition-[3,3] Sigmatropic RearrangementProcesses-A Concise Route to Functionalized3-Alkoxycarbonylindoles [J]. Heterocycles1990,31:1431-1433.
    [163] Fulloon B.E.; Wentrup C. Fluoroquinolones from Imidoylketenes andIminopropadienones, R–N=C=C=C=O [J]. Aust. J. Chem.2009,62:115-120.
    [164] Luzung M.R.; Lewis C.A.; Baran P.S. Direct, Chemoselective N-tert-Prenylation ofIndoles by C–H Functionalization [J]. Angew. Chem., Int. Ed.2009,48:7025-7029.
    [165] Linton E.C.; Kozlowski M.C. Catalytic Enantioselective Meerwein-EschenmoserClaisen Rearrangement: Asymmetric Synthesis of Allyl Oxindoles [J]. J. Am. Chem. Soc.2008,130:16162-16163.
    [166] Ludwig J.; Bovens S.; Brauch C., et al. Design and Synthesis of1-Indol-1-yl-propan-2-ones as Inhibitors of Human Cytosolic Phospholipase A2α [J]. J. Med.Chem.2006,49:2611-2620.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700