分级结构半导体材料的绿色化学合成及其高效降解有机污染物性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文采用绿色化学合成技术,简捷地制备出了一系列具有独特分级结构的半导体微纳米材料,考察了微纳米结构的晶体生长形成机制,评价了分级结构半导体材料结构增强的降解模拟水污染物的性能。主要研究内容归纳如下:
     1、采用超声化学技术,以醋酸铜和硫脲的水溶液为前驱体溶液,通过一步超声辐照反应,成功地制得了分级结构的半导体CuS中空微球。中空微球由厚度约为20nm CuS纳米片交叠自组装而成,纳米片在超声辅助生长过程中产生大量的堆叠位错。在过氧化氢作用下,这种分级中空结构的CuS微晶显示了氧化高浓度水污染物的降解性能,具有潜在的实际应用价值。
     2、采用微波化学技术,以醋酸镉和硫脲的水溶液为前驱体溶液,通过调控乙二胺的量,成功地控制合成了三种不同物相和形貌相的CdS微纳米晶。随着矿化剂的体积增大,CdS微晶历经六方相单晶纳米球、六方相分级结构的“虫草”状纳米棒、再到立方相分级结构的“菜花”状微球的演变。可见光催化降解有机染料的实验表明,纯立方相“菜花”状CdS微晶显示最好的可见光催化性能,这归功于其最小的能级带宽、最弱的荧光和较大的比表面积等结构特性。
     3、采用超声化学技术,将硝酸铋、硫脲和CTAB的前驱体反应液经一步超声辐照,得到一种超薄的圆片状BiOBr前驱体;前驱体经退火热处理成功地制得了具有分级和多孔结构的半导体BiOBr中空半球壳。半球壳类似于“蛋壳”状,壳壁为典型的类无机富勒烯层状结构,由大量的纳米粒子和孔隙组成。以有机染料RhB为分子探针,可见光光催化降解实验表明,这种独特的分级结构BiOBr中空“蛋壳”显示了高效的可见光催化降解有机污染物的性能。
     4、采用微波化学技术,将硝酸铋、硫脲和CTAB的前驱体反应液经一步微波加热反应,成功地制得了三元高阶硫氯属化合物Bi19S27Br3自支撑超结构。超结构是由单晶的纳米纤维十字编织成微米“筛”,而纳米纤维是由更细的纳米丝融合而成。材料的固体紫外-可见-近红外吸收光谱表明在可见光和近红外光有较强的吸收。以模拟污染物RhB为分子探针,可见光催化实验表明其具有较好的可见光降解水污染物性能,为下一步开发近红外光响应的光催化剂提供有益参考。
In this dissertation, we have explored the controllable synthesis of hierarchically-structured semiconductor micro/nano materials via a facile and green chemical technique, in order to developing their promising application in aspects of environmental pollution treatment. The plausible crystal formation mechanisms of those novel hierarchical micro/nanostructures have been analyzed. Meanwhile, the corresponding structure-dependent degradation of organic pollutions on as-obtained hierarchically structured micro/nano materials has been also investigated. The details are summarized briefly as follows:
     1. The hierarchically structured hollow microspheres composed of copper sulfide (CuS) nanoplatelets have been successfully fabricated via a one-pot and green sonochemical process for the first time, using copper acetate and thiourea aqueous solution as precursors without surfactant or template. Large-scaled hollow architectures with outer diameters in the range of1-1.2μm are assembled by pure hexagonal single crystalline CuS nanoplatelets, being of about20nm in thickness with stacking faults in the crystal lattice. Moreover, the possible growth mechanism for CuS hollow spheres is proposed on the basis of the temporal evolution controlled experiments. More importantly, this hierarchically structured CuS semiconductor material show highly efficient Fenton-like degradation activity of highly concentrated dye containing solution with the help of hydrogen peroxide, suggesting a promising application in wastewater purification.
     2. Three kinds of CdS nanostructures, that is, hexagonal nanospheres, hierarchical caterpillarfungus-like hexagonal nanorods and hierarchical cubic microspheres, were controllably synthesized by a facile and one-pot microwave-assisted aqueous chemical method using ethanediamine as a phase and morphology controlling reagent. The characterization results show that hexagonal nanospheres is monodispersed with average diameters of about100nm; hexagonal caterpillarfungus-like nanorods has lengths in the range of600-800nm and diameters of40-60nm, assembled by nanoparticles about20nm in diameter; and hierarchical cubic microspheres is pure cubic microspheres with diameters in the range of0.8-1.3mm, aggregated by tiny nanograins with size of5.8nm. The visible light photodegradation of methylene blue and rhodamine B in the presence of CdS photocatalysts illustrate that all of them display high photocatalytic activities. Significantly, the hierarchical cubic microspheres exhibit the highest photocatalytic efficient in degradation of organic dyes, which is closely related to the phase and morphology structure of cubic CdS material.
     3. Novel hollow BiOBr eggshells with inorganic fullerene-like structure have been successfully fabricated on a large scale via a facile ultrasound-assisted anion exchange reaction and subsequent heating treatment process. The products demonstrate that the hollow eggshells possess a pure tetragonal phase BiOBr, with the average thickness of about12nm, opening diameters of500-800nm and depths of400-600nm. The walls of eggshells, owning inorganic fullerene-like layered structure, are constructed by nanograins with size of about10nm. The average pore diameter of intercrystal mesopore is2.8nm. A possible formation mechanism for BiOBr hollow eggshells is proposed. According to the photodegradation of Rhodamine B under visible light irradiation, the hollow BiOBr eggshells exhibit excellent photocatalytic performance compared to P25catalyst.
     4. Novel hierarchical self-supported Bi19S27Br3superstructures have been synthesized on a large scale by a facile and green microwave-assisted aqueous chemical process for the first time. The products have been characterized and the results reveal that the self-supported fabric-like Bi19S27Br3superstructures possess a hexagonal phase with diameters of4-5μm, constructed by cross-bedded nanofibers with average diameters of about80nm. Further, the nanofibers are aggregated by ultrafine nanosilks containing stacking faults. According to the photodegradation of RhodamineB under visible lighting, the self-supported Bi19S27Br3superstructures display high efficient catalytic performance. This work may reignite the intensive study of the higher-order sulfohalogenides for their application in solar and near-infrared light driven photodegradation of organic pollution.
引文
[1]余刚,黄俊,张彭义.持久性有机污染物:倍受关注的全球性环境问题[J].环境保护2001,4:37-39.
    [2]P. Collier, C. M. Alles. Materials ecology:an industrial perspective[J). Science 2010,330: 919-920.
    [3]P. Bose, W. H. Glaze, D. S. Maddox. Degradation of RDX by various advanced oxidation processes:Ⅰ. Reaction rates[J]. Water Res.1998,32:997-1004.
    [4]H. J. Fenton. Oxidation of tartaric acid in the presence of iron[J]. J. Chem. Soc.1894,65: 899-910.
    [5]F. Haber, J. Weiss. The catalytic decomposition of hydrogen peroxide by iron salts [J], Proc. R. Soc. London A 1934,147:332-351.
    [6]M. E. Lindsey, M. A. Tarr. Quantitation of hydroxyl radical during Fenton oxidation following a single addition of iron and peroxide[J]. Chemosphere 2000,41:409-417.
    [7]F. Chiker, F. Launay, J. P. Nogier, J. L. Bonardet. Green and selective epoxidation of alkenes catalysed by new TiO2-SiO2 SB A mesoporous solids[J]. Green Chem.2003,5: 318-322.
    [8]B. S. Lane, K. Burgess. Metal-catalyzed epoxidations of alkenes with hydrogen peroxide[J]. Chem. Rev.2003,103:2457-2474.
    [9]E. D. De Vos, B. F. Sels, P. A. Jacobs. Practical heterogeneous catalysts for epoxide production[J].Adv. Synth. Catal.2003,345:457-473.
    [10]G. C. Yin, M. Buehalova, A. M. Danby, C. M. Perkins, D. Kitko, J. D. Carter, W. M. Scheper, D. H. Busch. Olefin oxygenation by the hydroperoxide Adduct of a nonheme manganese(IV) complex:epoxidations by a metallo-peracid produces gentle selective oxidations[J]. J. Am. Chem. Soc.2005,127:17170-17171.
    [11]T. Rhadfi, J. Y. Piquemal, L. Sicard, F. Herbst, E. Briot, M. Benedetti, A. Atlamsani. Polyol-made Mn3O4 nanocrystals as efficient Fenton-like catalysts [J]. Appl. Catal. A-Gen.2010,386:132-139.
    [12]T. Y. Lin, C. H. Wu. Activation of hydrogen peroxide in copper (II)/amino acid/H2O2 systems:effects of pH and copper speciation[J]. J. Catal.2005,232:117-126.
    [13]Z. Li, L. W. Mi, W. H. Chen, H. W. Hou, C. T. Liu, H. L. Wang, Z. Zheng, C. Y. Shen. Three-dimensional CuS hierarchical architectures as recyclable catalysts for dye decolorization[J]. CrystEngComm 2012,14:3965-3971.
    [14]W. W. He, H. M. Jia, X. X. Li, Y. Lei, J. Li, H. X. Zhao, L. W. Mi, L. Z. Zhang, Z. Zheng. Understanding the formation of CuS concave superstructures with peroxidase-like activity[J]. Nanoscale 2012,4:3501-3506.
    [15]L. W. Mi, W. T. Wei, Z. Zheng, Y. Gao, Y. Liu, W. H. Chen, X. X. Guan. Tunable properties induced by ion exchange in multilayer intertwined CuS microflowers with hierarchal structures [J]. Nanoscale 2013,5:6589-6598.
    [16]S. He, G. S. Wang, C. Lu, X. Luo, B. Wen, L. Guo, M. S. Cao. Controllable fabrication of CuS hierarchical nanostructures and their optical, photocatalytic, and wave absorption properties [J]. ChemPlusChem 2013,78:250-258.
    [17]A. Fujishima, K. Honda. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature 1972,238:37-38.
    [18]J. H. Carey, J. Lawrence, H. M. Tosine. Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspensions[J]. Bull. Environ. Contam. Toxieol 1976,16: 697-701.
    [19]X. Chen, S. S. Mao. Titanium dioxide nanomaterials:synthesis, properties, modifications, and applications[J]. Chem. Rev.2007,107:2891-2959.
    [20]G. Rothenberger, J. Moser, M. Gratzel, N. Serpone, D. K. Sharma. Charge carrier trapping and recombination dynamics in small semiconductor particles[J]. J. Am. Chem. Soc.1985,107:8054-8059.
    [21]高镰,郑珊,张青红.纳米氧化钛光催化材料及应用[M].北京:化学工业出版社2002.
    [22]M. R. Hoffman, S. T. Martin, W. Y. Choi, D. W. Bahnemann. Environmental applications of semiconductor photocataly sis [J]. Chem. Rev.1995,95:69-96.
    [23]R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, T. Watanabe. Light-induced amphiphilic surfaces[J]. Nature 1997,388: 431-432.
    [24]范崇政,肖建平,丁延伟.纳米Ti02的制备与光催化反应研究进展[J].科学通报2001,46:265-273.
    [25]X. Q. Gong, A. Selloni. Reactivity of anatase TiO2 nanoparticles:the role of the minority (001) surface[J]. J. Phys. Chem. B 2005,109:19560-19562.
    [26]H. G. Yang, G. Liu, S. Z. Qiao, C. H. Sun, Y. G. Jin, S. C. Smith, J. Zou, H. M. Cheng, G. Q. Lu. Solvothermal synthesis and photoreactivity of anatase TiO2 nanosheets with dominant{001} facets[J]. J. Am. Chem. Soc.2009,131:4078-4083.
    [27]D. Q. Zhang, G. S. Li, X. F. Yang, J. C. Yu. A micrometer-size TiO2 single-crystal photocatalyst with remarkable 80% level of reactive facets[J]. Chem. Commun.2009, 4381-4383.
    [28]J. G. Yu, L. F. Qi, M. Jaroniec. Hydrogen production by photocatalytic water splitting over Pt/TiO2 nanosheets with exposed (001) facets[J]. J. Phys. Chem. C 2010,114: 13118-13125.
    [29]X. B. Chen, S. H. Shen, L. J. Guo, S. S. Mao. Semiconductor-based photocatalytic hydrogen generation[J]. Chem. Rev.2010,110:6503-6570.
    [30]H. X. Li, Z. F. Bian, J. Zhu, Y. N. Huo, H. Li, Y. F. Lu. Mesoporous Au/TiO2 nanocomposites with enhanced photocatalytic activity [J]. J. Am. Chem. Soc.2007,129: 4538-4539.
    [31]Z. F. Bian, J. Zhu, F. L. Cao, Y. F. Lu, H. X. Li. In situ encapsulation of Au nanoparticles in mesoporous core-shell TiO2 microspheres with enhanced activity and durability [J]. Chem. Commun.2009,3789-3791.
    [32]R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga. Visible-light photocatalysis in nitrogen-doped titanium oxides[J]. Science 2001,293:269-271.
    [33]C. Wang, M. Wang, K. Xie, Q. Wu, L. Sun, Z. Lin, C. Lin. Room temperature one-step synthesis of microarrays of N-doped flower-like anatase TiO2 composed of well-defined multilayer nanoflakes by Ti anodization[J]. Nanotechnology 2011,22:305607.
    [34]S. H. Wang, T. K. Chen, K. K. Rao, M. S. Wong. Nanocolumnar titania thin films uniquely incorporated with carbon for visible light photocatalysis[J]. Appl. Catal. B 2007, 76:328-334.
    [35]Y. Yao, G. Li, S. Ciston, R. M. Lueptow, K. A. Gray. Photoreactive TiO2/carbon nanotube composites:synthesis and reactivity [J]. Environ. Sci. Technol.2008,42: 4952-4957.
    [36]Y. Wang, R. Shi, J. Lin, Y. Zhu. Significant photocatalytic enhancement in methylene blue degradation of TiO2 photocatalysts via graphene-like carbon in situ hybridization[J]. Appl. Catal. B:Environ.2010,100:179-183.
    [37]H. X. Li, X. Y. Zhang, Y. N. Huo, J. Zhu. Supercritical preparation of a highly active S-doped TiO2 photocatalyst for methylene blue mineralization[J]. Environ. Sci. Techno. 2007,41:4410-4414.
    [38]X. B. Chen, L. Liu, P. Y. Yu, S. S. Mao. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals[J]. Science 2011,331:746-750.
    [39]M. I. Litter, J. A. Navio. Photocatalytic properties of iron-doped titania semiconductors[J]. J. Photoehem. Photobiol. A 1996,98:171-181.
    [40]J. Sabate, M. A. Anderson, H. Kikkawa, Q. Xu, S. Cervera-March, C. G. Hill Jr. Nature and properties of pure and nb-doped TiO2 ceramic membranes affecting the photocatalytic degradation of 3-chlorosalicylic acid as a model of halogenated organic compounds[J].J. Catal.1992,134:36-46.
    [41]M. Iwasaki, M, Hara, H. Kawada, H. Tada, S. Ito. Cobalt ion-doped TiO2 photocatalyst response to visible light[J]. J. Colloid Interface Sci.2000,224:202-205.
    [42]W. Choi, A. Termin, M. R. Hoffillann. The role of metal ion dopants in quantum-sized TiO2:correlation between photoreactivity and charge carrier recombination dynamics [J]. J. Phys. Chem.1994,98:13669-13679.
    [43]G. Lu, A. Linsebigler, J. T. Yates. Ti3+ defect sites on TiO2 (110):production and chemical detection of active sites[J]. J. Phys. Chem.1994,98:11733-11738.
    [44]F. Zuo, L. Wang, T. Wu, Z. Zhang, D. Borehardt, P. Feng. Self-doped Ti3+ enhanced photocatalyst for hydrogen production under visible light[J]. J. Am. Chem. Soc.2010, 132:11856-11857.
    [45]M. Hara, T. Kondo, M. Komoda, S. Ikeda, J. N. Kondo, K. Domen, K. Shinohara, A. Tanaka. Cu2O as a photocatalyst for overall water splitting under visible light irradiation[J]. Chem. Commun.1998,357-358.
    [46]Y. Zhang, B. Deng, T. Zhang, D. Gao, A. W. Xu. Shape effects of Cu2O polyhedral microcrystals on photocatalytic activity[J]. J. Phys. Chem. C 2010,114:5073-5079.
    [47]J. Y. Ho, M. H. Huang. Synthesis of submicrometer-sized Cu2O crystals with morphological evolution from cubic to hexapod structures and their comparative photocatalytic activity[J]. J. Phys. Chem. C2009,113:14159-14164.
    [48]Z. Zheng, B. Huang, Z. Wang, M. Guo, X. Qin, X. Zhang, P. Wang, Y. Dai. Crystal faces of Cu2O and their stabilities in photocatalytic reactions [J]. J. Phys. Chem. C 2009, 113:14448-14453.
    [49]L. Huang, F. Peng, H. Yu, H. Wang. Preparation of cuprous oxides with different sizes and their behaviors of adsorption, visible-light driven photocatalysis and photocorrosion[J]. Solid State Sci.2009,11:129-138.
    [50]B. Zhou, Z. Liu, H. Wang, Y. Yang, W. Su. Experimental study on photocatalytic activity of Cu2O/Cu nanocomposites under visible light[J]. Catal. Lett.2009,132:75-80.
    [51]L. L. Ma, J. L. Li, H. Z. Sun, M. Q. Qiu, J. B. Wang, J. Y. Chen, Y. Yu. Self-assembled Cu2O flowerlike architecture:Polyol synthesis, photocatalytic activity and stability under simulated solar light[J]. Mater. Res. Bull.2010,45:961-968.
    [52]Y. B. Cao, J. M. Fan, L. Y. Bai, F. L. Yuan, Y. F. Chen. Morphology evolution of Cu2O from octahedra to hollow structures [J]. Cryst. Growth Des.2010,10:232-236.
    [53]W. Q. Zhang, L. Shi, K. B. Tang, S. M. Dou. Controllable synthesis of Cu2O microcrystals via a complexant-assisted synthetic route [J]. Eur. J. Inorg. Chem.2010, 1103-1109.
    [54]H. J. Yan, J. H. Yang, G. J. Ma, G. P. Wu, X. Zong, Z. B. Lei, J. Y. Shi, C. Li. Visible-light-driven hydrogen production with extremely high quantum efficiency on Pt-PdS/CdS photocatalyst[J]. J. Catal.2009,266:165-168.
    [55]X. Zong, H. J. Yan, G. P. Wu, G. J. Ma, F. Y. Wen, L. Wang, C. Li, Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation[J].J. Am. Chem. Soc.2008,130,7176-7177.
    [56]X. Zong, G. P. Wu, H. J. Yan, G. J. Ma, J. Y. Shi, F. Y. Wen, L. Wang, C. Li. Photocatalytic H2 evolution on MoS2/CdS catalysts under visible light irradiation[J]. J. Phys.Chem. C2010,114:1963-1968.
    [57]W. Zhang, Y. B. Wang, Z. Wang, Z. Y. Zhong, R. Xu. Highly efficient and noble metal-free NiS/CdS photocatalysts for H2 evolution from lactic acid sacrificial solution under visible light[J]. Chem. Commun.2010,46:7631-7633.
    [58]S. H. Shen, L. J. Guo, X. B. Chen, F. Ren, S. S. Mao. Effect of Ag2S on solar-driven photocatalytic hydrogen evolution of nanostructured CdS[J]. Int. J. Hydrogen. Energ. 2010,35:7110-7115.
    [59]S. L. Xiong, B. J. Xi, Y. T. Qian. CdS hierarchical nanostructures with tunable morphologies:preparation and photocatalytic properties[J].J. Phys. Chem. C 2010,114: 14029-14035.
    [60]J. Wang, B. Li, J. Z. Chen, N. Li, J. F. Zheng, J. H. Zhao, Z. P. Zhu. Diethylenetriamine-assisted synthesis of CdS nanorods under reflux condition and their photocatalytic performance[J]. J. Alloy. Comp.2012,535:15-20.
    [61]R. Jin, M. Y. Su, J. Wang, P. Zhang, M. Cui, Y. Chen, H. Q. Yang. Synthesis and enhanced photocatalytic activity of monodisperse flowerlike nanoarchitectures assembled from CdS nanoflakes with exposed{001} facets[J]. Mater. Res. Bull.2012, 47:3070-3077.
    [62]Y. Hu, Y. Liu, H. S. Qian, Z. Q. Li, J. F. Chen. Coating colloidal carbon spheres with CdS nanoparticles:microwave-assisted synthesis and enhanced photocatalytic activity[J]. Langmuir 2010,26:18570-18575.
    [63]X. W. Wang, H. W. Tian, Y. Yang, H. Wang, S. M. Wang, W. T. Zheng, Y. C. Liu. Reduced graphene oxide/CdS for efficiently photocatalystic degradation of methylene blue[J]. J. Alloy. Comp.2012,524:5-12.
    [64]C. H. Deng, X. B. Tian. Facile microwave-assisted aqueous synthesis of CdS nanocrystals with their photocatalytic activities under visible lighting[J]. Mater. Res. Bull.2013,48:4344-4350.
    [65]A. Sclafani, L. Palmisano, G. Marci, A. M. Venezia. Influence of platinum on catalytic activity of polycrystalline WO3 employed for phenol photodegradation in aqueous suspension[J]. Sol. Energy Mater. Sol. Cells 1998,51:203-219.
    [66]M. A. Gondal, M. N. Sayeed, A. Alarfaj. Activity comparison of Fe2O3, NiO, WO3, TiO2 semiconductor catalysts in phenol degradation by laser enhanced photo-catalytic process[J]. Chem. Phys. Lett.2007,445:325-330.
    [67]K. Sayama, H. Hayashi, T. Arai, M. Yanagida, T. Gunji, H. Sugihara. Highly active WO3 semiconductor photocatalyst prepared from amorphous peroxo-tungstic acid for the degradation of various organic compounds[J]. Appl. Catal. B:Environ.2010,94: 150-157.
    [68]A. Watcharenwong, W. Chanmanee, N. R. de Tacconi, C. R. Chenthamarakshan, P. Kajitvichyanukul, K. Rajeshwar. Anodic growth of nanoporous WO3 films:morphology, photoelectrochemical response and photocatalytic activity for methylene blue and hexavalent chrome conversion[J].J. Electroanal. Chem.2008,612:112-120.
    [69]J. Luo, M. Hepel. Photoelectrochemical degradation of naphthol blue black diazo dye on WO3 film electrode[J]. Electrochim. Acta 2001,46:2913-2922.
    [70]M. A. Gondal, M. A. Dastageer, A. Khalil. Synthesis of nano-WO3 and its catalytic activity for enhanced antimicrobial process for water purification using laser induced photo-catalysis [J]. Catal. Commun.2009,11:214-219.
    [71]D. Chen, J. Ye. Hierarchical WO3 hollow shells:dendrite, sphere, dumbbell, and their photocatalytic properties[J]. Adv. Funct. Mater.2008,18:1922-1928.
    [72]K. L. Zhang, C. M. Liu, F. Q. Huang, C. Zheng, W. D. Wang. Study of the electronic structure and photocatalytic activity of the BiOCl photocatalyst[J]. Appl. Catal. B: Environ.2006,68:125-129.
    [73]Y. Lei, G. Wang, S. Song, W. Fan, H. Zhang. Synthesis, characterization and assembly of BiOCl nanostructure and their photocatalytic properties[J]. CrystEngComm 2009,11: 1857-1862.
    [74]H. Z. An, Y. Du, T. M. Wang, C. Wang, W. C. Hao, J. Y. Zhang. Hotocatalytic properties of BiOX (X=C1, Br, and I)[J]. Rare. Metals.2008,27:243-250.
    [75]J. Zhang, F. J. Shi, J. Lin, D. F. Chen, J. M. Gao, Z. X. Huang, X. X. Ding, C. C. Tang, Self-assembled 3-D architectures of BiOBr as a visible light-driven photocatalyst[J]. Chem. Mater.2008,20:2937-2941.
    [76]M. Shang, W. Z. Wang, L. Zhang. Preparetion of BiOBr lamellar structure with high photocatalytic activity by CTAB as Br source and template [J]. J. Hazard. Mater.2009, 167:803-809.
    [77]X. F. Chang, J. Huang, C. Cheng, Q. Sui, W. Sha, G. Ji, S. B. Deng, G. Yu. BiOX (X=C1, Br, I) photocatalysts prepared using NaBiO3 as the Bi source:Characterization and catalytic performance [J]. Catal. Commun.2010,11:460-464.
    [78]Z. Jiang, F. Yang, G. D. Yang, L. Kong, M. O. Jones, T. C. Xiao, P. P. Edwards. The hydrothermal synthesis of BiOBr flakes for visible-light-responsive photocatalytic degradation of methyl orange[J]. J. Photochem. Photobiol. A:Chem.2010,212:8-13.
    [79]Y. Q. Lei, G. H. Wang, S. Y. Song, W. Q. Fan, M. Pang, J. K. Tang, H. J. Zhang. Room temperature, template-free synthesis of BiOI hierarchical structures:Visible-light photocatalytic and electrochemical hydrogenstorage properties [J]. Dalton. Trans.2010, 39:3273-3278.
    [80]G. F. Li, F. Qin, H. Yang, Z. Lu, H. Z. Sun, R. Chen. Facile microwave synthesis of 3D flowerlike BiOBr nanostructures and their excellent Cr71 removal capacity[J]. Eur. J. Inorg. Chem.2012,2012:2508-2513.
    [81]Y. N. Huo, J. Zhang, M. Miao, Y. Jin. Solvothermal synthesis of flower-like BiOBr microspheres with highly visible-light photocatalytic performances [J]. Appl. Catal. B-Environ.2012,111-112:334-341.
    [82]D. Q. Zhang, M. C. Wen, B. Jiang, G. S. Li, J. C. Yu. Ionothermal synthesis of hierarchical BiOBr microspheres for water treatment[J]. J. Hazard. Mater.2012, 211-212:104-111.
    [83]J. Xu, W. Meng, Y. Zhang, L. Li, C. S. Guo. Photocatalytic degradation of tetrabromobisphenol A by mesoporous BiOBr:efficacy, products and pathway[J]. Appl. Catal. B-Environ.2011,107:355-362.
    [84]X. J. Shi, X. Chen, X. L. Chen, S. M. Zhou, S. Y. Lou, Y. Q. Wang, L. Yuan. PVP assisted hydrothermal synthesis of BiOBr hierarchical nanostructures and high photocatalytic capacity[J]. Chem. Eng. J.2013,222:120-127.
    [85]H. T. Tian, J. W. Li, M. Ge, Y. P. Zhao, L. Liu. Removal of bisphenol by mesoporous BiOBr under simulated solar light irradiation[J]. Catal. Sci. Technol.2012,2: 2351-2355.
    [86]X. Y. Qin, H. F. Cheng, W. J. Wang, B. B. Huang, X. Y. Zhang, Y. Dai. Three dimensional BiOX (X=C1, Br and Ⅰ) hierarchical architectures:facile ionic liquid-assisted solvothermal synthesis and photocatalysis towards organic dye degradation[J]. Mater. Lett.2013,100:285-288.
    [87]J. X. Xia, S.Yin, H. M. Li, H. Xu, L. Xu, Y. G. Xu. Improved visible light photocatalytic activity of sphere-like BiOBr hollow and porous structures synthesized via a reactable ionic liquid[J]. Dalton. Trans.2011,40:5249-5258.
    [88]H. F. Cheng, B. B. Huang, Z. Y. Wang, X. Y. Qin, X. Y. Zhang, Y. Dai. One-pot miniemulsion-mediated route to BiOBr hollow microspheres with highly efficient photocatalytic activity[J]. Chem-Eur. J.2011,17:8039-8043.
    [89]C. H. Deng, H. M. Guan. Fabrication of hollow inorganic fullerene-like BiOBr eggshells with highly efficient visible light photocatalytic activity[J]. Mater. Lett.2013,107: 119-122.
    [90]G. H. Jiang, X. H. Wang, Z. Wei, X. Li, X. Q. Xi, R. B. Hu, B. L. Tang, R. J. Wang, S. Wang, T. Wang, W. X. Chen. Photocatalytic properties of hierarchical structures based on Fe-doped BiOBr hollow microspheres [J]. J. Mater. Chem. A.2013,1:2406-2410.
    [91]R. J. Wang, G. H. Jiang, X. H. Wang, R. B. Hu, X. G. Xi, S. Y. Bao, Y. Zhou, T. Tong, S. Wang, T. Wang, W. X. Chen. Efficient visible-light-induced photocatalytic activity over the novel Ti-doped BiOBr microspheres[J]. Powder. Technol.2012,228:258-263.
    [92]L. F. Lu, L. Kong, Z. Jiang, H. H. C. Lai, T. C. Xiao, P. P. Edwards. Visible-light-driven photodegradation of rhodamine B on Ag-modified BiOBr[J]. Catal. Lett.2012,142: 771-778.
    [93]C. Cheng, Y. H. Ni, X. Ma, J. M. Hong. AgBr nanoparticles-improved photocatalytic property of BiOBr nanosheets[J]. Mater. Lett.2012,79:273-276.
    [94]Z. S. Liu, B. T. Wu, Y. B. Zhu, F. Wang, L. G. Wang. Cadmium sulphide quantum dots sensitized hierarchical bismuth oxybromide microsphere with highly efficient photocatalytic activity[J]. J. Colloid. Interf. Sci.2013,392:337-342.
    [95]J. Cao, B. Y. Xu, B.D. Luo, H. L. Lin, S. F. Chen. Novel BiOI/BiOBr heterojunction photocatalysts with enhanced visible light photocatalytic properties [J]. Catal. Commun. 2011,13:63-68.
    [96]J. Zhang, J. X. Xia, S. Yin, H. M. Li, H. Xu, M. Q. He, L. Y. Huang, Q. Zhang. Improvement of visible light photocatalytic activity over flower-like BiOCl/BiOBr microspheres synthesized by reactable ionic liquids[J]. Colloid. Surface. A-Physicochem. 2013,420,89-95.
    [97]S. Shenawi-Khalil, V. Uvarov, Y. Kritsman, E. Menes, I. Popov, Y. Sasson. A new family of BiO(ClxBr1-x) visible light sensitive photocatalysts[J]. Catal. Commun.2011, 12:1136-1141.
    [98]J. Fu, Y. L. Tian, B. B. Chang, F. N Xi, X. P. Dong. BiOBr-carbon nitride heteroj unctions:synthesis, enhanced activity and photocatalytic mechanism [J]. J. Mater. Chem.2012,22:21159-21166.
    [99]L. Q. Ye, J. Y. Liu, Z. Jiang, T. Y. Peng, L. Zan. Facets coupling of BiOBr-g-C3N4 composite photocatalyst for enhanced visible-light-driven photocatalytic activity [J]. Appl. Catal. B-Environ.2013,142-143:1-7.
    [100]S. Y. Song, W. Gao, X. Wang, X. Y. Li, D. P. Liu, Y. Xing, H. J. Zhang. Microwave-assisted synthesis of BiOBr/grapheme nanocomposites and their enhanced photocatalytic activity[J]. Dalton. Trans.2012,41:10472-10476.
    [101]Z. H. Ai, W. K. Ho, S. C. Lee. Efficient visible light photocatalytic removal of NO with BiOBr-graphene nanocomposites [J]. J. Phys. Chem. C.2011,115:25330-25337.
    [102]H. Deng, J. W. Wang, Q. Peng, X. Wang, Y. D. Li. Controlled hydrothermal synthesis of bismuth oxyhalide nanobelts and nanotubes[J]. Chem. Eur. J.2005,11:6519-6524.
    [103]K. S. Suslick, M. M. Fang, T. Hyeon. Sonochemical synthesis of iron colloids[J]. J. Am. Chem. Soc.1996,118:11960-11961.
    [104]J. J. Zhu, M. G. Zhou, J. Z. Xu, X. H. Liao. Preparation of CdS and ZnS nanoparticles using microwave irradiation[J]. Mater. Lett.2001,47:25-29.
    [105]J. Geng, B. Liu, L. Xu, F. N. Hu, J. J. Zhu. Facile route to Zn-based II-VI semiconductor spheres, hollow spheres, and core/shell nanocrystals and their optical properties[J]. Langmuir 2007,23:10286-10293.
    [106]D. Sun, L. Jin, Y. Chen, J. R. Zhang, J. J. Zhu. Microwave-assisted in situ synthesis of graphene/PEDOT hybrid and its application in supercapacitors[J]. ChemPlusChem 2013,78:227-234.
    [107]Y. Hu, Y. Liu, H. S. Qian, Z. Q. Li, J. F. Chen. Coating colloidal carbon spheres with CdS nanoparticles:microwave-assisted synthesis and enhanced photocatalytic activity[J]. Langmuir 2010,26:18570-18575.
    [108]M. Baghbanzadeh, L. Carbone, C. P. Davide, K. C. Oliver. Microwave-assisted synthesis of colloidal inorganic nanocrystals[J]. Angew. Chem. Int. Ed.2011,50, 11312-11359.
    [109]C. H. Deng, H. M. Hu, X. Q. Ge, C. L. Han, G. Q. Shao, D. F. Zhao. One-pot sonochemical fabrication of hierarchical hollow CuO submicrospheres[J]. Ultrason. Sonochem.2011,18:932-937.
    [110]C. H. Deng, H. M. Hu, G. Q. Shao, C. L. Han. Facile template-free sonochemical fabrication of hollow ZnO spherical structures [J]. Mater. Lett.2010,64:852-855.
    [111]C. H. Deng, H. M. Hu, W. L. Zhu, C. L. Han, G. Q. Shao. Green and facile synthesis of hierarchical cocoon shaped CuO hollow architectures[J]. Mater. Lett.2011,65: 575-578.
    [112]C. H. Deng, X. Q. Ge, H. M. Hu, L. Yao, C. L. Han, D. F. Zhao. Template-free and green sonochemical synthesis of hierarchically structured CuS hollow microspheres displaying excellent Fenton-like catalytic activities [J]. CrystEngComm 2014,16: 2738-2745.
    [1]A. Y. Satoh, J. E. Trosko, S. J. Masten. Methylene blue dye test for for rapid qualitative detection of hydroxyl radicals formed in a fenton's reaction aqueous solution[J]. Environ. Sci. Technol.2007,41:2881-2887.
    [2]Z. Li, L. W. Mi, W. H. Chen, H. W. Hou, C. T. Liu, H. L. Wang, Z. Zheng, C. Y. Shen. Three-dimensional CuS hierarchical architectures as recyclable catalysts for dye decolorization[J]. CrystEngComm 2012,14:3965-3971.
    [3]W. W. He, H. M. Jia, X. X. Li, Y. Lei, J. Li, H. X. Zhao, L. W. Mi, L. Z. Zhang, Z. Zheng. Understanding the formation of CuS concave superstructures with peroxidase-like activity[J]. Nanoscale 2012,4:3501-3506.
    [4]L. W. Mi, W. T. Wei, Z. Zheng, G. S. Zhu, H. W. Hou, W. H. Chen, X. X. Guan. Ag+ insertion into 3D hierarchical rose-like Cu1.8Se nanocrystals with tunable band gap and morphology genetic[J]. Nanoscale 2013, DOI:10.1039/c3nr04923j.
    [5]M. Zhou, R. Zhang, M. Huang, W. Lu, S. L. Song, M. P. Melancon, M. Tian, D. Liang, C. Li. A chelator-free multifunctional [64Cu]CuS nanoparticle platform for simultaneous micro-PET/CT imaging and photothermal ablation therapy[J] J. Am. Chem. Soc.2010, 132:15351-15358.
    [6]J. Liu, D. F. Xue. Rapid and scalable route to CuS biosensors:a microwave-assisted Cu-complex transformation into CuS nanotubes for ultrasensitive nonenzymatic glucose sensor[J]. J. Mater. Chem.2011,21:223-228.
    [7]Y. W. Zhang, J. Q. Tian, H. Y. Li, L. Wang, X. Y. Qin, A. M. Asiri, A. O. Al-Youbi, X. P. Sun. Biomolecule-assisted, environmentally friendly, one-pot synthesis of CuS/reduced grapheme oxide nanocomposites with enhanced photocatalytic performance [J]. Langmuir 2012,28:12893-12900.
    [8]X. L. Xu, S. A. Asher. Synthesis and utilization of monodisperse hollow polymeric particles in photonic crystals[J]. J. Am. Chem. Soc.2004,126:7940-7945.
    [9]J. S. Zhou, H. H. Song, X. H. Chen, L. J. Zhi, S. B. Yang, J. P. Huo, W. T. Yang. Carbon-encapsulated metal oxide hollow nanoparticles and metal oxide hollow nanoparticles:a general synthesis strategy and its application to lithium-ion batteries[J]. Chem. Mater.2009,21:2935-2940.
    [10]J. Liu, S. Z. Qiao, S. B. Hartono, G. Q. Lu. Monodisperse yolk-shell nanoparticles with a hierarchical porous structure for delivery vehicles and nanoreactors[J]. Angew. Chem. Int. Edit.2010,49:4981-4985.
    [11]X. W. Lou, Y. Wang, C. L. Yuan, J. Y. Lee, L. A. Archer. Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity [J]. Adv. Mater.2006,18: 2325-2329.
    [12]J. G. Yu, X. X. Yu. Hydrothermal synthesis and photocatalytic activity of zinc oxide hollow spheres[J]. Environ. Sci. Technol.2008,42:4902-4907.
    [13]M. Luo, Y. Liu, J. C. Hu, J. L. Li, J. Liu, R. M. Richards. General strategy for one-pot synthesis of metal sulphide hollow spheres with enhanced photocatalytic activity[J]. Appl. Catal. B Environ.2012,125:180-188.
    [14]W. S. Choi, H. Y. Koo, Z. Zhongbin, Y. Li, D. Y. Kim. Template synthesis of porous capsules with a controllable surface morphology and their application as gas sensors[J]. Adv. Funct. Mater.2007,17:1743-1749.
    [15]Y. Q. Wang, G. Z. Wang, H. Q. Wang, W. P. Cai, C. H. Liang, L. D. Zhang. Template-induced synthesis of hierarchical SiO2@γ-A.lOOH spheres and their application in Cr(VI) removal[J]. Nanotechnol.2009,20:155604-155610.
    [16]F. Caruso, R. A. Caruso, H. Mohwald. Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating[J]. Science 1998,282:1111-1114.
    [17]Q. Liu, H. Liu, M. Han, J. Zhu, Y. Liang, Z. Xu, Y. Song. Nanometer-sized nickel hollow spheres[J]. Adv. Mater.2005,17:1995-1999.
    [18]D. Walsh, B. Lebeau, S. Mann. Morphosynthesis of calcium carbonate (vaterite) microsponges[J]. Adv. Mater.1999,11:324-328.
    [19]S. M. Wan, F. Guo, L. Shi, Y. Y. Peng, X. Z. Liu, Y. G. Zhang, Y. T. Qian. Single-step synthesis of copper sulfide hollow spheres by a template interface reaction route[J]. J. Mater. Chem.2004,14:2489-2491.
    [20]J. Z. Xu, S. Xu, J. Geng, G. X. Li, J. J. Zhu. The fabrication of hollow spherical copper sulfide nanoparticle assemblies with 2-hydroxypropyl-β-cyclodextrin as a template under sonication[J]. Ultrason. Sonochem.2006,13:451-454.
    [21]S. H. Jiao, K. Jiang, Y. H. Zhang, M. Xiao, L. F. Xu, D. S. Xu. Nonspherical half-shells by ultrasonic cleavage of the hollow polyhedral particles in water [J]. J. Phys. Chem. C. 2008,112:3358-3361.
    [22]X. L. Yu, Y. Wang, H. L. W. Chan, C. B. Cao. Novel gas sensoring materials based on CuS hollow spheres[J]. Micropor. Mesopor. Mater.2009,118,423-426.
    [23]H. T. Zhu, J. X. Wang, D. X. Wu. Fast synthesis, formation mechanism, and control of shell thickness of CuS hollow spheres[J]. Inorg. Chem.2009,48:7099-7104.
    [24]L. Ge, X. Y. Jing, J. Wang, S. Jamil, Q. Liu, D. L. Song, J. Wang, Y. Xie, P. P. Yang, M. L. Zhang. Ionic liquid-assisted synthesis of CuS nestlike hollow spheres assembled by microflakes using an oil-water interface route[J]. Cryst. Growth Des.2010,10: 1688-1692.
    [25]D. H. Jiang, W. B. Hu, H. R. Wang, B. Shen, Y. D. Deng. A microemulsion-template-interfacial-reaction route to copper sulfide hollow spheres[J]. J. Colloid. Interf. Sci.2011, 357:317-321.
    [26]D. H. Jiang, W. B. Hu, H. R. Wang, B. Shen, Y. D. Deng. Microemulsion template synthesis of copper sulfide hollow spheres at room temperature [J]. Colloid Surf. A: Physicochem. Eng. Asp.2011,384:228-232.
    [27]S. D. Sun, X. P. Song, C. C. Kong, S. H. Liang, B. J. Ding, Z. M. Yang. Unique polyhedral 26-facet CuS hollow architectures decorated with nanotwinned, mesostructural and single crystalline shells[J]. CrystEngComm 2011,13:6200-6205.
    [28]S. S. Dhasade, S. Patil, B. B. Kale, S. H. Han, M. C. Rath, V. J. Fulari. Synthesis of hollow spheres of copper sulfide by electron irradiation[J]. Mater. Lett.2013,93: 316-318.
    [29]X. Y. Meng, G. H. Tian, Y. J. Chen, R. T. Zhai, J. Zhou, Y. H. Shi, X. R. Cao, W. Zhou, H. G. Fu. Hierarchical CuS hollow nanospheres and their structure-enhanced visible light photocatalytic properties [J]. CrystEngComm 2013,15:5144-5149.
    [30]L. Zhao, F. Q. Tao, Z. Quan, X. L. Zhou, Y. H. Yuan, J. C. Hu. Bubble template synthesis of copper sulfide hollow spheres and their applications in lithium ion battery [J]. Mater. Lett.2012,68:28-31.
    [31]X. Y. Chen, Z. H. Wang, X. Wang, R. Zhang, X. Y. Liu, W. J. Lin, Y. T. Qian. Synthesis of novel copper sulfide hollow spheres generated from copper(Ⅱ)-thiourea complex[J]. J. Cryst. Growth.2004,263:570-574.
    [32]J. Liu, D. F. Xue. Solvothermal synthesis of CuS semiconductor hollow spheres based on a bubble template route[J]. J. Cryst. Growth.2009,311:500-503.
    [33]L. S. Zhong, J. S. Hu, H. P. Liang, A. M. Cao, W. G. Song, L. J. Wan. Self-assembled 3D flowerlike iron oxide nanostructures and their application in water treatment[J]. Adv. Mater.2006,18:2426-2431.
    [34]J. S. Hu, L. S. Zhong, W. G. Song, L. J. Wan. Synthesis of hierarchically structured metal oxides and their application in heavy metal ion removal [J]. Adv. Mater.2008,20: 2977-2982.
    [35]M. Basu, A. K. Sinha, M. Pradhan, S. Sarkar, Y. Negishi, G. T. Pal. Evolution of hierarchical hexagonal stacked plates of CuS from liquid-liquid interface and its photocatalytic application for oxidative degradation of different dyes under indoor lighting[J]. Environ. Sci. Technol.2010,44:6313-6318.
    [36]F. Li, J. F. Wu, Q. H. Qin, Z. Li, X. T. Huang. Controllable synthesis, optical and photocatalytic properties of CuS nanomaterials with hierarchical structures [J]. Powder. Technol.2010,198,267-274.
    [37]S. He, G. S. Wang, C. Lu, X. Luo, B. Wen, L. Guo, M. S. Cao. Controllable fabrication of CuS hierarchical nanostructures and their optical, photocatalytic, and wave absorption properties[J]. ChemPlusChem 2013,78:250-258.
    [38]J. R. Huang, Y. Y. Wang, C. P. Gu, M. H. Zhai. Large scale synthesis of uniform CuS nanotubes by a sacrificial templating method and their application as an efficient photocatalyst[J]. Mater. Lett.2013,99:31-34.
    [39]M. R. Wang, F. Xie, W. J. Li, M. F. Chen, Y. Zhao. Preparation of various kinds of copper sulphides in a facile way and the enhanced catalytic activity by visible light[J]. J. Mater. Chem. A 2013,1:8616-8621.
    [40]X. Y. Meng, G. H. Tian, Y. J Chen, R. T. Zhai, J. Zhou, Y. H. Shi, X. R Cao, W. Zhou, H. G. Fu. Hierarchical CuS hollow nanospheres and their structure-enhanced visible light photocatalytic properties [J]. CrystEngComm 2013,15:5144-5149.
    [41]C. H. Deng, H. M. Hu, X. Q. Ge, C. L. Han, D. F. Zhao, G. Q. Shao. One-pot sonochemical fabrication of hierarchical hollow CuO submicrospheres[J]. Ultrason. Sonochem.2011,18:932-937.
    [42]K. V. Singh, A. A. Martinez-Morales, G. T. S. Andavan, K. N. Bozhilov, M. Ozkan. A simple way of synthesizing single-crystalline semiconducting copper sulfide nanorods by using ultrasonication during template-assisted electrodeposition[J]. Chem. Mater. 2007,19:2446-2454.
    [43]S. Komarneni, Q. H. Li, R. Roy. Microwave-hydrothermal processing for synthesis of layered and network phosphates[J]. J. Mater. Chem.1994,4:1903-1906.
    [44]S. M. Ou, Q. Xie, D. K. Ma, J. B. Liang, X. K. Hu, W. C. Yu, Y. T. Qian. A precursor decomposition route to polycrystalline CuS nanorods[J]. Mater. Chem. Phys.2005,94: 460-466.
    [45]K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol, T. Siemieniewska. Reporting physisorption data for gas/solid systems[J]. Pure. Appl. Chem. 1985,57:603-919.
    [46]L. W. Mi, W. T. Wei, Z. Zheng, Y. Gao, Y. Liu, W. H. Chen, X. X. Guan. Tunable properties induced by ion exchange in multilayer intertwined CuS microflowers with hieraichical structures [J]. Nanoscale 2013,5:6589-6598.
    [47]C. H. Deng, X. B. Tian. Facile microwave-assisted aqueous synthesis of CdS nanocrystals with their photocatalytic activities under visible lighting[J]. Mater. Res. Bull.2013,48:4344-4350.
    [48]R. Vijaya Kumar, Y. Diamant, A. Gedanken. Sonochemical synthesis and characterization of nanometer-size transition metal oxides from metal acetates[J]. Chem. Mater.2000,12:2301-2305.
    [49]M. Kristl, N. Hojnik, S. Gyergyek, M. Drofenik. Sonochemical preparation of copper sulfides with different phases in aqueous[J]. Mater. Res. Bull.2013,48:1184-1188.
    [1]R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga. Visible-light photocatalysis in nitrogen-doped titanium oxide[J]. Science 2001,293:269-271.
    [2]Z. Zou, J. Ye, K. Sayama, H. Arakawa. Direct splitting of water under visible light irradiation with an oxide semiconductor [J]. Nature 2001,414:625-627.
    [3]Z. L. Wang. Characterizing the structure and properties of individual wire-like nanoentities[J]. Adv. Mater.2000,12:1295-1298.
    [4]A. G. Valyomana, K. P. Vijayakumar, C. Purushothaman. Conductivity studies on spray-pyrolysed CdS films in ambient conditions[J]. J. Mater. Sci. Lett.1992,11: 616-618.
    [5]C. J. Barrelet, Y. Wu, D. C. Bell, C. M. Lieber. Synthesis of CdS and ZnS nanowires using single-source molecular precursors [J]. J. Am. Chem. Soc.2003,125:11498-11499.
    [6]F. Chen, R. J. Zhou, L. G. Yang, N. Liu, M. Wang, H. Z. Chen. Large-scale and shape-controlled syntheses of three-dimensional CdS nanocrystals with flower-like structure[J]. J. Phys. Chem. C.2008,112:1001-1007.
    [7]T. Y. Zhai, X. S. Fang, Y. Bando, B. Dierre, B. D. Liu, H. B Zeng, X. J. Xu, Y. Huang, X. L. Yuan, T. Sekiguchi, D. Golberg. Characterization, cathodoluminescence, and field-emission properties of orphology-tunable CdS micro/nanostructures[J]. Adv. Funct. Mater.2009,19:2423-2430.
    [8]C. Ricolleau, L. Audinet, M. Gandais, T. Gacoin. Structural transformations in Ⅱ-VI semiconductor nanocrystals [J]. Eur. Phys. J. D.1999,9:565-570.
    [9]R. Banerjee, R. Jayakrishnan, P. Ayyub. Effect of the size-induced structural transformation on the band gap in CdS nanoparticles[J]. J. Phys:Condens. Matter.2000, 12:10647-10654.
    [10]J. Wang, B. Li, J. Z. Chen, N. Li, J. F. Zheng, J. H. Zhao, Z. P. Zhu. Diethylenetriamine-assisted synthesis of CdS nanorods under reflux condition and their photocatalytic performance[J]. J. Alloys. Compd.2012,535:15-20.
    [11]X. Y. Li, Y. Xi, C. G. Hu, X. Wang. Water induced size and structure phase transition of CdS crystals and their photocatalytic property[J]. Mater. Res. Bull.2013,48:295-299.
    [12]R. M. Ma, L. Dai, G. G. Qin. Enhancemen-mode metal-semiconductor field-dffect transistors based on single n-CdS nanowires[J]. Appl. Phys. Lett.2007,90:093109.
    [13]X. F. Duan, C. M. Niu, V. Sahi, J. Chen, J. W. Parce, S. Empedocles, J. L. Goldman. High-performance thin-film transistors using semiconductor nanowires and nanoribbons[J]. Nature 2003,425:274-278.
    [14]X. Fan, M. L. Zhang, Ⅰ. Shafiq, W. J. Zhang, C. S. Lee, S. T. Lee. Bicrystalline CdS nanoribbons[J]. Cryst. Growth. Des.2009,9:1375-1377.
    [15]J. J. Miao, T. Ren, L. Dong, J. J. Zhu, H. Y. Chen. Double-template synthesis of CdS nanotubes with strong electrogenerated chemiluminescence[J]. Small 2005,1:802-805.
    [16]X. L. Liu, Y. J. Zhu, Q. Zhang, Z. F. Li, B. Yang. Cd-cysteine precursor nanowire template microwave-assisted transformation route to CdS nanotubes[J]. Mater. Res. Bull. 2012,47:4263-4265.
    [17]T. Gao, T. H. Wang. Two-dimensional single crystal CdS nanosheets:synthesis and properties[J]. Cryst. Growth. Des.2010,10:4995-5000.
    [18]Y. H. Xu, C. X. Song, Y. W. Sun, D. B. Wang. Synthesis of CdS hierarchical microspheres and their application in electrochemiluminescence sensing[J]. Mater. Lett. 2011,65:1762-1764.
    [19]G. F. Lin, J. W. Zheng, R. Xu. Template-free synthesis of uniform CdS hollow nanospheres and their photocatalytic activities [J]. J. Phys. Chem. C.2008,112: 7363-7370.
    [20]Z. Yu, X. Wu, J. Wang, W. N. Jia, G. S. Zhu, F. Y. Qu. Facile template-free synthesis and visible-light driven photocatalytic performances of dendritic CdS hierarchical structures[J]. Dalton. Trans.2013,42:4633-4638.
    [21]N. Z. Bao, L. M. Shen, T. Takata, K. Domen, A. Gupta, K. Yanagisawa, C. A. Grimes. Facile Cd-thiourea complex thermolysis synthesis of phase-controlled CdS nanocrystals for photocatalytic hydrogen production under visible light[J]. J. Phys. Chem. C.2007, 111:17527-17534.
    [22]Y. Hu, Y. Liu, H. S. Qian, Z. Q. Li, J. F. Chen. Coating colloidal carbon spheres with CdS nanoparticles:microwave-assisted synthesis and enhanced photocatalytic activity[J]. Langmuir 2010,26:18570-18575.
    [23]C. H. Deng, H. M. Hu, W. L. Zhu, C. L. Han, G. Q. Shao. Green and facile synthesis of hierarchical cocoon shaped CuO hollow architectures [J] Mater. Lett.2011,65:575-578.
    [24]M. Baghbanzadeh, L. Carbone, P. D. Cozzoli, C. O. Kappe. Microwave-assisted synthesis of colloidal inorganic nanocrystals [J]. Angew. Chem. Int. Edit.2011,50: 11312-11359.
    [25]J. F. A. Oliveiraa, T. M. Milao, V. D. Araujo, M. L. Moreira, E. Longo, M. I. B. Bernardi. Influence of different solvents on the structural, optical and morphological properties of CdS nanoparticles[J]. J. Alloys Compd.2011,509:6880-6883.
    [26]M. Maleki, S. Mirdamadi, R. Ghasemzadeh, M. Sasani Ghamsari. Preparation and characterization of cadmium sulfide nanorods by novel solvothermal method[J]. Mater. Lett.2008,62:1993-1995.
    [27]X. B. He, L. Gao. CdS hierarchical spindles:structural defects and properties [J]. Mater. Lett.2009,63:995-997.
    [28]Z. Y. Wang, X. S. Fang, Q. F. Lu, C. H. Ye, L. D. Zhang. Hollow cadmium selenide semiconductor tetrapods[J]. Appl. Phys. Lett.2006,88:083102.
    [29]Z. Q. Wang, J. F. Gong, J. H. Duan, H. B. Huang, S. G. Yang, X. N. Zhao, R. Zhang, Y. W. Du. Direct synthesis and characterization of CdS nanobelts[J]. Appl. Phys. Lett.2006, 89:033102.
    [30]F. Dong, H. Wang, Z. Wu. One-step "Green" synthetic approach for mesoporous C-doped titanium dioxide with efficient visible light photocatalytic activity[J].J. Phys. Chem. C.2009,113:16717-16723.
    [1]H. F. Cheng, B. B. Huang, Z. Y. Wang, X. Y. Qin, X. Y. Zhang, Y. Dai. One-pot miniemulsion-mediated route to BiOBr hollow microspheres with highly efficient photocatalytic activity[J]. Chem. Eur. J.2011,17:8039-8043.
    [2]J. Zhang, F. J. Shi, J. Lin, D. F. Chen, J. M. Gao, Z. X. Huang, X. X. Ding, C. C. Tang. Self-assembled 3D architectures of BiOBr as a visible light-driven photocatalyst[J]. Chem. Mater.2008,20:2937-2941.
    [3]J. Henle, P. Simon, A. Frenzel, S. Scholz, S. Kaskel. Nanosized BiOX (X=C1, Br, I) particles synthesized in reverse microemulsions[J]. Chem. Mater.2007,19:366-373.
    [4]H. Deng, J. W. Wang, Q. Peng, X. Wang, Y. D. Li. Controlled hydrothermal synthesis of bismuth oxyhalide nanobelts and nanotubes[J]. Chem. Eur. J.2005,11:6519-6524.
    [5]J. W. Wang, Y. D. Li. Synthesis of single-crystalline nanobelts of ternary bismuth oxide bromide with different compositions [J]. Chem. Commun.2003,2320-2321.
    [6]M. Shang, W. Z. Wang, L. Zhang. Preparation of BiOBr lamellar structure with high photocatalytic activity by CTAB as Br source and template [J]. J. Hazard. Mater.2009, 167:803-809.
    [7]Y. J. Chen, M. Wen, Q. S. Wu. Stepwise blossoming of BiOBr nanoplate-assembled microflowers and their visible-light photocatalytic activities[J]. CrystEngComn 2011,13: 3035-3039.
    [8]G. F. Li, F. Qin, H. Yang, Z. Lu, H. Z. Sun, R. Chen. Facile microwave synthesis of 3D flowerlike BiOBr nanostructures and their excellent CrⅥ removal capacity [J]. Eur. J. Inorg. Chem.2012,2508-2513.
    [9]J. Liu, S. Z. Qiao, S. B. Hartono, G. Q. Lu. Monodisperse yolk-shell nanoparticles with a hierarchical porous structure for delivery vehicles and nanoreactors[J]. Angew. Chem. Int. Edit.2010,49:4981-4985.
    [10]X. W. Lou, Y. Wang, C. L. Yuan, J. Y. Lee, L. A. Archer. Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity [J]. Adv. Mater.2006,18: 2325-2329.
    [11]J. G. Yu, X. X. Yu. Hydrothermal synthesis and photocatalytic activity of zinc oxide hollow spheres[J]. Environ. Sci. Technol.2008,42:4902-4907.
    [12]M. Luo, Y. Liu, J. C. Hu, J. L. Li, J. Liu, R. M. Richards. General strategy for one-pot synthesis of metal sulfide hollow spheres with enhanced photocatalytic activity [J]. Appl. Catal. B Environ.2012,125:180-188.
    [13]W. S. Choi, H. Y. Koo, Z. Zhongbin, Y. Li, D. Y. Kim. Template synthesis of porous capsules with a controllable surface morphology and their application as gas sensors [J]. Adv. Funct. Mater.2007,17:1743-1749.
    [14]Y. Q. Wang, G. Z. Wang, H. Q. Wang, W. P. Cai, C. H. Liang, L. D. Zhang. Template-induced synthesis of hierarchical SiO2@y-AlOOH spheres and their application in Cr(VI) removal[J]. Nanotechnol.2009,20:155604-155610.
    [15]B. Liu, H. C. Zeng. Mesoscale organization of CuO nanoribbons:formation of "Dandelions"[J]. J. Am. Chem. Soc.2004,126:8124-8125.
    [16]Y. D. Yin, R. M. Rioux, C. K. Erdonmez, S. Hughes, G. A. Somorjai, A. P. Alivisatos. Formation of hollow nanocrystals through the nanoscale kirkendall effect[J]. Science 2004,304:711-714.
    [17]C. H. Deng, H. M. Hu, W. L. Zhu, C. L. Han, G. Q. Shao. Green and facile synthesis of hierarchical cocoon shaped CuO hollow architectures[J]. Mater. Lett.2011,65:575-578.
    [18]J. X. Xia, S. Yin, H. M. Li, H. Xu, L. Xu, Y. G. Xu. Improved visible light photocatalytic activity of sphere-like BiOBr hollow and porous structures synthesized via a reactable ionic liquid[J]. Dalton. Trans.2011,40:5249-5258.
    [19]K. S. Suslick. Sonochemistry[J]. Science 1990,247:1439-1445.
    [20]Z. F. Bian, J. Zhu, S. H. Wang, Y. Cao, X. F. Qian, H. X. Li. Self-assembly of active Bi2O3/TiO2 visible photocatalyst with ordered mesoporous structure and highly crystallized anatase[J]. J. Phys. Chem. C 2008,112,6258-6262.
    [21]M. W. Chu, M. Ganne, M. T. Caldes, L. Brohan. X-ray photoelectron spectroscopy and high resolution electron microscopy studies of aurivillius compounds:Bi4-xLaxTi3Oi2 (x=0.5,0.75,1.0,1.5, and 2.0)[J].J. Appl. Phys.2002,91:3178-3187.
    [22]W. E. Morgan, W. J. Stec, J. R. Van Wazer. Inner-orbital binding-energy shifts of antimony and bismuth compounds [J]. Inorg. Chem.1973,12:953-955.
    [23]Z. H. Ai, W. K. Ho, S. C. Lee, L. Z. Zhang. Efficient photocatalytic removal of NO in indoor air with hierarchical bismuth oxybromide nanoplate microspheres under visible light[J]. Environ. Sci. Tecnol.2009,43:4143-4150.
    [24]S. Komarneni, Q. H. Li, R. Roy. Microwave-hydrothermal processing for synthesis of layered and network phosphates[J].J. Mater. Chem.1994,4:1903-1906.
    [25]K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol, T. Siemieniewska. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity [J]. Pure. Appl. Chem.1985, 57:603-619.
    [26]T. Watanabe, T. Takizawa, K. Honda. Highly efficient N-deethylation of rhodamine B adsorbed to cadmium sulfide[J]. J. Phys. Chem.1977,81:1845-1851.
    [27]J. X. Xia, S. Yin, H. M. Li, H. Xu, L. Xu, Y. G. Xu. Improved visible light photocatalytic activity of sphere-like BiOBr hollow and porous structures synthesized via a reactable ionic liquid[J] Dalton. Trans.2011,40:5249-5258.
    [28]Y. H. Deng, D. W. Qi, C. H. Deng, X. M. Zhang, D. Y. Zhao. Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins[J]. J. Am. Chem. Soc.2008,130: 28-29.
    [29]Z. T. Deng, F. Q. Tang, A. J. Muscat. Strong blue photoluminescence from single-crystalline bismuth oxychloride nanoplates[J]. Nannotechnology 2008,19: 295705-295710.
    [30]A. Kudo, K. Omori, H. Kato. A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties [J]. J. Am. Chem. Soc. 1999,121:11459-11467.
    [31]R. He, X. Qian, J. Yin, Z. Zhu. Preparation of Bi2S3 nanowhiskers and their morphologies[J]. J. Crystal. Growth 2003,252:505-510.
    [32]H. M. Hu, Z. P. Liu, B. J. Yang, X. Y. Chen, Y. T. Qian. Template-mediated growth of Cu2SnS4 nanoshell tubes[J]. J. Crystal. Growth 2005,284:226-234.
    [1]E. Z. Donges. Uber chalkogenohalogenide des dreiwertigen antimons und wismuts[J]. Z. Anorg. Allg. Chem.1950,263,112-132.
    [2]R. Nitsche, W. J. Merz. Photoconduction in ternary V-VI-VII compounds[J].J. Phys. Chem. Solids 1960,13:154-155.
    [3]J. Horak, K. Cermak. Preparation and photoelectric properties of bismuth sulphidiodide[J]. Cech. J. Phys.1965,15,536-538.
    [4]D. Berlincourt. Piezoelectric ceramic compositional development[J]. J. Acoust. Soc. Am. 1992,91:3034-3040.
    [5]R. W. Whatmore. Pyroelectric devices and materials[J]. Rep. Prog. Phys.1986,49: 1335-1386.
    [6]A. Rabenau, H. Rau. Crystal growth and chemical synthesis under hydrothermal conditions[J]. Philips Tech. ReV.1969,30:89-96.
    [7]K. Mariolacos. Single crystal synthesis of higher-order sulfohalogenides in the temperature gradient:Bi19S27Br3, Bi2Cu3S4Br, Pb1-xBi2+xCu4-xS5I2[J]. Mater. Res. Bulletin 2004,39:591-598.
    [8]L. Y. Zhu, Y. Xie, X. W. Zheng, X. Yin, X. B. Tian. Growth of compound Bi III-VTA-VIIA crystals with special morphologies under mild conditions[J]. Inorg. Chem. 2002,41:4560-4566.
    [9]K. Mariolacos. The crystal structure of Bi(Bi2S3)9Br3[J]. Acta. Cryst.1976, B32: 1947-1949.
    [10]D. Adam. Microwave chemistry:Out of the kitchen[J]. Nature 2003,421:571-572.
    [11]M. O. Baghurst, P. Mingos, M. J. Watson. Application of microwave dielectric loss heating effects for the rapid and convenient synthesis of organometallic compounds[J]. J. Organoment. Chem.1989,368:43-45.
    [12]黄卡玛,刘宁,刘长军.电磁波辐射下化学反应过程的初步研究[J].群学通报2000,45:1217-1220.
    [13]X. H. Liao, H. Wang, J. J. Zhu, H. Y. Chen. Preparation of Bi2S3 nanorods by microwave irradiation[J]. Mater. Res. Bull.2001,36:2339-2346.
    [14]Z. F. Bian, J. Zhu, S. H. Wang, Y. Cao, X. F. Qian, H. X. Li. Self-assembly of active Bi2O3/TiO2 visible photocatalyst with ordered mesoporous structure and highly crystallized anatase[J]. J. Phys. Chem. C 2008,112:6258-6262.
    [15]M. W. Chu, M. Ganne, M. T. Caldes, L. Brohan. X-ray photoelectron spectroscopy and high resolution electron microscopy studies of aurivillius compounds:Bi4-xLaxTi3Oi2(x=0.5,0.75, 1.0,1.5, and 2.0)[J]. J. Appl. Phys.2002,91:3178-3187.
    [16]W. E. Morgan, W. J. Stec, J. R. Van Wazer. Inner-orbital binding-energy shifts of antimony and bismuth compounds[J]. Inorg. Chem.1973,12:953-955.
    [17]Z. H. Ai, W. K. Ho, S. C. Lee, L. Z. Zhang. Efficient photocatalytic removal of NO in indoor air with hierarchical bismuth oxybromide nanoplate microspheres under visible light[J]. Environ. Sci. Tecnol.2009,43:4143-4150.
    [18]S. Komarneni, Q. H. Li, R. Roy. Microwave-hydrothermal processing for synthesis of layered and network phosphates[J]. J. Mater. Chem.1994,4:1903-1906.
    [19]L. Ma, W. H. Li, J. H. Luo. Solvothermal synthesis and characterization of well-dispersed monoclinic olive-like BiVO4 aggregates[J]. Mater. Lett.2013,102-103:65-67.
    [20]J. X. Xia, S. Yin, H. M. Li, H. Xu, L. Xua, Y. G. Xu. Improved visible light photocatalytic activity of sphere-like BiOBr hollow and porous structures synthesized via a reactable ionic liquid[J]. Dalton. Trans.2011,40:5249-5258.
    [21]R. He, X. Qian, J. Yin, Z. Zhu. Preparation of Bi2S3 nanowhiskers and their morphologies[J]. J. Crystal. Growth 2003,252:505-510.
    [22]H. M. Hu, Z. P. Liu, B. J. Yang, X. Y. Chen, Y. T. Qian. Template-mediated growth of Cu2SnS4 nanoshell tubes[J]. J. Crystal. Growth 2005,284:226-234.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700