Ni金属基整体型催化剂催化甲烷转化制备合成气的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甲烷部分氧化制合成气是目前甲烷利用的有效途径之一。该反应因投资小、能耗低、反应速率快等优点广受研究者关注。本论文工作采用泡沫镍制备成Ni金属整体型,通过酸处理获得Ni金属整体型催化剂;进一步用酸处理过的Ni金属整体型负载铈、锆、镁等金属氧化物制得负载金属氧化物的Ni金属整体型催化剂;用XRD、XPS、SEM等技术对制得的催化剂进行了表征;研究了上述两类催化剂催化甲烷部分氧化及部分氧化与H2O和CO2重整耦合的反应性能;考虑到Ni金属整体型催化剂稳定性好,但活性低于负载催化剂的特点,还研究了Ni monolith-Ni/MgAl2O4双床体系催化甲烷部分氧化反应的性能;此外,根据甲烷部分氧化的间接机理,对三种催化体系催化甲烷部分氧化反应进行了模拟。
     SEM结果表明,经酸处理后Ni金属整体型催化剂上形成很多缝隙,比表面积从0.3m2/g增加到0.5m2/g。在CH4/O2为2,温度为1123K,空速为1.0×105h-1的反应条件下,与未经酸处理的催化剂相比,经20wt. %HCl处理后的Ni金属整体型催化剂的CH4转化率,H2和CO选择性从84%,92%和94%分别增到90%,98%和95%。
     对于负载氧化物的Ni金属整体型催化剂,CeO2的单独负载量为2.87wt. %时最佳;ZrO2的单独负载量为1.52wt. %时最佳;MgO的单独负载量为4.03wt. %时最佳;负载CaO没有显示任何促进作用。0.87%Ce-1.77%Zr/Ni催化剂不仅具有较高的甲烷部分氧化的活性和选择性,而且具有良好的稳定性。XRD分析表明,此催化剂上负载的CeO2和ZrO2形成了固溶体。
     甲烷部分氧化与CO2和H2O重整耦合的反应结果表明,无论是在Ce-Zr/Ni金属整体型,还是在Mg/Ni金属整体型上,甲烷部分氧化和水蒸汽重整耦合反应性能都优于甲烷部分氧化和二氧化碳重整耦合的反应性能。
     Ni monolith-Ni/MgAl2O4双床在重整催化剂的镍负载量为10wt. %时,催化活性和选择性最高。当进料流速分别为500ml/min,1000ml/min,氧化床层的最小值分别为2.3mm和4.7mm,重整床层最小值分别为2.4mm和3.7mm时,双床既有高的部分氧化活性和选择性,又有高的稳定性。
     根据间接反应机理,对Ni金属整体型催化剂上的甲烷部分氧化反应进行了模拟。实验和模拟结果比较显示二者吻合很好。这说明Ni金属整体型催化剂的甲烷部分氧化反应很可能是遵循间接反应机理。Ce-Zr/Ni上甲烷部分氧化反应的模拟结果表明,Ce-Zr/Ni活性的提高是因为CeO2-ZrO2固溶体高的氧化还原性。Ni monolith-Ni/MgAl2O4的模拟表明,在一定流量下,双床中的氧化床层和重整床层的长度都分别有一个能使双床既具有高催化活性又具有高稳定性的最小值。
Methane partial oxidation to syngas is one of the promising ways to efficiently utilize methane. Because of its low investment and energy consumption with instant reaction rate, it has attracted much attention. In the present work, Ni metallic monolith catalyst was prepared with Ni foam and further treated by acid. It was loaded by promoter oxides, such as ceria, zirconia, magnesia, ceria-zirconia, etc., to obtain the Ni monolith with oxides. The sample characterization was made by XRD、XPS、SEM、ICP and BET. Considering that the deactivation of the Ni metallic monolith could not occur and it had lower activity than the supported catalysts, the dual bed, Ni monolith-Ni/MgAl2O4, was also studied for methane partial oxidation. Moreover, on the basis of an indirect reaction mechanism, simulations of methane partial oxidation were conducted for these three kinds of catalyst systems.
     SEM micrographs showed that the crystal defects on the surface of the Ni monolith were formed. The surface area increased from 0.3m2/g of untreated Ni monolith to 0.5m2/g of the Ni monolith treated by acid. At inlet temperature 1123 K, CH4/O2 ratio of 2 and GHSV 1.0×105 h-1, methane conversion and selectivities to H2 and CO on the Ni monolith treated by acid were 90%, 98% and 95%, respectively, much higher than those of the untreated Ni monolith, which were 84%, 92% and 94%, respectively.
     The optimal loadings of ceria and zirconia, separately, were 2.87% and 1.57%, respectively. The optimal loading of magnesia was 4.03% while calcium oxide had no role for promotion of the activity and the selectivities. 0.87%Ce-1.77%Zr/Ni showed not only high activity and selectivities, but also high stability. XRD patterns showed that CeO2-ZrO2 solid solution was formed on 0.87%Ce-1.77%Zr/Ni.
     The results showed that the reaction performance for the combined partial oxidation and steam reforming of methane was better than the combined partial oxidation and carbon dioxide reforming of methane on both Ce-Zr/Ni monolith and Mg/Ni.
     The dual bed, Ni monolith-Ni/MgAl2O4, had the highest activity and selectivities when the nickel loading on the reforming catalyst was 10wt. %. The results showed that when the feed flowrates were 500 ml/min or 1000 ml/min, 2.3 or 4.7 mm of the minimum length of the Ni monolith were needed, respectively, to achieve nearly constant methane conversion and the selectivities to hydrogen and carbon monoxide and the maximum temperatures were within the Ni monolith bed. In order to obtain high methane conversion and high selectivities to syngas, the minimum length of the Ni/MgAl2O4 bed length was 2.4 mm at 500 mol/min or 3.7 mm at 1000 ml/min, respectively.
     On the basis of an indirect reaction mechanism, the simulations for the partial oxidation of methane on the Ni metallic monolith catalysts were conducted. The results showed that the simulations agreed well with the experimental data on the Ni monolith bed, and it was likely that the methane partial oxidation followed an indirect reaction mechanism. The simulation results for Ce-Zr/Ni monolith showed that the reaction performance of Ce-Zr/Ni was promoted due to high redox of CeO2-ZrO2 solid solution. The simulation results for Ni monolith-Ni/MgAl2O4 showed that the oxidation bed and the reforming one in the dual bed had an optimal bed length, respectively, which made the dual bed have not only high activity and selectivities but also high stability under the certain flowrates.
引文
[1] 许珊, 王晓来,赵睿, 甲烷催化制氢气的研究进展, 2003, 15: 141~150.
    [2] Farina GL, Supp E, Produce syngas for methanol, Hydrogen Process., 1992, 71: 77~79.
    [3] Matsuo Y, Yoshinaga Y, Sekine Y, Tomishige K, Fujimoto K, Autothermal CO2 reforming of methane over NiO–MgO solid solution catalysts under pressurized condition: Effect of fluidized bed reactor and its promoting mechanism, Catal. Today, 2000, 63: 439~445.
    [4] Ayabe S, Omoto H, Utaka T, Kikuchi R, Sasaki K, Teraoka Y, Eguchi K, Catalytic autothermal reforming of methane and propane over supported metal catalysts, Appl. Catal. A, 2003, 241: 261~269.
    [5] [0]Bhattacharya AK, Breach JA, Chand S, et al. Selective oxidation of methane to carbon monoxide on supported palladium catalyst. Apple. Catal. A, 1992, 80: L1~L5.
    [6] 曹立新,陈燕馨,李文钊,江义,载体对甲烷直接氧化制合成气的影响,天然气化工, 1996, 21: 12~16.
    [7] Zhang ZL, Tsipouriari VA, Efstathiou AM, Verykios XE, Reforming of methane with carbon dioxide to synthesis gas over supported Rhodium catalysts I. Effects of support and metal crystallite size on reaction activity and deactivation characteristics, J. Catal., 1996, 158: 51~63.
    [8] 李振花, 张翔宇. 载体对甲烷部分氧化制合成气反应的影响. 四川大学学报,2002, 34: 24~27.
    [9] 余林, 袁书华. 甲烷部分氧化制合成气载体及助剂对 Ni 系催化剂活性的影响. 催化学报, 2001, 22: 383~386.
    [10] Sahli N, Petit C, Roger AC, Kiennemann A, Libs S, Bettahar MM, Ni catalysts from NiAl2O4 spinel for CO2 reforming of methane, Catal. Today, 2006, 113: 187~193.
    [11] Requies J, Cabrero MA, Barrio VL, Güemez MB, Cambra JF, Arias PL, Pe′rez-Alonso FJ, Ojeda M, Pe?a MA, Fierro JLG, Partial oxidation of methane to syngas overNi/MgO and Ni/La2O3 catalysts, Appl. Catal. A, 2005, 289: 214~223.
    [12] Barbero J,Pe?a MA,Campos-Martin JM,Fierro JLG,Arias PL, Support effect in supported Ni catalysts on their performance for methane partial oxidation, Catal. Lett.,2003, 87: 211~218.
    [13] Li X, Chang JS, Tian M, Park S-E, CO2 reforming of methane over modified Ni/ZrO2 catalysts, Appl. Organometal. Chem. 2001; 15: 109~112.
    [14] Mehr YJ, Jozani JK, Pour NA, Zamani Y, Influence of MgO in the CO2-steam reforming of methane to syngas by NiO/MgO/α-Al2O3 catalyst, React. Kinet. Catal. Lett., 2002, 75(2): 267~273.
    [15] Takeguchi T, Furukawa S, Inoue M, Hydrogen Spillover from NiO to the Large Surface Area CeO2–ZrO2 Solid Solutions and Activity of the NiO/CeO2–ZrO2 Catalysts for Partial Oxidation of Methane, J. Catal., 2001, 202: 14~24.
    [16] Dong W, Jun K, Roh H, Liu Z-W, Park S-E, Comparative study on partial oxidation of methane over Ni/ZrO2, Ni/CeO2 and Ni/Ce-ZrO2 catalysts, Catal. Lett., 2002, 78(1-4): 215~222.
    [17] Seo HJ, Yu EY, Partial oxidation of methane to syngas over Rh and Ni catalysts impregnated on CeO2, SiO2, and Al2O3, J. Ind. Eng. Chem., 2005,11: 681~687.
    [18] 严前古,罗春容. 甲烷在Ni/TiO2催化剂表面的活化, 物理化学学报, 2001, 17 (8), 733~738.
    [19] Kaisare NS, Lee JH, Fedorov, AG. Hydrogen generation in a reverse-flow microreactor: 1. model formulation and scaling. AIChE J. 2005, 51: 2254-2264.
    [20] Rakass S, Oudghiri-Hassani H, Rowntree P, Abatzoglou N, Steam reforming of methane over unsupported nickel catalysts, J. Power Sources, 2006, 158: 485~496.
    [21] Zhang XL, Hayward DO, Mingos DMP, Oscillatory behavior during the partial oxidation of methane over nickel foils . Catal. Lett., 2002, 83: 149~155.
    [22] Tulenin YuP, Sinev MY, Savkin VV, Korchak VN, Dynamic behaviour of Ni-containing catalysts during partial oxidation of methane to synthesis gas. Catal. Today, 2004, 91-92: 155~159.
    [23] 王亚权. Ni 整体型催化剂大空速甲烷自热氧化制合成气.催化学报,1999,20: 171~173.
    [24] Hickman DA, Schmidt LD, Syngas formation by direct catalytic oxidation of methane, Science, 1993, 259, 343~346.
    [25] Torniainen PM, Chu X, Schmidt LD, Comparison of monolith-supported metals for the direct oxidation of methane to syngas. J. Catal., 1994, 146: 1~10.
    [26] Hegarty MES, O’Connor AM, Ross JRH, Syngas production from natural gas using ZrO2-supported metals, Catal. Today, 1998, 42: 225~232.
    [27] Kikuchi E, Tanaka S,Yamazaki Y, Morita Y, Bull. Jpn. Petrol. Inst., 1974, 16, 95.
    [28] York APE[0], Claridge JB, Brungs AJ, Márquez-Alvarez C, Tsang SC, Green MLH, Molybdenum and Tungster carbides as catalysts for the conversion of methane to synthesis gas using stoichiometric feedstocks. Stud. Surf. Sci. Catal., 1997, 110: 711~720.
    [29] 朱全力,杨建,季生福, 王嘉欣,汪汉卿. 改性MO2C/A2O3催化剂用于甲烷部分氧化制合成气.催化学报,2003, 24: 590~594.
    [30] Ranorson E,Tempere JF,Guilleux MF, et a1. Spectroscopic characterization and reactivity study of ceria-supported catalysts, J. Chem. Soc. 1992, 88(8): 1211.
    [31] 严前古,于作龙,远松月, 稀土氧化物对Ni/α-Al2O3催化甲烷部分氧化制合成气反应的影响, 应用化学, 1997, 14: 70~73.
    [32] Kundakovic Lj, Flytzani-Stephanopoulos M. Cu- and Ag-modified cerium oxide catalysts for methane oxidation. J. Catal., 1998, 179, 203~221.
    [33] 余林,袁书华,田久英,王升,储伟,甲烷部分氧化制合成气载体及助剂对Ni系催化剂活性的影响, 催化学报, 2001, 22: 383~386.
    [34] 张兆斌, 余长春. 甲烷部分氧化制合成气的La2O3助Ni/MgA12O4催化剂. 催化学报,2000, 21: 14~18.
    [35] 尚丽霞,谢卫国,吕绍洁,邱发礼,碱土金属对甲烷与空气制合成气Ni/CaO-A12O3催化剂性能的影响,燃料化学学报, 2001, 29: 422~425.
    [36] Choudhary VR, Uphade BS, Mamman AS. Oxidative conversion of methane to syngas over nickel supported on commercial low surface area porous catalyst carriers precoated with alkaline and rare earth oxides. J. Catal. 1997, 172: 281~293.
    [37] Requies J, Cabrero MA, Barrio VL, Cambra JF, Güemez M.B, Arias P.L., Parola V. La, Pe?a M.A., Fierro J.L.G., Nickel/alumina catalysts modified by basic oxides for the production of synthesis gas by methane partial oxidation, Catal. Today, 2006, 116, 304~312.
    [38] 纪红兵,黄莉,谢俊锋, 陈清林,耦合甲烷部分氧化与二氧化碳重整用镍系催化剂碱金属与碱土金属改性研究, 天然气化工, 2006, 31: 5~10.
    [39] Tomishige K, Kanazawa S, Sato M, Ikushima K, Kunimori K, Catalyst design of Pt-modified Ni/Al2O3 catalyst with flat temperature profile in methane reforming with CO2 and O2,Catal. Lett. 2002, 84: 69~74.
    [40] Nurunnabi M, Mukainakano Y, Kado S,Li B, Kunimori K, Suzuki K, Fujimoto K, Tomishige K, Additive effect of noble metals on NiO-MgO solid solution in oxidative steam reforming of methane under atmospheric and pressurizedconditions. Appl. Catal. A, 2006, 299: 145~156.
    [41] 严前古,高利珍. 甲烷部分氧化制合成气Pt-Ni/Al2O3催化剂的研究. 化学学报,1998, 56: 1021~1026.
    [42] 严前古,于作龙. 在甲烷部分氧化制合成气中Pt-Ni/Al2O3催化剂中的Pt-Ni协同作用机理. 天然气化工, 2000,9: 18~31.
    [43] Basile F[0], Fornasari G, Rh-Ni synergy in the catalytic partial oxidation of methane:surface phenomena and catalyst stability, Catal. Today, 2002, 77: 215~223.
    [44] Nagaoka K, Jentys A, Lercher JA, Methane autothermal reforming with and without ethane over mono- and bimetal catalysts prepared from hydrotalcite precursors. J. Catal. 2005, 229, 185~196.
    [45] Hou Z, Yashima T, Small amounts of Rh-promoted Ni catalysts for methane reforming with CO2, Catal. Lett., 2003, 89:193~197.
    [46] 于军胜, 张量渠, 于作龙, 甲烷催化部分氧化制取合成气的研究 II. 添加贵金属Pt的Ni/Al2O3催化剂的研究. 天然气化工, 1996, 5: 23~25.
    [47] 滕云,陈耀强, 助剂对甲烷部分氧化催化剂Ni/α-Al2O3催化性能的影响. 化学研究与应用,2003, 15: 58~61.
    [48] Nguyen BNT, Leclerc CA, Metal oxides as combustion catalysts for a stratified,dual bed partial oxidation catalyst, J. Power Sources, 2006, xxx: xxx~xxx.
    [49] Tong GCM, Flynn J, Leclerc CA, A dual catalyst bed for the autothermal partial oxidation of methane to synthesis gas, Catal. Lett., 2005, 102:131~137.
    [50] Bharadwaj S, Schmidt LD, Syngas formation by direct oxidation of methane in fluidized beds, J. Catal., 1994, 146: 11~12.
    [51] Santos A,Menendez M,Santamaria J, Partial oxidation of methane to carbon monoxide and hydrogen in a fluidlzed bed reactor, Catal. Today, 1994, 21: 481~488.
    [52] 季亚英,李文钊,徐恒泳,陈燕馨,流化床反应器中Ni/γ-Al2O3催化剂上甲烷部分氧化制合成气,催化学报, 2000, 21: 603~606.
    [53] Brophy JH,Telford CD, Process for producing synthesis gas by partial combustion of hydrocarbons, GB, English, WO8505094, 1985-11-21.
    [54] Korchnak JH, Dunster MA,Production of methanol from hydrocarbonaceous feedstock US, English, World Intellectual Property Organization, WO9006282 and WO9006297,1990-06-14.
    [55] Kikas T, Bardenshteyn I, Williamson C, Ejimofor C, Puri P, Fedorov AG, Hydrogen production in a reverse-flow autothermal catalytic microreactor: from evidence of performance enhancement to innovative reactor design, Ind. Eng. Chem. Res. 2003, 42, 6273~6279.
    [56] Hickman DA, Schmidt LD, Synthesis gas formation by direct oxidation of methane over Pt monoliths, J. Catal., 1992, 138:267~282.
    [57] Hickman DA, Haupfear EA, Schmidt LD, Synthesis gas formation by direct oxidation of methane over Rh monoliths, Catal. Lett. , 1993, 17: 223~237.
    [58] Hickman DA, Schmidt LD, Steps in methane oxidation on Pt and Rh: High temperature reactor simulations, AIChE J, 1993, 39, 1164~1177.
    [59] Au CT, Wang HY, Wan HL, Mechanistic studies of CH4/O2 conversion over SiO2-Supported nickel and copper catalysts. J. Catal., 1996, 158: 343~348.
    [60] 路勇,邓存,丁雪加, 沈师孔,Ni/Al2O3催化剂上甲烷部分氧化制合成气, 催化学报, 1996,17: 28~33.
    [61] Prettre M, Eichner C, The catalytic oxidation of methane to carbon monoxide and hydrogen . Trans. Faraday Soc., 1946, 43, 335~340.
    [62] Dissanayake D, Rosynek MP, Lunsfod JH, Are the equilibrium concentrations of CO and H2 exceeded during the oxidation of CH4 over a Ni/Yb2O3 catalyst? . Phys. Chem., 1993, 97:3644~3646.
    [63] Souzaa MMVM, Schmal M, Autothermal reforming of methane over Pt/ZrO2/Al2O3 catalysts, Appl. Catal. A, 2005, 281: 19~24.
    [64] Weng WZ, Chen MS, Yan QG, Wu TH,Chao ZS, Liao YY, Wan HL,Mechanistic study of partial oxidation of methane to synthesis gas over supported rhodium and ruthenium catalysts using in situ time-resolved FTIR spectroscopy. Catal. Today, 2000, 63: 317~326.
    [65] Cimino S, Landi G, Lisi L, Russo G, Development of a dual functional structured catalyst for partial oxidation of methane to syngas, Catal. Today, 2005, 105: 718~723.
    [66] Deutschmann O, Schmidt LD, Modeling the Partial Oxidation of Methane in a Short-Contact-Time Reactor, AIChE J., 1998, 44: 2465~2477.
    [67] Goralski Jr. CT, Schmidt LD, Modeling heterogeneous and homogeneous reactions in the high-temperature catalytic combustion of methane, Chem. Eng. Sci., 1999, 54: 5791~5807.
    [68] Goralski Jr. CT, O'Connor RP, Schmidt LD, Modeling homogeneous and heterogeneous chemistry in the production of syngas from methane, Chem. Eng. Sci., 2000, 55: 1357~1370.
    [69] Schneider A, Mantzaras J, Jansohn P, Experimental and numerical investigation of the catalytic partial oxidation of CH4/O2 mixtures diluted with H2O and CO2 in a short contact time reactor, Chem. Eng. Sci., 2006, 61: 4634~4649.
    [70] http://www.detchem.com/
    [71] Trimm DL, Lam CW. The combustion of methane on platinum-alumina fiber catalysts-I kinetic and mechanism. Chem. Eng. Sci. 1980, 35: 1405~1413.
    [72] Xu J, Froment GF, Methane stream forming methanation and water-gas shift: I. intrinsic kinetics. AIChE J., 1989, 35: 88~95.
    [73] de Groote AM, Froment GF, Simulation of the catalytic partial oxidation methane to synthesis gas. Appl. Catal., A. 1996, 138: 245~264.
    [74] de Smet CRH, de Croon MHJM, Berger RJ, Marin GB, Schouten JC, Design ofadiabatic fixed-bed reactors for the partial oxidation of methane to synthesis gas. Application to production of methanol and hydrogen-for-fuel-cells. Chem. Eng. Sci. 2001, 56: 4849~4861.
    [75] Numaguchi T, Kikuchi K. Intrinsic kinetics and design simulation in a complex reaction network; steam-methane reforming. Chem. Eng. Sci. 1988, 43: 2295~2301.
    [76] Avc? AK, Trimm DL, ?lsen ?nsan Z, Heterogeneous reactor modeling for simulation of catalytic oxidation and steam reforming of methane, Chem. Eng. Sci., 2001, 56: 641~649.
    [77] Ma L, Trimm DL, Jiang C, The design and testing of an autothermal reactor for the conversion of light hydrocarbons to hydrogen I. The kinetics of the catalytic oxidation of light hydrocarbons, Appl. Catal. A, 1996, 138: 275~283.
    [78] Gosiewski K, Bartmann U, Moszczynski M, Mleczko L, Effect of intraparticle transport limitations on temperature profiles and catalytic performance of the reverse-flow reactor for the partial oxidation of methane to synthesis gas. Chem. Eng. Sci., 1999, 54: 4589~4602.
    [79] Tsai CY. Perovskite dense membrane reactors for the partial oxidation of methane to synthesis gas. Ph. D. dissertation, Worcester Polytechnic Institute, Worcester, MA, USA. 1996.
    [80] Jin W, Gu X, Li S, Huang P, Xu N, Shi J, Experimental and simulation study on a catalyst packed tubular dense membrane reactor for partial oxidation of methane to syngas. Chem. Eng. Sci., 2000, 55: 2617~2625.
    [81] Huff M, Torniainen PM, Schmidt LD, Partial oxidation of alkanes over noble metal coated monoliths. Catal. Today, 1994, 21: 113~128.
    [82] Schmidt LD, Huff M, Partical oxidation of CH4 and C2H6 over noble metal coated monoliths. Catal. Today, 1994, 21: 443~454.
    [83] 王亚权, 天然气大空速下自热部分氧化制合成气的方法,中国专利,ZL, 2003, 03101191.8.
    [84] 王亚权,侯永江,齐随涛, 整体型催化剂上甲烷自热氧化制合成气, 燃烧科学与技术, 2001, 7: 105~109.
    [1] 王亚权,Ni整体型催化剂大空速甲烷自热氧化制合成气,催化学报,1999,20,171~173.
    [2] 金荣超,陈燕馨,李文钊,陈美龙,于春英,江义,甲烷催化部分氧化制合成气固定床反应器的热波研究,催化学报,1999,20,267~272.
    [3] Rakass S, Oudghiri-Hassani H, Rowntree P, Abatzoglou N. Steam reforming of methane over unsupported nickel catalysts, J. Power Sources, 2006, 158, 485~496.
    [4] Rostrup-Nielsen JR, Sehested J, Norskov JK. Hydrogen and synthesis gas by steam- and CO2 reforming, Adv. Catal., 2002, 47, 65~139.
    [1] Nandini A, Pant KK, Dhingra SC, K-, CeO2-, and Mn-promoted Ni/Al2O3 catalysts for stable CO2 reforming of methane. Appl. Catal. A, 2005, 290: 166~174.
    [2] 余林, 袁书华, 田久英,王升,储伟,甲烷部分氧化制合成气载体及助剂对Ni 系催化剂活性的影响,催化学报, 2001, 21, 383~386.
    [3] 陈吉祥 邱业君 张继炎,苏万华, La2O3和CeO2对CH4-CO2重整Ni/MgO催化剂结构和性能的影响,物理化学学报,2004,20(1):76~80
    [4] Hori CE., Permana H, Simon Ng KY, Brenner A, More K., Rahmoeller KM, Belton D, Thermal stability of oxygen storage propertiesin a mixed CeO2-ZrO2 system, Appl. Catal. B, 1998, 16: 105~117.
    [5] Passos FB, de Oliveira ER, Mattos LV, Noronha FB, Partial oxidation of methaneto synthesis gas on Pt/CexZr1-xO2 catalysts: the effect of the support reducibility and of the metal dispersion on the stability of the catalysts, Catal. Today, 2005, 101: 23~30.
    [6] Kundakovic Lj, Flytzani-Stephanopoulos M. Cu- and Ag-modified cerium oxide catalysts for methane oxidation. J. Catal., 1998, 179, 203~221.
    [0][7] Xu S, Wang X. Highly active and coking resistant Ni/CeO2-ZrO2 catalyst for partial oxidation of methane, Fuel, 2005, 84: 563~567.
    [8] Terribile D, Trovarelli A, de Leitenburg C, Primavera A, Dolcetti G, Catalytic combustion of hydrocarbons with Mn and Cu-doped ceria-zirconia solid solutions, Catal. Today, 1999, 47: 133~140.
    [9]Choudhary VR, Uphade BS, Mamman AS. Oxidative conversion of methane to syngas over nickel supported on commercial low surface area porous catalyst carriers precoated with alkaline and rare earth oxides, J. Catal. 1997, 172: 281~293.
    [10] Requies J, Cabrero MA, Barrio VL, Noronha FB, Nickel/alumina catalysts modified by basic oxides for the production of synthesis gas by methane partial oxidation, Catal. Today, 2006, 116: 304~312.
    [1] Huff M, Torniainen PM, Schmidt LD, Partial oxidation of alkanes over noble metal coated monoliths. Catal. Today, 1994, 21: 113~128.
    [2] Tsipouriari VA, Zhang Z, Verykios XE, Catalytic partial oxidation of methane to synthesis gas over Ni-based catalysts I. catalyst performance characteristics, J. Catal., 1998, 179: 283~291.
    [3] Requies J, Cabrero MA, Barrio VL, Cambra JF, Güemez MB, Arias PL, Parola VL, Pe?a MA, Fierro JLG, Nickel/alumina catalysts modified by basic oxides for the production of synthesis gas by methane partial oxidation, Catal. Today, 2006, 116: 304~312.
    [4] Buyevskaya OV, Wolf D, Baerns M, Rhodium-catalyzed partial oxidation of methane to CO and H2. Transient studies on its mechanism, Catal. Lett. 1994, 29: 249~260.
    [5] Mallens EPJ, Hoebink JHBJ, Marin GB, The reaction mechanism of methane partial oxidation to syngas, J. Catal., 1997,167: 43~56.
    [6] Nguyen BNT, Leclerc CA, Metal oxides as combustion catalysts for a stratified, dual bed partial oxidation catalyst, J. Power Sources, 2006, xxx: xxx~xxx.
    [7] Tong GCM, Flynn J, Leclerc CA, A dual catalyst bed for the autothermal partial oxidation of methane to synthesis gas, Catal. Lett., 2005, 102(3~4): 131~137.
    [1] Blanks RF, Wittrig TS, Peterson DA. Bidirectional adiabatic synthesis gas generator, Chem. Eng. Sci., 1990, 45: 2407~2413.
    [2] Ostrowski T, Giroir-Fendler A, Mirodatos C, et al., Comparative study of the catalytic partial oxidation of methane to synthesis gas in fixed-bed and fluidized-bed membrane reactors, Catal. Today, 1998, 40: 181~190.
    [3] Gosiewski K, Bartmann U, Moszczynski M, Mleczko L, Effect of intraparticle transport limitations on temperature profiles and catalytic performance of the reverse-flow reactor for the partial oxidation of methane to synthesis gas, Chem. Eng. Sci., 1999, 54: 4589~4602.
    [4] de Smet CRH, de Croon MHJM, Berger RJ, Marin GB, Schouten JC, Design of adiabatic fixed-bed reactors for the partial oxidation of methane to synthesis gas. Application to production of methanol and hydrogen-for-fuel-cells, Chem. Eng. Sci., 2001, 56: 4849~4861.
    [5] Jin W, Gu X, Li S, Huang P, Xu N, Shi J, Experimental and simulation study on a catalyst packed tubular dense membrane reactor for partial oxidation of methaneto syngas, Chem. Eng. Sci., 2000, 55: 2617~2625.
    [6] Giani L, Groppi G, Tronconi E. Heat transfer characterization of metallic foams, Ind. Eng. Chem. Res., 2005, 44: 9078~9085.
    [7] Wolf D, H?henberger M, Baerns M. External mass and heat transfer limitations of the partial oxidation of methane over a Pt/MgO catalyst-consequences for adiabatic reactor operation, Ind. Eng. Chem. Res., 1997, 36: 3345~3353.
    [8] Trimm DL, Lam CW. The combustion of methane on platinum-alumina fiber catalysts-I kinetic and mechanism, Chem. Eng. Sci., 1980, 35: 1405~1413.
    [9] Xu J, Froment GF. Methane streamer forming methanation and water-gas shift: I. intrinsic kinetics, AIChE J., 1989, 35: 88~95.
    [10] Numaguchi T, Kikuchi K. Intrinsic kinetics and design simulation in a complex reaction network: steam-methane reforming., Chem. Eng. Sci., 1988, 43: 2295~2301.
    [11] Tsai CY. Perovskite dense membrane reactors for the partial oxidation of methane to synthesis gas. Ph. D. dissertation, Worcester Polytechnic Institute, Worcester, MA, USA. 1996.
    [12] Kaisare NS, Lee JH, Fedorov, AG. Hydrogen generation in a reverse-flow microreactor: 1. model formulation and scaling, AIChE J., 2005, 51: 2254~2264.
    [13] Aryafar M, Zaera F. Kinetic study of the catalytic oxidation of alkanes over nickel, palladium, and platinum foils, Catal. Lett., 1997, 48: 173~183.
    [14] Hayes RE, Kolaczkowski ST, Li PKC, Awdry S, The palladium catalysed oxidation of methane: reaction kinetics and the effect of diffusion barriers, Chem. Eng. Sci., 2001, 56: 4815~4835.
    [15] Shi J, Wang GD, Yu GZ, Chen MH. Chemical engineering handbook. Beijing, China, Chemical Industry Press, 1996, pp. 2~105.
    [16] Yaws, C.L. Chemical Properties Handbook, New York: McGraw-Hill, 1999.
    [17] Giani L, Groppi G, Tronconi E. Mass-transfer characterization of metallic foams as supports for structured catalysts, Ind. Eng. Chem. Res., 2005, 44: 4993~5002.
    [18] Kundakovic Lj, Flytzani-Stephanopoulos M, Cu- and Ag-Modified Cerium Oxide Catalysts for Methane Oxidation, J. Catal., 1998, 179: 203~221.
    [19] Avc? AK, Trimm DL, ?lsen ?nsan Z. Heterogeneous reactor modeling for simulation of catalytic oxidation and steam reforming of methane, Chem. Eng. Sci., 2001, 56: 641~649.
    [20]Ma L, Trimm DL. Alternative catalyst bed configurations for the autothermic conversion of methane to hydrogen. Appl. Catal., A. 1996, 138: 265~273.
    [21]Bizzi M, Saracco G, Schwiedernoch R, Deutschmann O, Modeling the partialoxidation of methane in a fixed bed with detailed chemistry, AIChE J., 2004, 50: 1289~1299.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700