TiO_2纳米管阵列的阳极氧化制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米TiO_2是一种重要的无机功能材料,在光催化降解大气和水中的污染物、染料敏化太阳能电池(DSSC)、气敏传感器、光解水等方面有着广阔的应用前景。与其它形态的TiO_2相比,TiO_2纳米管阵列具有更大的比表面积、更强的吸附能力、高效的电子传输通道,有望在提高TiO_2已知性能的同时,获得新的功能特性。因此,对TiO_2纳米管阵列的制备及应用进行系统深入的研究具有重要的实际意义。
     本文采用恒压阳极氧化法制备TiO_2纳米管阵列,通过FE-SEM、XRD、TEM等对纳米管阵列的形貌和结构进行表征,并研究了阳极氧化电压、时间及电解液种类对管阵列形貌、结构的影响。结果表明:对于同一电解液体系,TiO_2纳米管阵列的形成需要特定的氧化电压、时间参数范围。纳米管的平均管径、管壁厚度、管长随氧化电压的提高而增大,氧化时间只对纳米管长度有显著影响;电解液种类是获得大长径比TiO_2纳米管阵列的关键。在具有高的介电常数和粘度系数的有机电解液中,可以制备出更长的纳米管。
     阳极氧化法制备的TiO_2纳米管阵列为无定型态,经过热处理可获得锐钛矿、金红石等不同晶型。纳米管阵列中TiO_2的结晶过程有别于其它形态的TiO_2。管中锐钛矿晶粒在达到一定尺度后不再增大,也不转变为金红石相。只有当纳米管坍塌,管中的小尺寸锐钛矿相晶粒才会消失。
     此外,本文对TiO_2纳米管阵列在光催化降解甲基橙、直接甲醇燃料电池阳极电催化剂、DSSC的光阳极三个方面的应用进行了探索性研究。得出以下结论:
     将空气热处理的TiO_2纳米管阵列作为光催化剂,对甲基橙溶液进行光催化降解试验,研究了阳极氧化电压、氧化时间、热处理温度对光催化性能的影响。结果表明,0.5wt%HF电解液(20V、20min)中制备的TiO_2纳米管阵列400℃热处理后具有较好的光催化性能,其经高压汞灯照射40min,对10mg/L甲基橙溶液的降解率可达到99.6%。
     通过直流电沉积和超声辅助直流电沉积,成功制备出Pt/TiO_2纳米管阵列/Ti复合电极。沉积过程中超声波及纳米管的存在促进了Pt在电极表面的分散。同等制备条件下,超声辅助电沉积制备的Pt/TiO_2纳米管阵列/Ti复合电极对甲醇具有最强的电催化氧化能力,普通电沉积的其次,直接沉积在Ti上的最差,但它们的性能都优于同等面积的纯Pt片状电极。
     利用TiO_2纳米管阵列作为光阳极材料,成功组装制备了DSSC。TiO_2纳米管阵列的比表面积对电池性能有着重要影响。比表面积越大,其组装的太阳能电池的性能越好。例如,含有1vol%水的0.25wt% NH_4F/乙二醇电解液(20V、2h)中制备的大比表面积TiO_2纳米线/带/管阵列镶段复合结构,经过450℃空气热处理后,组装成的DSSC(1cm×1cm)具有最佳的光电性能(J_(sc)=3.53mA/cm~2、V_(oc)=0.81V、η=1.508%)。
Nano titania, an important inorganic functional material, finds wild use in the field of photocatalysis, dye-sensitized solar cells (DSSC), gas sensing, water photolysis, and so on. Compared with any other morphologic form of titania, TiO_2 nanotube arrays are expected to exhibit novel and improved functional characteristics, due to their higher specific surface area, stronger adsorbability and efficient electron transfer path. Thus the systematical studies on the preparation and application of TiO_2 nanotube arrays have both scientific and engineering significances.
     TiO_2 nanotube arrays were fabricated by anodic oxidation at a constant potential in this paper. The morphology and the structure of TiO_2 nanotubes were characterized respectively by means of FE-SEM, XRD, TEM, and so on. The effects of anodic potential, anodic time and electrolyte composition on the nanotube morphology were investigated. The results indicate that TiO_2 nanotube arrays can be regularly formed at the specific anodic voltage and anodic time. Furthermore, the pore size, wall thickness and length of the nanotube become bigger with the increasing anodic voltage, while anodic time only obviously influences the nanotube length. The appropriate electrolyte is the key aspect to achieve high-aspect-ratio TiO_2 nanotube arrays. Longer nanotubes can be formed in organic electrolytes because of their large dielectric constants and coefficient of viscosities.
     The anatase and the rutile crystallites from amorphous as-fabricated TiO_2 nanotube arrays can be formed inside the tube walls at elevated temperatures. The crystallization process of nanotubes is different to the other morphologic form of titania. Anatase crystallite in the tubes does not transform to rutile and its size keeps unchanged at elevated temperatures after reaching a special size of anatase crystallite. The small anatase crystallites can disappear, only following the collapse of nanotube structure.
     Moreover, the properties of such novel nano-architecture, used for methyl orange photolysis, the anode electrocatalyst of direct methanol fuel cells, and the photoelectrode of DSSC, were investigated individually.
     The TiO_2 nanotube arrays were used as photocatalyst to degrade the methyl orange. The effects of anodic potential, anodic time, annealing temperature on the photocatalysis of TiO_2 nanotube arrays were also studied. The results show that TiO_2 nanotube arrays, fabricated with anodic voltage of 20V for 20 minutes in 0.5wt%HF electrolyte and then annealed at 400℃, possess a better photo-catalytic activity, i.e. 99.6% decolourisation of 10mg/L methyl orange after irradiation with high-pressure Hg-lamp for 40 minutes.
     Furthermore, Pt/TiO_2 nanotube arrays/Ti composite electrodes were fabricated by direct current electrodeposition with or without ultrasonic vibration. The results show that both ultrasonic vibration and nanotube array itself can promote the dispersion of Pt particles onto the electrode. The Pt/TiO_2 nanotube arrays/Ti composite electrode with ultrasonic vibration is of the best electrocatalytic property, while the Pt/TiO_2 nanotube arrays/Ti composite electrode without ultrasonic vibration is better than the Pt/Ti composite electrode. Anyway, the three kinds of composite electrodes have better electrocatalytic properties than Pt electrode with the same working area. Their high electrocatalytic activities for methanol oxidation can be attributed to the high dispersion of Pt particles.
     Finally, TiO_2 nanotube arrays were successfully used as photoelectrodes to build DSSC. The specific surface area of TiO_2 nanotube arrays has an important influence on the photovoltaic properties of the cells. It is found that the dye-sensitized solar cell (1cm×1cm), composed with TiO_2 composite nanostructures prepared in 1vol% water/0.25wt% NH_4F/glycol electrolyte with an anodic voltage of 20V for 2h and annealed at 450℃, exhibits the best performance with the short-circuit photocurrent density (J_(sc)) 3.53mA/cm~2, the open-circuit photovoltage (V_(oc)) 0.81V, and the photo-current conversion (η) 1.508%.
引文
[1]高濂,郑珊,张青红.纳米氧化钛光催化材料及应用[M].北京:化学工业出版社, 2002, 25-35.
    [2] Simons P Y, Dachille F. The structure of TiO_2(II), a high-pressure of TiO_2[J]. Acta cryst, 1967, 23:334.
    [3] Latroche M, Brohan L, Marchand R, Tournoux M. New hollandite oxides: TiO_2(H) and K0.06TiO_2[J]. Journal of Solid State Chemistry, 1989, 81(1):78-82.
    [4]沈伟韧,赵文宽,贺飞,方佑龄. TiO_2光催化反应及其在废水处理中的应用[J].化学进展, 1998, 10(4):349-361.
    [5]上官文峰.太阳能光解水制氢的研究进展[J].无机化学学报, 2001, 13(5):619-626.
    [6]李越湘,吕功煊,李树本.半导体光催化分解水研究进展[J].分子催化, 2001, 15(1):72-80.
    [7]李桂云,马江权,栗洪道,等.在薄膜TiO_2/Al2O3和粉末TiO_2上光催化降解苯酚的研究[J].高校化学工程学报, 2001, 15(2):186-190.
    [8]左国民,徐敏,程振兴.挥发性有机物的气相光解及光催化降解研究[J].分子催化, 2001, 15(6):463-466.
    [9] Popova G Y, Andrushkevich T V, Chesalov Y A, et al. In situ FTIR Study of the Adsorption of Formaldehyde, Formic Acid, and Methyl Formiate at the Surface of TiO_2(Anatase)[J]. Kinetics and Catalysis, 2000, 41(6):805-811.
    [10]陶跃武,赵梦月,陈士夫,等.空气中有害物质的光催化去除[J].催化学报, 1997, 18(4):345-347.
    [11]黄浪欢,曾令可,罗民华,等. TiO_2光催化脱除NOx的研究进展[J].环境污染治理技术与设备, 2001, 2(4):59-64.
    [12]祝静艳,曾玉燕,匡代彬,等.弱紫外光下NOx气相光催化氧化研究[J].中山大学学报(自然科学版), 2001, 40(6):31-34.
    [13] Zorn M E, Tompkins D T, Zeltner W A, et al. Photocatalytic oxidation of acetone vapor on TiO_2/ZrO2 thin films[J]. Applied Catalysis B: Environmental, 1999, 23(1):1-8.
    [14]孟宪权,王君,何磊,等. TiO_2薄膜的制备及结构研究[J].半导体学报, 1999, 20(5):395-399.
    [15] Dumitriu D, Bally A R, Ballif C, et al. Photocatalytic degradation of phenol by TiO_2 thin films prepared by sputtering[J]. Applied Catalysis B: Environmental, 2000, 25(2-3):83-92.
    [16]魏宏斌,徐迪民,严煦世.二氧化钛膜光催化氧化苯酚的动力学规律[J].中国给水排水, 1999, 15(2):14-17.
    [17]武正簧.用TiO_2薄膜作催化剂降解苯酚的研究[J].化学工业与工程, 1999, 16(2):102-105.
    [18]孙福侠,吴鸣,王红,等.纳米TiO_2光催化降解苯酚的动力学研究[J].催化学报, 1999, 20(3):301-304.
    [19]余家国,赵修建,叶晓川,等.溶胶-凝胶法制备TiO_2纳米薄膜及其光催化性能的研究[J].光学技术, 1998, (4):17-19.
    [20]贺飞,唐怀军,赵文宽,等.纳米TiO_2光催化剂负载技术研究[J].环境污染治理技术与设备, 2001, 2(2):47-58.
    [21]廖振华,陈建军,姚可夫,等.纳米TiO_2光催化剂负载化的研究进展[J].无机材料学报, 2004, 19(1):17-24.
    [22]张素香,屈撑囤,王新强.光催化剂改性及固定化技术的研究进展[J].工业水处理, 2002, 22(7):12-15.
    [23]钟春妮,罗亚田,皮科武.光活性TiO_2膜的制备技术综述[J].黄石高等专科学校学报, 2003, 19(2):58-61.
    [24] Xagas A P, Androulaki E, Hiskia A, et al. Preparation, fractal surface morphology and photocatalytic properties of TiO_2 films[J]. Thin Solid Films, 1999, 357(2):173-178.
    [25]魏刚,张元晶,戴蓉春.纳米TiO_2膜的可控制备及膜结构与光催化活性的关系[J].中国科学(B辑), 2003, 33(1):74-79.
    [26]贺飞,唐怀军,赵文宽,等.二氧化钛光催化自洁功能陶瓷的研制[J].武汉大学学报(理学版), 2001, 47(4):419-424.
    [27]刘付胜聪,李玉平.自清洁防雾玻璃[J].玻璃, 2002, 162(3):16-19.
    [28] Wu C G, Tzeng L F, Kuo Y T. Enhancement of the photocatalytic activity of TiO_2 film via surface modification of the substrate[J]. Applied Catalysis A: General, 2002, 226(1-2):199-211.
    [29]成英之,张渊明,唐渝. WO3-TiO_2薄膜型复合光催化剂的制备和性能[J].催化学报, 2001, 22(3):203-205.
    [30] Carrette L, Friedrich K A, Stimming U. Fuel cells: Principles, types, fuels, and applications[J]. Chem. Phys. Chem, 2000, l(4):162-193.
    [31]查全性.燃料电池技术的发展与我国应有的对策[J].应用化学, 1993, 10(5):38-42.
    [32] Costamagna P, Srinivasan S. Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000; Part I. Fundamental scientific aspects[J]. J. Power Sources, 2001, 102(1-2):242-252.
    [33] Dohle H, Divisek J, Jung R. Process engineer of the direct methanol fuel cell[J]. J. Power Sources, 2000, 86(1-2):469-477.
    [34]褚道葆.电合成法制备纳米材料及纳米材料电极上的电催化合成[J].精细化工, 2000, 17(增刊):10-12.
    [35]董宗木,苏桂琴,褚道葆,等.铂微粒修饰纳米二氧化钛电极对甲醇催化氧化的研究[J].安徽师范大学学报(自然科学版), 2003, 26(4):364-366.
    [36]王凤武,魏亦军,褚道葆.纳米TiO_2-Pt修饰电极的制备及电催化活性[J].应用化学, 2004, 21 (4):378-382.
    [37]阳超琴,杨玲,夏举佩. Ti/nano-TiO_2-Pt复合电极催化甲醇氧化的研究[J].贵金属, 2007, 28(1):14-17.
    [38]刘长鹏,杨辉,邢巍,陆天虹.直接甲醇燃料电池中碳载Pt-TiO_2阳极复合催化剂的研究[J].南京师范大学学报(自然科学版), 2001, 24(2):55-57,66.
    [39]姚忠华,杨辉,唐亚文,等.碳载Pt-TiO_2阳极催化剂对甲醇氧化的电催化活性和稳定性[J].南京师范大学学报(自然科学版), 2002, 25(3):120-121.
    [40] Kiwi J, Gr?tzel M. Projection, size factors, and reaction dynamics of colloidal redox catalysts mediating light induced hydrogen evolution from water[J]. J. Am. Chem. Soc, 1979, 101(24):7214-7217.
    [41] Liska P, Vlachopoulos N, Nazeeruddin M K, Comte P, Gr?tzel M. Cis-Diaquabis (2,2′-bipyridyl-4,4′-dicarboxylate) ruthenium(Ⅱ) sensitizes wide band gap oxide semiconductors very efficiently over a broad spectral range in the visible[J]. J. Am. Chem. Soc, 1988, 110(11):3686-3687.
    [42] Kavan L, Gr?tzel M. Nafion modified TiO_2 electrodes: photoresponse and sensitization by Ru(II)-bipyridyl complexes[J]. Electrochimica Acta, 1989, 34(9):1327-1334.
    [43] O’Regan B, Gr?tzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO_2 films[J]. Nature, 1991, 353(6346):737-739.
    [44] Hagfeldt A, Gr?tzel M. Light-induced Redox Reactions in Nanocrystalline Systems[J]. Chem. Rev, 1995, 95(1):49-68.
    [45] Baxter J B, Aydil E S. Nanowire-based dye-sensitized solar cells[J]. Appl. Phys. Lett, 2005, 86(5):053114.
    [46] Hoyer P, Weller H. Potential-dependent electron injection in nanoporous colloidal ZnO films[J]. J. Phys. Chem, 1995, 99(38):14096-14100.
    [47] Torimoto T, Tsumura N, Miyake M. Preparation and Photoelectrochemical Properties of Two-Dimensionally Organized CdS Nanoparticle Thin Films[J]. Langmuir, 1999, 15(5):1853-1858.
    [48] Nasr C, Hotchandani S, Kamat P V, et al. Electrochemical and Photoelectrochemical Properties of Monoaza-15-crown Ether Linked Cyanine Dyes: Photosensitization of Nanocrystalline SnO2 Films[J]. Langmuir, 1995, 11(5):1777-1783.
    [49] Bedja I, Hotchandani S, Kamat P V. Preparation and Photoelectrochemical Characterization of Thin SnO2 Nanocrystalline Semiconductor Films and Their Sensitization with Bis(2,2'-bipyridine)(2,2'-bipyridine-4,4'-dicarboxylic acid)ruthenium(II) Complex[J]. J. Phys. Chem, 1994, 98(15):4133-4140.
    [50] Nazeeruddin M K, Kay A, Rodicio I, Barer R H, Muller E, Liska P, Vlachogoulos N, Gr?tzel M. Conversion of light to electricity by cis-X2bis (2,2′-bipyridyl-4,4′-dicarboxylate) ruthenium(Ⅱ) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes[J]. J. Am. Chem. Soc, 1993, 115(14):6382-6390.
    [51] Jongh P E, Vanmaekelbergh D. Trap-Limited Electronic Transport in Assemblies of Nanometer-Size TiO_2 Particles[J]. Phys. Rev. Lett, 1996, 77(16):3427-3430.
    [52] Schlichth?rl G, Huang S Y, Sprague J, Frank A J. Band Edge Movement and Recombination Kinetics in Dye-Sensitized Nanocrystalline TiO_2 Solar Cells: A Study by Intensity Modulated Photovoltage Spectroscopy[J]. J. Phys. Chem. B, 1997, 101(41):8141-8155.
    [53] K?nenkamp R, Dloczik L, Ernst K, Olesch C. Nano-structures for solar cells with extremely thin absorbers[J]. Physica E: Low-dimensional Systems and Nanostructures, 2002, 14(1-2):219-223.
    [54]陈炜,孙晓丹,李恒德,翁端.染料敏化太阳能电池的研究进展[J].世界科技研究与发展, 2004, 26(5):27-35.
    [55] Kiema G K, Colgan M J, Bret M J. Dye sensitized solar cells incorporating obliquely deposited titanium oxide layers[J]. Solar Energy Materials & Solar Cells, 2005, 85(3):321-331.
    [56] Bach U, Lupo D, Comte P, Moser J E, Weiss?rtel F, Salbeck J, Spreitzer H, Gr?tzel M.Solid-state dye-sensitized mesoporous TiO_2 solar cells with high photon-to-electron conversion efficiencies[J]. Nature, 1998, 395(6702):583-584.
    [57] Iijima S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354:56-58.
    [58] Tenne R, Margulis L, Genut M, et al. Polyhedral and cylindrical structures of tungsten disulphide[J]. Nature, 1992, 360:444-446.
    [59] Feldman Y, Wasserman E, Srolovitz D J, et al. High-rategas-phase growth of MoS2 nested inorganic fullerenes and nanotubes[J]. Science, 1995, 267:222-225.
    [60] Chopra N G, Luyken R J, Cherrey K, et al. Boron nitride nanotubes[J]. Science, 1995, 269:966-967.
    [61] Zhang Y, Gu H, Iijima S, et al. Heterogeneous growth of B-C-N nanotubes by laser ablation[J]. Chem. Phys. Lett, 1997, 279(5-6):264-269.
    [62] Lin H P, Mou C Y.“Tubules-Within-a-Tubule”Hierarchical Order of Mesoporous Molecular Sieves in MCM-41[J]. Science, 1996, 273:765-768.
    [63] Ghadiri M R, Granja J R, Buehler L K. Artificial transmembrane ion channels from self-assembling peptide nanotubes[J]. Nature, 1994, 369:301-303.
    [64] Li G, McGown L B. Molecular Nanotube Aggregates ofβ- andγ-Cyclodextrins Linked by Diphenylhexatrienes[J]. Science, 1994, 264:249-251.
    [65] Hacohen Y R, Grunbaum E, Tenne R, et al. Cage structures and nanotubes of NiCl2[J]. Nature, 1998, 395:336-338.
    [66] Sung S L, Tsai C H, et al. Well-aligned carbon nitride nanotubes synthesized in anodic alumina by electron cyclotron resonance chemical vapor deposition[J]. Appl. Phys. Lett, 1999, 74(2):197-199.
    [67] Gong D, Grimes C A, Varghese O K, et al. Titanium oxide nanotube arrays prepared by anodic oxidation[J]. J. Mater. Res, 2001, 16(12):3331-3334.
    [68]李晓红,张校刚,力虎林. TiO_2纳米管的模板法制备及表征[J].高等学校化学学报, 2001, 22(1):130-132.
    [69]王保玉,张景会,刘湛鋆. TiO_2纳米管的制备[J].精细化工, 2003, 20(6):333-336.
    [70] Cheng L F, Zhang X T, Liu B, et al. Template synthesis and characterization of WO3/TiO_2 composite nanotubes[J]. Nanotechnology, 2005, 16(8):1341-1345.
    [71] Lee S, Jeon C, Park Y. Fabrication of TiO_2 tubules by template synthesis and hydrolysis with water vapor[J]. Chem. Mater, 2004, 16(22):4292-4295.
    [72] Lee J H, Leu I C, Hsu M C, et al. Fabrication of aligned TiO_2 one-dimensional nanostructured arrays using a one-step templating solution approach[J]. J. Phys. Chem. B, 2005, 109(27):13056-13059.
    [73] Jung J H, Kobayashi H, Kjeld J C, et al. Creation of novel helical ribbon and double-layered nanotube TiO_2 structures[J]. Chem. Mater, 2002, 14(4):1445-1447.
    [74] Hoyer P. Formation of a titanium dioxide nanotube array[J]. Langmuir, 1996, 12(6):1411-1413.
    [75]马玉涛,林原,肖绪瑞,等. TiO_2纳米管薄膜的制备及其光散射性能[J].科学通报, 2005, 50(17):1824-1828.
    [76] Miyauchi M, Tokudome H, Toda Y, et al. Electron field emission from TiO_2 nanotubearrays synthesized by hydrothermal reaction[J]. Appl. Phys. Lett, 2006, 89(4):043114.
    [77] Ma D L, Schadler L S, Siegel R W, et al. Preparation and structure investigation of nanoparticle-assembled titanium dioxide microtubes[J]. Appl. Phys. Lett, 2003, 83(9):1839-1841.
    [78] Seoa D S, Leea J K, Kim H. Preparation of nanotube-shaped TiO_2 powder[J]. Journal of Crystal Growth, 2001, 229(1-4):428-432.
    [79] Quan X, Yang S, Zhao H, et al. Preparation of Titania Nanotubes and Their Environmental Applications as Electrode[J]. Environ. Sci. Technol, 2005, 39(10):3770-3775.
    [80] Tian Z R, Voigt J A, Liu J, et al. Large Oriented Arrays and Continuous Films of TiO_2-Based Nanotubes[J]. J. Am. Chem. Soc, 2003, 125(41):12384-12385.
    [81] Zwilling V, Darque-Ceretti E, Boutry-Forveille A, et al. Structure and Physicochemistry of Anodic Oxide Films on Titanium and TA6V Alloy[J]. Surf. Interface Anal, 1999, 27(7):629-637.
    [82] Zhao J L, Wang X H, Chen R Z, et al. Fabrication of titanium oxide nanotube arrays by anodic oxidation[J]. Solid State Communications, 2005, 134(10):705-710.
    [83] Lai Y K, Sun L, Chen C, et al. Optical and electrical characterization of TiO_2 nanotube arrays on titanium substrate[J]. Applied Surface Sci, 2005, 252(4):1101-1106.
    [84] Cai Q Y, Paulose M, Varghese O K, Grimes C A. The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation[J]. J. Mater. Res, 2005, 20(1):230-236.
    [85] Paulose M, Shankar K, Yoriya S, et al. Anodic Growth of Highly Ordered TiO_2 Nanotube Arrays to 134μm in Length[J]. J. Phys. Chem. B, 2006, 110(33):16179-16184.
    [86] Albu S P, Ghicov A, Macak J M, Schmuki P. 250μm long anodic TiO_2 nanotubes with hexagonal self-ordering[J]. Phys. Stat. Sol, 2007, 1(2):R65-R67.
    [87] Beranek R, Hildebrand H, Schmuki P. Self-Organized Porous Titanium Oxide Prepared in H2SO4/HF Electrolytes[J]. Electrochemical and Solid-State Letters, 2003, 6(3):B12-B14.
    [88] Ghicov A, Tsuchiya H, Macak J M, et al. Titanium oxide nanotubes prepared in phosphate electrolytes[J]. Electrochem. Commun, 2005, 7(5):505-509.
    [89] Macak J M, Hiroaki T, Schmuki P, et al. Dye-sensitized anodic TiO_2 nanotubes[J]. Electrochem. Commun, 2005, 7(11):1133-1137.
    [90] Shankar K, Paulose M, Mor G K, et al. A study on the spectral photoresponse and photoelectrochemical properties of flame-annealed titania nanotube-arrays[J]. J. Phys. D: Appl. Phys, 2005, 38(18):3543-3549.
    [91] Propst E K, Kohl P A. The electrochemical oxidation of silicon and formation of poroussilicon in acetonitrile[J]. J. Electrochem. Soc, 1994, 141(4):1006-1013.
    [92] Christophersen M, Carstensen J, Foll H. Crystal Orientation Dependence of Macropore Formation in p-Type Silicon Using Organic Electrolytes[J]. Physica Status Solidi A, 2000, 182(1):103-107.
    [93] Christophersen M, Carstensen J, Voigt K, Foll H. Organic and aqueous electrolytes used for etching macro- and mesoporous silicon[J]. Phys. Status. Solidi A, 2003, 197(1):34-38.
    [94] Tsuchiya H, Macak J M, Taveira L, Schmuki P, et al. Self-organized TiO_2 nanotubes prepared in ammonium fluoride containing acetic acid electrolytes[J]. Electrochem. Commun, 2005, 7(6):576-580.
    [95] Ruan C M, Paulose M, Varghese O K, et al. Fabrication of Highly Ordered TiO_2 Nanotube Arrays Using an Organic Electrolyte[J]. J. Phys. Chem. B, 2005, 109(33):15754-15759.
    [96] Macak J M, Tsuchiya H, Taveira L, et al. Smooth Anodic TiO_2 Nanotubes[J]. Angew. Chem. Int. Ed, 2005, 44(45):7463-7465.
    [97] Zhao J L, Wang X H, Sun T Y, et al. In situ templated synthesis of anatase single-crystal nanotube arrays[J]. Nanotechnology, 2005, 16(10):2450-2454.
    [98] Varghese O K, Gong D, Paulose M, et al. Crystallization and high-temperature structural stability of titanium oxide nanotube arrays[J]. J. Mater. Res, 2003, 18(1):156-165.
    [99] Varghese O K, Gong D, Paulose M, et al. Hydrogen sensing using titania nanotubes[J]. Sensors and Actuators B: Chemical, 2003, 93(1-3):338-344.
    [100] Varghese O K, Mor G K, Grimes C A, et al. A Titania Nanotube-Array Room-Temperature Sensor for Selective Detection of Hydrogen at Low Concentrations[J]. J. Nanosci. Nanotech, 2004, 4(7):733-737.
    [101] Mor G K, Carvalho M A, Varghese O K, et al. A room-temperature TiO_2-nanotube hydrogen sensor able to self-clean photoactively from environmental contamination[J]. J. Mater. Res, 2004, 19(2):628-634.
    [102] Fujishima A, Honda K. Electrochemical Proteolysis of Water at a Semiconductor Electrode[J]. Nature, 1972, 238:37-39.
    [103]吕明,苏雪筠,饶平根.新型光解水制氢用半导体光催化材料的研究进展[J].材料导报, 2005, 19(5):1-3.
    [104] Mor G K, Shankar K, Paulose M, et al. Enhanced Photocleavage of Water Using Titania Nanotube Arrays[J]. Nano Lett, 2005, 5(1):191-195.
    [105]赖跃坤,孙岚,左娟,等. TiO_2纳米管阵列的表征及光催化性能的研究[A].赵光明.第五届中国功能材料及其应用学术会议论文集Ⅲ[C].重庆:《功能材料》编辑部. 2004, 1958-1963.
    [106]孙岚,宫娇娇,庄惠芳,林昌健. TiO_2纳米管阵列光催化降解苯酚[J].精细化工, 2007, 24(4):317-320,344.
    [107]阮修莉. TiO_2纳米管电极制备与光电催化降解五氯苯酚研究[D].大连:大连理工大学, 2005, 65.
    [108] Macak J M, Tsuchiya H, Schmuki P, et al. Dye-sensitized anodic TiO_2 nanotubes[J]. Electrochem. Commun, 2005, 7(11):1133-1137.
    [109] Paulose M, Shankar K, Grimes C A, et a1. Application of highly-ordered TiO_2 nanotube-arrays in heterojunction dye-sensitized solar cells[J]. J. Phys. D: Appl. Phys, 2006, 39(12):2498-2503.
    [110] Mor G K, Varghese O K, Paulose M, et al. A review on highly ordered, vertically oriented TiO_2 nanotube arrays: Fabrication, material properties, and solar energy applications[J]. Sol Energy Mater Sol Cells, 2006, 90(14):2011-2075.
    [111] Mor G K, Karthik S, Paulose M, et al. Use of Highly-Ordered TiO_2 nanotube arrays in dye-sensitized solar cells[J]. Nano Lett, 2006, 6(2):215-218.
    [112] Ohsaki Y, Masaki N, Kitamura T, et al. Dye-sensitized TiO_2 nanotube solar cells: fabrication and electronic characterization[J]. Phys. Chem. Chem. Phys, 2005, 7(24):4157-4163.
    [113] Zhu K, Neale N R, Miedaner A, et al. Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO_2 nanotubes arrays[J]. Nano Lett, 2007, 7(1):69-74.
    [114] Wang H, Yip C T, Chan W K, et al. Titania-nanotube-array-based photovoltaic cells[J]. Appl. Phys. Lett, 2006, 89(2):023508.
    [115] Zhao J L, Wang X H, Chen R Z, Li L T. Synthesis of thin films of barium titanate and barium strontium titanate nanotubes on titanium substrates[J]. Mater. Lett, 2005, 59(18):2329-2332.
    [116] Prida V M, Vélez M H, Cervera M, et al. Magnetic behaviour of arrays of Ni nanowires by electrodeposition into self-aligned titania nanotubes[J]. Journal of Magnetism and Magnetic Materials, 2005, 294(2):e69-e72.
    [117] Oh S H, Fin?nes R R, Jin S H, et al. Growth of nano-scale hydroxyapatite using chemically treated titanium oxide nanotubes[J]. Biomaterials, 2005, 26(24):4938-4943.
    [118]唐汝钧,主编.机械工程材料测试手册(物理金相卷)[M].辽宁:辽宁科学技术出版社, 1999, 11.
    [119] Cai Q Y, Yang L X, Yu Y. Investigations on the self-organized growth of TiO_2 nanotube arrays by anodic oxidization[J]. Thin Solid Films, 2006, 515(4):1802-1806.
    [120] Mack J M, Tsuchiya H, Schmuki P. High-Aspect-Ratio TiO_2 Nanotubes by Anodization of Titanium[J]. Angew. Chem. Int. Ed, 2005, 44(14):2100-2102.
    [121] Mor G K, Varghese O K, Paulose M, et al. Fabrication of tapered, conical-shaped titania nanotubes[J]. J. Mater. Res, 2003, 18(11):2588-2593.
    [122] Tsuchiya H, Macak J M, Ghicov A, et al. Nanotube oxide coating on Ti29Nb13Ta4.6Zr alloy prepared by self-organizing anodization[J]. Electrochimica Acta, 2006, 52(1):94-101.
    [123] Macak J M, Schmuki P. Anodic growth of self-organized anodic TiO_2 nanotubes in viscous electrolytes[J]. Electrochimica Acta, 2006, 52(3):1258-1264.
    [124] Shankar K, Mor G K, Prakasam H E, et al. Highly-ordered TiO_2 nanotube arrays up to 220μm in length: use in water photoelectrolysis and dye-sensitized solar cells[J]. Nanotechnology, 2007, 18(6):065707.
    [125] Raja K S, Misra M, Paramguru K. Formation of self-ordered nano-tubular structure of anodic oxide layer on titanium[J]. Electrochimica Acta, 2005, 51(1):154-165.
    [126] Kar A, Raja K S, Misra M. Electrodeposition of hydroxyapatite onto nanotubular TiO_2 for implant applications[J]. Surface and Coatings Technology, 2006, 201(6):3723-3731.
    [127] Fan Q, McQuillin B, Bradley D C, et al. A solid state solar cell using sol-gel processed material and a polymer[J]. Chem. Phys. Lett, 2001, 347(4-6):325-330.
    [128] On D T, Desplantier-Giscard D, Danumah C, et al. Perspectives in catalytic applications of mesostructured materials[J]. Appl. Catal. A: General, 2001, 222(1-2):299-357.
    [129] Ma Z, Yue Y H, Deng X Y, et al. Nanosized anatase TiO_2 as precursor for preparation of sulfated titania catalysts[J]. J. Mol. Catal. A: Chemical, 2002, 178(1-2):97-104.
    [130] Ye X S, Xiao Z G, Lin D S, et al. Experimental investigation on the dielectric-behavior of nanostructured rutile-phase titania[J]. Mater. Sci. and Eng: B, 2001, 74(1-3):133-136.
    [131] Gao L, Li Q, Song Z, Wang J. Preparation of nano-scale titania thick film and its oxygen sensitivity[J]. Sensors and Actuators B: Chemical, 2000, 71(3):179-183.
    [132] Rothschild A, Edelman F, Komem Y, Cosandey F. Sensing behavior of TiO_2 thin films exposed to air at low temperatures[J]. Sensors and Actuators B: Chemical, 2000, 67(3):282-289.
    [133]杨华,袁坚,赵兹君. TiO_2半导体薄膜电极的光电转换性能研究[J].硅酸盐通报, 2004(1):62-66.
    [134]张汉辉,郑威,编著.波谱学[M].厦门:厦门大学出版社, 1998, 93.
    [135]孔令丽,钟顺和. NiO-V2O3/SiO2光催化材料的结构和光吸收性能[J].无机材料学报, 2006, 21(5):1203-1208.
    [136]唐波,江琦,何锡文,沈含熙.多组分金属催化剂表面漫反射紫外可见光谱研究[J]光谱学与光谱分析, 1999, 19(1):98-101.
    [137]黄君礼,鲍治宇,编著.紫外吸收光谱法及其应用[M].北京:中国科学技术出版社, 1992, 36.
    [138]杨宗棉.固体导论[M].上海:上海交通大学出版社, 1993, 79.
    [139]胡林华,戴松元,王孔嘉.溶胶-凝胶法制备的纳米TiO_2结构相变及晶体生长动力学[J].物理学报, 2003, 52(9):2135-2139.
    [140]付姚,曹望和,夏天,周立新,田莹. TiO_2纳米粒子热处理过程相变原因研究[J].功能材料, 2005, 36(2):250-251,255.
    [141] Zhang H, Banfield J F. Phase transformation of nanocrystalline anatase-to-rutile via combined interface and surface nucleation[J]. J. Mater. Res, 2000, 15(2):437-448.
    [142]孙奉玉,吴鸣,李文钊,李新勇,顾婉贞,王复东.二氧化钛的尺寸与光催化活性的关系[J].催化学报, 1998, 19(3):229-233.
    [143] Brus L. Quantum crystallites and nonlinear optics[J]. Applied Physics A: Materials Science & Processing, 1991, 53(6):465-474.
    [144] Gouma P I, Mills M J. Anatase to Rutile Transformation in Titania Powders[J]. J. Am. Ceram. Soc. 2001, 84(3):619-622.
    [145] Zhang H Z, Banfield J F. Thermodynamic analysis of phase stability of nanocrystalline titania[J]. Journal of Materials Chemistry, 1998, 8(9):2073-2076.
    [146] Nakamura I, Negishi N, Kutsuna S, et al. Role of oxygen vacancy in the plasma-treated TiO_2 photocatalyst with visible light activity for NO removal[J]. J. Mol. Catal. A: Chemical, 2000, 161(1-2):205-212.
    [147] Ihara T, Miyoshi M, Ando M, et al. Preparation of a visible-light-active TiO_2 photocatalyst by RF plasma treatment[J]. J. Mater. Sci, 2001, 36(17):4201-4207.
    [148] Leng W, Liu H, Cheng S, et al. Kinetics of photocatalytic degradation of aniline in water over TiO_2 supported on porous nickel[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2000, 131(1-3):125-132.
    [149] Xavier D, JoséP. Kinetics of the photocatalytic oxidation of N(III) and S(IV) on different semiconductor oxides[J]. Chemosphere, 1999, 38(6):1265-1271.
    [150] Liu H, Cheng S, Zhang J. Titanium dioxide as photocatalyst on porous nickel: adsorption and the photocatalytic degradation of sulfosalicylic acid[J]. Chemosphere, 1999, 38(2):283-292.
    [151] Dionysiou D D, Khodadoust A P, Kern A M, et al. Continuous-mode photocatalytic degradation of chlorinated phenols and pesticides in water using a bench-scale TiO_2 rotating disk reactor[J]. Appl. Catal. B: Environmental, 2000, 24(3-4):139-155.
    [152] Bickley R, Gonzalea-Carreno T, Lees J, et al. A structural investigation of titanium dioxide photocatalysts[J]. J. Solid State Chem, 1991, 92(1):178-190.
    [153] Bacsa R R, Kiwi J. Effect of rutile phase on the photocatalytic properties of nanocrystalline titania during the degradation of p-coumaric acid[J]. J. Appl. Catal. B: Environmental, 1998, 16(1):19-29.
    [154] Hamnett A. Mechanism and electrocatalysis in the direct methanol fuel cell[J]. Catal. Today, 1997, 38(4):445-457.
    [155] Burstein G T, Barnett C J, Kucernak A R, et al. Aspects of the anodic oxidation of methanol[J]. Catal. Today, 1997, 38(4):425-437.
    [156] Iwasita T. Electrocatalysis of methanol oxidation[J]. Electrochimica Acta, 2002, 47(22-23):3663-3674.
    [157] Lamy C, Lima A, LeRhun V, et al. Recent advances in the development of direct alcohol fuel cells(DAFC)[J]. J. Power Sources, 2002, 105(2):283-296.
    [158] Liu H S, Song C J, Zhang J J, et al. A review of anode catalysis in the direct methanol fuel cell[J]. J. Power Sources, 2006, 155(2):95-110.
    [159] Gota M, Wendt H. Binary and ternary anode catalyst formulations including the elements W, Sn and Mo for PEMFCs operated on methanol or reformate gas[J]. Electrochimica Acta, 1998, 43(24):3637-3644.
    [160] Uchida M, Fukuoka Y, Sujawara Y, Eda N, Ohta A. Effects of microstructure of carbon support in the catalyst layer on the poly-electrolyte furl cells[J]. J. Electrochem. Soc, 1996, 143(7):2245-2252.
    [161] Li W Z, Liang C H, Qiu J S, et al. Carbon nanotubes as support for cathode catalyst of a direct methanol fuel cell[J]. Carbon, 2002, 40(5):791-794.
    [162] Hou Z J, Yi B L, Zhang H M. Preparing high loading Pt/C the carbon support[J]. Electrochem. and Solid-State Letters, 2003, 6(11):A232-A235.
    [163] Arico A S, Srinivasan S, Antoncucci V. DMFCs: from fundamental aspects to technology development[J]. Fuel Cells, 2001, 1(2):133-161.
    [164]贾铮,戴长松,陈玲.电化学测量方法[M].北京:化学工业出版社, 2006, 144-145.
    [165]藤岛昭,相泽益男.电化学测定方法[M].北京:北京大学出版社, 1995, 76.
    [166] Angerstein Kozlowska H, Conway B E, Sharp W B A. The real condition of electrochemically oxidized platinum surface Part I: Resolution of component processes[J]. J. Electroanal. Chem, 1973, 43(1):9-36.
    [167]孔令斌,李梦轲,陆梅,郭新勇,力虎林.模板法制备枝状Pt纳米线[J].高等学校化学学报, 2003, 24(3):513-515.
    [168]陈维民,孙公权,赵新生,孙丕昌,杨少华,辛勤.直接甲醇燃料电池电催化剂性能衰减研究[J].高等学校化学学报, 2007, 28(5):928-931.
    [169] Parmigiani F, Kay E, Bagus P S. Anomalous oxidation of platinum clusters studied by X-ray photoelectron spectroscopy[J]. J. Electron Spectrose Relat Phenom, 1990, 50(1):39-46.
    [170] Frelink T, Visscher W, Van Veen J A R. Particle size effect of carbon-supported platinum catalysts for the electrooxidation of methanol[J]. J. Electroanal. Chem, 1995, 382(1-2):65-72.
    [171]何祚庥,陈立泉.人类即将迎接太阳能时代[J].院士与学部, 2005, 20(3):271-274.
    [172] Rensmo H, Keis K, Lindstrom H, et al. High light to energy conversion efficiencies for solar cells based on nanostructured ZnO electrodes[J]. J. Phys. Chem. B, 1997, 101(14):2598-2601.
    [173] Kamat P V, Bedja I, Hotchandani S, Patterson L K. Photosensitization of nanocrystalline semiconductor films. Modulation of electron transfer between excited ruthenium complex and SnO2 nanocrystallites with an externally applied bias[J]. J. Phys. Chem, 1996, 100(12):4900-4908.
    [174] Chappel S, Zaban A. Nanoporous SnO2 electrodes for dye-sensitized solar cells: improved cell performance by the synthesis of 18nm SnO2 colloids[J]. Solar Energy Materials and Solar Cells, 2002, 71(2):141-152.
    [175] K. Sayama, H. Sugihara, H. Arakawa. Photoelectrochemical properties of a porous Nb2O5 electrode sensitized by a ruthenium dye[J]. Chemistry of Materials, 1998, 10(12):3825-3832.
    [176] Lenzmann F, Krueger J, Burnside S, et al. Surface photovoltage spectroscopy of dye-sensitized solar cells with TiO_2, Nb2O5, and SrTiO3 nanocrystalline photoanodes: indication for electron injection from higher excited dye states[J]. J. Phys. Chem. B, 2001, 105(27):6347-6352.
    [177] Gr?tzel M. Dye-sensitized solar cells[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2003, 4(2):145-153.
    [178]雷永泉,主编.二十一世纪新材料丛书-新能源材料[M].天津:天津大学出版社, 2002, 227.
    [179]施敏,著.半导体器件物理[M].北京:电子工业出版社, 1987, 575-576.
    [180] Wang Z S, Kawauchi H, Kashima T, Arakawa H. Significant influence of TiO_2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell[J]. Coordination Chemistry Reviews, 2004, 248(13-14):1381-1389.
    [181] Paulose M, Shankar K, Varghese O K, et al. Backside illuminated dye-sensitized solar cells based on titania nanotube array electrodes [J] Nanotechnology, 2006, 17(5):1446-1448.
    [182]林华香,王绪绪,付贤智. TiO_2表面羟基及其性质[J].化学进展, 2007, 19(5):665-670.
    [183] Hao S C, Wu J H, Fan L Q, et al. The influence of acid treatment of TiO_2 porous film electrode on photoelectric performance of dye-sensitized solar cell[J]. Solar Energy, 2004, 76(6):745-750.
    [184]杨蓉,王维波,肖绪瑞等.联吡啶钌络合物敏化纳晶多孔TiO_2薄膜电极光电性能研究[J].科学通报, 1997, 41(24):2622-2625.
    [185]张东社,刘尧,王维波等.纳晶多孔TiO_2薄膜电极的化学处理[J].科学通报, 2000, 45(9):929-932.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700