胍、胍盐离子液体的合成及其在催化和阴离子交换膜中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
离子液体(IL)是一种绿色环保的有机液态物质,从Hurley等人的首次发现到Robert Ostyoung等人将其用于电化学和光化学领域,人们对离子液体的研究逐渐深入。离子液体具有较低的蒸汽压、较宽的电化学稳定电位窗口、良好的热力学和化学稳定性以及可调的物理化学性能等优点。随着离子液体的发展,现在人们也把一些含有离子基团的高分子聚合物称为聚离子液体(PIL),并且对其在催化、纳米科学、电化学组件、气体储存和分离等领域的应用做了深入的研究。
     近年来,离子液体、聚离子液体及其相关技术得到了迅速发展,人们对其在催化和电化学组件等领域中的应用研究也越来越深入。其中,胍、胍盐离子液体由于其自身结构的特点,表现出了优异和独特的物理化学性质。例如:五烷基胍具有很强的碱性,可以和多种过渡金属配位。因此,我们主要研究了胍、胍盐离子液体在催化和阴离子交换膜中的应用。希望通过简单的合成方法制备具有催化活性高、绿色环保的催化剂配体及具有优异性能的阴离子交换膜材料,总结规律,探索原理。具体内容如下:
     首先评述了离子液体的发展和研究概况;然后介绍了离子液体在有机催化领域中的应用;最后着重介绍了聚离子液体的合成及其在催化、纳米技术、气体储存和分离以及电化学组件领域中的应用。
     我们合成了一系列芳烃胍化合物,作为配体用于钯催化的Suzuki偶联反应。研究了不同结构配体的催化活性、催化剂用量、反应时间、溶剂和碱等因素对反应的影响,找到了该催化体系最优化的反应条件,研究了该催化体系对Suzuki偶联反应底物的普适性。实验结果表明,所合成的芳烃胍是Suzuki偶联反应良好的配体,并且随着配体供电子效应和位阻效应的增强,配体的催化活性逐渐增强。该催化体系的反应条件温和,催化产率高,适用于多种官能团的反应底物,为无膦催化体系的研究提供了新的方法。除此之外,该反应体系的催化剂用量少,可以在空气和水相中进行,有利于Suzuki偶联反应在大规模工业生产中的应用。
     通过简单的合成方法,制备了三溴代的胍盐单体,通过Suzuki偶联反应成功的制备了含有胍盐离子基团的交联网络聚合物。研究了引入胍盐离子基团对微孔聚合物材料的孔结构、气体储存和分离性能的影响。实验结果表明,胍盐离子基团的引入可以有效的提高聚合物材料的二氧化碳吸附和二氧化碳/氮气的选择性。我们还通过离子交换的方法将过渡金属钯固载到了微孔聚合物上,制备了非均相钯催化剂,研究了其对Suzuki偶联反应的催化活性和催化剂的回收情况。实验结果表明,该催化剂对于碘代芳烃、溴代芳烃及活化氯代芳烃的Suzuki偶联反应具有很好的催化活性,催化产率在95%以上。催化剂循环使用5次后催化剂的催化活性未见明显下降。
     以廉价的4-4′-联苯二酚和二氯二苯砜反应制备的工程塑料聚芳醚砜作为聚合物骨架,通过传统的氯甲基化反应,定量的将胍盐离子基团引入到聚合物中,成功的制备了一系列胍盐聚芳醚砜阴离子交换膜材料。对所得聚合物薄膜的热稳定性、机械性能、吸水率、尺寸变化、离子传导率和碱稳定性做了详细的研究和分析。实验结果表明,胍盐离子基团的结构对膜的性能有很大的影响。烷烃胍盐型聚芳醚砜阴离子交换膜具有较高的导电率,并且随着烷基链的增长,导电率和碱稳定性都有所下降;芳烃胍盐型的膜具有较好的碱稳定性和机械性能,在室温条件下的导电率保持在10-2以上。以上实验结果在一定程度上表明了胍盐型聚芳醚砜阴离子交换膜在碱性燃料电池的应用中具有很大的潜能。
     进一步完善了之前的工作,制备了一系列不同胍盐含量的直链型聚芳醚砜阴离子交换膜。然后通过控制五甲基胍与氯甲基化聚芳醚砜的投料比,精确的保留了一定量的苄基氯用于四甲基胍的化学交联,制备了交联型胍盐聚芳醚砜阴离子交换膜。对比了两种类型膜的机械性能、吸水率、尺寸变化、离子导电率和甲醇透过率。实验结果表明,通过该方法得到的交联型胍盐聚芳醚砜阴离子交换膜,即使在高的IEC值条件下,依然可以保持合适的吸水率与尺寸变化,同时离子导电率也得到一定的提高,接近于商业化的质子交换膜Nafion,而甲醇透过率远远低于Nafion。因此,我们开发了一条制备交联型胍盐聚芳醚砜阴离子交换膜的新方法。
Ionic liquids (ILs) are generally defined as organic/inorganic salts with a meltingpoint lower than100oC. The advantages of ILs include good thermal and chemicalstability, negligible vapour pressure, high ionic conductivity, designedphysico-chemical properties, etc. Interestingly, functionalizationed polymers with ILsgroups, which were also named in the scientific literature as poly(ionic liquid)s (PILs),have been pursued as a way of developing a new class of polyelectrolytes.
     In recent years, ILs, PILs and their related technologies been have found manyapplications in catalytic and electrochemical devices. Guanidine and guanidine saltionic liquid exhibit excellent physical and chemical properties, due to thecharacteristics of their structures. Our main work focused on the application ofguanidine and guanidine salt ionic liquids in catalytic and conductive polymermembranes.
     The aim of the present thesis is the design and synthesis of catalyst andconductive polymer membrane with superior performance by simple processes.Furthermore, we not only developed simple and rapid synthetic routes andsummarized its mechanism, but also explored them application in the field ofcatalytic, gas capture, gas separation and anion exchange membrane. The specificcontents are as follows:
     1. The development, synthesis and application of ILs and PILs were reviewed.
     2. Four kinds of alyl-guanidine (AG) were synthesized and used for thepalladium-catalyzed Suzuki cross-coupling reaction to test the catalytic activity. The influence of the solvent and base were also researched to obtain the optimal reactionconditions. AG4with steric bulk shows the best performance for palladium-catalyzedSuzuki cross-coupling reaction, and this catalytic system could tolerate a broad rangeof functional groups under mild reaction conditions. Results from these studiesindicated that AG acted as a ligand to stabilize the Pd species in Suzukicross-coupling reaction, and gave high yields of coupling products. Moreover, thesereactions can be performed in air condition without any special experimentalprecautions, rendering this method highly attractive for large-scale synthesis.
     3. Quaternary guanidine group functionalized networks were designed andsynthesized by Pd-catalyzed Suzuki cross-coupling reaction. The porosity of thesepolymers were determined by nitrogen adsorption-desorption isotherms, whichindicated that PON-G-2was microporous with1028m2g-1BET surface area and1.9nm pore size. Moreover, Gas (CO2and N2) adsorption isotherms show their CO2storage was79mg g-1and98mg g-1respectively. Pd nanoparticles supported on thePON-G-2was also prepared by ionic exchange, which exhibits high catalytic activityfor Suzuki cross-coupling reaction between aryl bromide and phenylboronic acid(Yield>95%). Last but not the least, there was no apparent activity decrease after thecatalyst was recycled five times.
     4. Poly(arylene ether sulfone)s were functionalized with quaternaryguanidinium groups in order to investigate their properties as novel polymerichydroxide exchange membrane materials. The polymers were synthesized viachloromethylation of poly(arylene ether sulfone)s, followed by reactions withpentaalkyllguanidine. PSFG1OH-1.0displayed a high ionic conductivity andPSFG5OH-1.0showed an outstanding alkaline stability in1M NaOH at60oC.
     5A series of linear quaternary guanidine group functionalized poly(aryleneether sulfone)s anion exchange membrane were prepared. By controlling the feedingratio of pentamethylguanidine vs benzyl chloride groups, we can precisely preserve a certain number of benzyl chloride, which are easy to have chemical cross-linkingwith tetramethylguanidine. The resulting cross-linking anion exchange membranesenhanced the ion conductivity as holding appropriate water uptake rate and swellingrate under high IECs.
引文
[1] WELTON T. Room-Temperature Ionic Liquids. Solvents for Synthesis andCatalysis [J]. Chemical Reviews,1999,99(8):2071-2084.
    [2] WASSERSCHEID P, KEIM W. Ionic Liquids—New “Solutions” for TransitionMetal Catalysis [J]. Angewandte Chemie International Edition,2000,39(21):3772-3789.
    [3] SHELDON R. Catalytic reactions in ionic liquids [J]. ChemicalCommunications,2001,0(23):2399-2407.
    [4] DUPONT J, DE SOUZA R F, SUAREZ P A Z. Ionic Liquid (Molten Salt)Phase Organometallic Catalysis [J]. Chemical Reviews,2002,102(10):3667-3692.
    [5] SUGDEN S, WILKINS H. CLXVII.-The parachor and chemical constitution.Part XII. Fused metals and salts [J]. Journal of the Chemical Society(Resumed),1929,0(0):1291-1298.
    [6] HURLEY F H, WIER T P. The Electrodeposition of Aluminum fromNonaqueous Solutions at Room Temperature [J]. Journal of TheElectrochemical Society,1951,98(5):207-212.
    [7] LIU J S Y, CHEN P Y, SUN I W, et al. Electrochemical Studies ofChromium(III) and Chromium(II) Chloride Complexes in Basic AluminumChloride‐1‐Methyl‐3‐ethylimidazolium Chloride Room Temperature MoltenSalts [J]. Journal of The Electrochemical Society,1997,144(7):2388-2392.
    [8] LOCKETT V, SEDEV R, BASSELL C, et al. Angle-resolved X-rayphotoelectron spectroscopy of the surface of imidazolium ionic liquids [J].Physical Chemistry Chemical Physics,2008,10(9):1330-1335.
    [9] SUN L, TAO D, HAN B, et al. Ionic liquid1-butyl-3-methyl imidazoliumtetrafluoroborate for shotgun membrane proteomics [J]. Analytical andBioanalytical Chemistry,2011,399(10):3387-3397.
    [10] SHATERIAN H R, RANJBAR M. An environmental friendly approach for thesynthesis of highly substituted imidazoles using Br nsted acidic ionic liquid,N-methyl-2-pyrrolidonium hydrogen sulfate, as reusable catalyst [J]. Journal ofMolecular Liquids,2011,160(1):40-49.
    [11] DIAO Y, LI J, WANG L, et al. Ethylene hydroformylation inimidazolium-based ionic liquids catalyzed by rhodium–phosphine complexes[J]. Catalysis Today,2013,200(0):54-62.
    [12] BOROWIECKI P, MILNER-KRAWCZYK M, BRZEZI SKA D, et al.Synthesis and Antimicrobial Activity of Imidazolium and Triazolium ChiralIonic Liquids [J]. European Journal of Organic Chemistry,2013,2013(4):712-720.
    [13] SCHNEIDER S E, BISHOP P A, SALAZAR M A, et al. Solid phase synthesisof oligomeric guanidiniums [J]. Tetrahedron,1998,54(50):15063-15086.
    [14] XIE H, DUAN H, LI S, et al. The effective synthesis of propylene carbonatecatalyzed by silica-supported hexaalkylguanidinium chloride [J]. New Journalof Chemistry,2005,29(9):1199-1203.
    [15] RIORDAN J. Arginyl residues and anion binding sites in proteins [J].Molecular and Cellular Biochemistry,1979,26(2):71-92.
    [16] DUAN H F, LI S H, LIN Y J, et al. Synthesis of cyclic carbonates from CO2and epoxides catalyzed by hexaalkylguanidinium halides [J]. ChemicalResearch in Chinese Universities,2004,20(5):568-571.
    [17] PERLA V, JAYANTY S S. Biguanide related compounds in traditionalantidiabetic functional foods [J]. Food Chemistry,2013,138(2–3):1574-1580.
    [18] SELIG P, TUROCKIN A, RAVEN W. Synthesis of highly substituted oxetanesvia [2+2] cycloaddition reactions of allenoates catalyzed by a guanidine Lewisbase [J]. Chemical Communications,2013,49(28):2930-2932.
    [19] SINGH N, KUMAR R, JAGANNADHAM M V, et al. Evidence for a MoltenGlobule State in Cicer α-Galactosidase Induced by pH, Temperature, andGuanidine Hydrochloride [J]. Applied Biochemistry and Biotechnology,2013,169(8):2315-2325.
    [20] WANG J, LI S, ZHANG S. Novel Hydroxide-Conducting PolyelectrolyteComposed of an Poly(arylene ether sulfone) Containing Pendant QuaternaryGuanidinium Groups for Alkaline Fuel Cell Applications [J]. Macromolecules,2010,43(8):3890-3896.
    [21] KARACAN I, ERDOGAN G. An investigation on structure characterization ofthermally stabilized polyacrylonitrile precursor fibers pretreated with guanidinecarbonate prior to carbonization [J]. Polymer Engineering and Science,2012,52(5):937-952.
    [22] LI S, LIN Y, CAO J, et al. Guanidine/Pd(OAc)2-Catalyzed Room TemperatureSuzuki Cross-Coupling Reaction in Aqueous Media under Aerobic Conditions[J]. The Journal of Organic Chemistry,2007,72(11):4067-4072.
    [23] LI Y C, LIN Y J, ZHANG S B, et al. Aryl-guanidine/Pd-catalyzed SuzukiCross-coupling Reaction at Room Temperature [J]. Chemical Research inChinese Universities,2012,28(2):242-244.
    [24] DUAN HAI-FENG Z S-B, LIN YING-JIE, QIU ZHI-MING, WANGZONG-MU. Synthesis and Properties of a Novel Room-temperature IonicLiquid Hexaalkylguanidium Salts [J]. Chemical Journal of Chinese Universities,2003,24(11):2024-2026.
    [25] AUDIC N, CLAVIER H, MAUDUIT M, et al. An Ionic Liquid-SupportedRuthenium Carbene Complex: A Robust and Recyclable Catalyst forRing-Closing Olefin Metathesis in Ionic Liquids [J]. Journal of the AmericanChemical Society,2003,125(31):9248-9249.
    [26] CHAUVIN Y, MUSSMANN L, OLIVIER H. A Novel Class of VersatileSolvents for Two-Phase Catalysis: Hydrogenation, Isomerization, andHydroformylation of Alkenes Catalyzed by Rhodium Complexes in Liquid1,3-Dialkylimidazolium Salts [J]. Angewandte Chemie International Edition inEnglish,1996,34(23-24):2698-2700.
    [27] PRECHTL M H G, SCARIOT M, SCHOLTEN J D, et al. Nanoscale Ru(0)Particles: Arene Hydrogenation Catalysts in Imidazolium Ionic Liquids [J].Inorganic Chemistry,2008,47(19):8995-9001.
    [28] FONSECA G S, DOMINGOS J B, NOME F, et al. On the kinetics of iridiumnanoparticles formation in ionic liquids and olefin hydrogenation [J]. Journal ofMolecular Catalysis A: Chemical,2006,248(1–2):10-16.
    [29] CROMWELL N H, PHILLIPS B. The azetidines. Recent syntheticdevelopments [J]. Chemical Reviews,1979,79(4):331-358.
    [30] FONSECA G S, SCHOLTEN J D, DUPONT J. Iridium nanoparticles preparedin ionic liquids: An efficient catalytic system for the hydrogenation of ketones[J]. Synlett,2004,(9):1525-1528.
    [31] FONSECA G S, SILVEIRA E T, GELESKY M A, et al. CompetitiveHydrogenation of Alkyl-Substituted Arenes by Transition-Metal Nanoparticles:Correlation with the Alkyl-Steric Effect [J]. Advanced Synthesis&Catalysis,2005,347(6):847-853.
    [32] CAMPBELL P S, SANTINI C C, BAYARD F, et al. Olefin hydrogenation byruthenium nanoparticles in ionic liquid media: Does size matter?[J]. Journal ofCatalysis,2010,275(1):99-107.
    [33] JULIS J, HOLSCHER M, LEITNER W. Selective hydrogenation of biomassderived substrates using ionic liquid-stabilized ruthenium nanoparticles [J].Green Chemistry,2010,12(9):1634-1639.
    [34] AMENGUAL R, GENIN E, MICHELET V, et al. Convenient Synthesis ofNew Anionic Water-Soluble Phosphanes and Applications in Inter-andIntramolecular Heck Reactions [J]. Advanced Synthesis&Catalysis,2002,344(3-4):393-398.
    [35] FERRACCIOLI R, CARENZI D. One-pot synthesis of3,4-dihydro-2(1H)-quinazolinones through palladium-catalyzed intramoleculararylation of ureas [J]. Synthesis-Stuttgart,2003,(9):1383-1386.
    [36] YANG N C, SUH D H. Synthesis of a new polyarylenvinylene derivative basedon a terstyryl group linked by a maleimide group [J]. Polymer Bulletin,2001,46(1):29-35.
    [37] JEFFERY T. Palladium-catalysed vinylation of organic halides undersolid-liquid phase transfer conditions [J]. Journal of the Chemical Society,Chemical Communications,1984,0(19):1287-1289.
    [38] KAUFMANN D E, NOUROOZIAN M, HENZE H. Molten salts as an efficientmedium for palladium catalyzed C-C coupling reactions [J]. Synlett,1996,(11):1091-&.
    [39] CARMICHAEL A J, EARLE M J, HOLBREY J D, et al. The Heck Reaction inIonic Liquids: A Multiphasic Catalyst System [J]. Organic Letters,1999,1(7):997-1000.
    [40] LAW G, WATSON P R, CARMICHAEL A J, et al. Molecular composition andorientation at the surface of room-temperature ionic liquids: Effect of molecularstructure [J]. Physical Chemistry Chemical Physics,2001,3(14):2879-2885.
    [41] DESHMUKH R R, RAJAGOPAL R, SRINIVASAN K V. Ultrasound promotedC-C bond formation: Heck reaction at ambient conditions in room temperatureionic liquids [J]. Chemical Communications,2001,0(17):1544-1545.
    [42] CASSOL C C, UMPIERRE A P, MACHADO G, et al. The Role of PdNanoparticles in Ionic Liquid in the Heck Reaction [J]. Journal of the AmericanChemical Society,2005,127(10):3298-3299.
    [43] HERRMANN W A, B HM V P W. Heck reaction catalyzed byphospha-palladacycles in non-aqueous ionic liquids [J]. Journal ofOrganometallic Chemistry,1999,572(1):141-145.
    [44] BOUQUILLON S, GANCHEGUI B, ESTRINE B, et al. Heck arylation ofallylic alcohols in molten salts [J]. Journal of Organometallic Chemistry,2001,634(2):153-156.
    [45] MIYAURA N, YANAGI T, SUZUKI A. The Palladium-CatalyzedCross-Coupling Reaction of Phenylboronic Acid with Haloarenes in thePresence of Bases [J]. Synthetic Communications,1981,11(7):513-519.
    [46] CAL V, NACCI A, MONOPOLI A, et al. Pd Nanoparticles as EfficientCatalysts for Suzuki and Stille Coupling Reactions of Aryl Halides in IonicLiquids [J]. The Journal of Organic Chemistry,2005,70(15):6040-6044.
    [47] DURAND J, TEUMA E, MALBOSC F, et al. Palladium nanoparticlesimmobilized in ionic liquid: An outstanding catalyst for the Suzuki C–Ccoupling [J]. Catalysis Communications,2008,9(2):273-275.
    [48] GREEN O, GRUBJESIC S, LEE S, et al. The Design of Polymeric IonicLiquids for the Preparation of Functional Materials [J]. Polymer Reviews,2009,49(4):339-360.
    [49] GREEN M D, LONG T E. Designing Imidazole-Based Ionic Liquids and IonicLiquid Monomers for Emerging Technologies [J]. Polymer Reviews,2009,49(4):291-314.
    [50] YUAN J, ANTONIETTI M. Poly(ionic liquid)s: Polymers expanding classicalproperty profiles [J]. Polymer,2011,52(7):1469-1482.
    [51] ITO K, NISHINA N, OHNO H. Enhanced ion conduction in imidazolium-typemolten salts [J]. Electrochimica Acta,2000,45(8–9):1295-1298.
    [52] TALUKDAR B, BHOWMICK A K. An imidazolium-functionalizedisobutylene polymer having improved mechanical and barrier properties:Synthesis and characterization [J]. Journal of Applied Polymer Science,2013,128(5):2911-2918.
    [53] SEO D-W, SARKER S, NATH N C D, et al. Synthesis of a novelimidazolium-based electrolytes and application for dye-sensitized solar cells [J].Electrochimica Acta,2010,55(4):1483-1488.
    [54] SMITH T W, ZHAO M, YANG F, et al. Imidazole Polymers Derived fromIonic Liquid4-Vinylimidazolium Monomers: Their Synthesis and Thermal andDielectric Properties [J]. Macromolecules,2013,46(3):1133-1143.
    [55] KIM O, KIM S Y, AHN H, et al. Phase Behavior and Conductivity ofSulfonated Block Copolymers Containing Heterocyclic Diazole-Based IonicLiquids [J]. Macromolecules,2012,45(21):8702-8713.
    [56] VYGODSKII Y S, SHAPLOV A S, LOZINSKAYA E I, et al. ConductivePolymer Electrolytes Derived from Poly(norbornene)s with Pendant IonicImidazolium Moieties [J]. Macromolecular Chemistry and Physics,2008,209(1):40-51.
    [57] MINEO P G, LIVOTI L, GIANNETTO M, et al. Very fast CO2response andhydrophobic properties of novel poly(ionic liquid)s [J]. Journal of MaterialsChemistry,2009,19(46):8861-8870.
    [58] TANG J, TANG H, SUN W, et al. Low-pressure CO2sorption inammonium-based poly(ionic liquid)s [J]. Polymer,2005,46(26):12460-12467.
    [59] SATO T, MARUKANE S, NARUTOMI T, et al. High rate performance of alithium polymer battery using a novel ionic liquid polymer composite [J].Journal of Power Sources,2007,164(1):390-396.
    [60] WATANABE M, YAMADA S-I, OGATA N. Ionic conductivity of polymerelectrolytes containing room temperature molten salts based on pyridiniumhalide and aluminium chloride [J]. Electrochimica Acta,1995,40(13–14):2285-2288.
    [61] MARCILLA R, BLAZQUEZ J A, FERNANDEZ R, et al. Synthesis of NovelPolycations Using the Chemistry of Ionic Liquids [J]. MacromolecularChemistry and Physics,2005,206(2):299-304.
    [62] XIAO S, LU X, LU Q. Photosensitive Polymer from Ionic Self-Assembly ofAzobenzene Dye and Poly(ionic liquid) and Its Alignment Characteristictoward Liquid Crystal Molecules [J]. Macromolecules,2007,40(22):7944-7950.
    [63] PONT A-L, MARCILLA R, DE MEATZA I, et al. Pyrrolidinium-basedpolymeric ionic liquids as mechanically and electrochemically stable polymerelectrolytes [J]. Journal of Power Sources,2009,188(2):558-563.
    [64] OGIHARA W, WASHIRO S, NAKAJIMA H, et al. Effect of cation structureon the electrochemical and thermal properties of ion conductive polymersobtained from polymerizable ionic liquids [J]. Electrochimica Acta,2006,51(13):2614-2619.
    [65] TSAREVSKY N V, MATYJASZEWSKI K.“Green” Atom Transfer RadicalPolymerization: From Process Design to Preparation of Well-DefinedEnvironmentally Friendly Polymeric Materials [J]. Chemical Reviews,2007,107(6):2270-2299.
    [66] LI M, YANG L, FANG S, et al. Novel polymeric ionic liquid membranes assolid polymer electrolytes with high ionic conductivity at moderate temperature[J]. Journal of Membrane Science,2011,366(1–2):245-250.
    [67] MARCILLA R, ALBERTO BLAZQUEZ J, RODRIGUEZ J, et al. Tuning thesolubility of polymerized ionic liquids by simple anion-exchange reactions [J].Journal of Polymer Science Part A: Polymer Chemistry,2004,42(1):208-212.
    [68] HIRAO M, ITO K, OHNO H. Preparation and polymerization of new organicmolten salts; N-alkylimidazolium salt derivatives [J]. Electrochimica Acta,2000,45(8–9):1291-1294.
    [69] OHNO H, ITO K. Room-Temperature Molten Salt Polymers as a Matrix forFast Ion Conduction [J]. Chemistry Letters,1998,27(8):751-752.
    [70] BATRA D, SEIFERT S, VARELA L M, et al. Solvent-Mediated PlasmonTuning in a Gold-Nanoparticle–Poly(Ionic Liquid) Composite [J]. AdvancedFunctional Materials,2007,17(8):1279-1287.
    [71] PATACHIA S, SAVIN G, LUCA C, et al. Study of some properties ofpoly(N-vinyl imidazole) partially quaternized with n-butyl bromide aqueoussolutions [J]. European Polymer Journal,2002,38(6):1121-1127.
    [72] ZHANG G, LIU X, LI B, et al. Free-radical solution copolymerization of theionic liquid monomer1-vinyl-3-ethylimidazolium bromide with acrylonitrile[J]. Journal of Applied Polymer Science,2009,112(6):3337-3340.
    [73] BARA J E, LESSMANN S, GABRIEL C J, et al. Synthesis and Performance ofPolymerizable Room-Temperature Ionic Liquids as Gas Separation Membranes[J]. Industrial&Engineering Chemistry Research,2007,46(16):5397-5404.
    [74] TANG J, TANG H, SUN W, et al. Poly(ionic liquid)s: a new material withenhanced and fast CO2absorption [J]. Chemical Communications,2005,0(26):3325-3327.
    [75] KADOKAWA J-I, MURAKAMI M-A, KANEKO Y. A facile method forpreparation of composites composed of cellulose and a polystyrene-typepolymeric ionic liquid using a polymerizable ionic liquid [J]. CompositesScience and Technology,2008,68(2):493-498.
    [76] CARDIANO P, MINEO P G, NERI F, et al. A new application of ionic liquids:hydrophobic properties of tetraalkylammonium-based poly(ionic liquid)s [J].Journal of Materials Chemistry,2008,18(11):1253-1260.
    [77] DING S, TANG H, RADOSZ M, et al. Atom transfer radical polymerization ofionic liquid2-(1-butylimidazolium-3-yl)ethyl methacrylate tetrafluoroborate [J].Journal of Polymer Science Part A: Polymer Chemistry,2004,42(22):5794-5801.
    [78] YU B, ZHOU F, HU H, et al. Synthesis and properties of polymer brushesbearing ionic liquid moieties [J]. Electrochimica Acta,2007,53(2):487-494.
    [79] BATRA D, HAY, FIRESTONE M A. Formation of a Biomimetic,Liquid-Crystalline Hydrogel by Self-Assembly and Polymerization of an IonicLiquid [J]. Chemistry of Materials,2007,19(18):4423-4431.
    [80] VIJAYAKRISHNA K, JEWRAJKA S K, RUIZ A, et al. Synthesis by RAFTand Ionic Responsiveness of Double Hydrophilic Block Copolymers Based onIonic Liquid Monomer Units [J]. Macromolecules,2008,41(17):6299-6308.
    [81] HIRAO M, ITO-AKITA K, OHNO H. Polymerization of molten salt monomershaving a phenylimidazolium group [J]. Polymers for Advanced Technologies,2000,11(8-12):534-538.
    [82] TANG J, TANG H, SUN W, et al. Poly(ionic liquid)s as new materials for CO2absorption [J]. Journal of Polymer Science Part A: Polymer Chemistry,2005,43(22):5477-5489.
    [83] HE X, YANG W, PEI X. Preparation, Characterization, and Tunable Wettabilityof Poly(ionic liquid) Brushes via Surface-Initiated Atom Transfer RadicalPolymerization [J]. Macromolecules,2008,41(13):4615-4621.
    [84] SENO K-I, KANAOKA S, AOSHIMA S. Synthesis and LCST-type phaseseparation behavior in organic solvents of poly(vinyl ethers) with pendantimidazolium or pyridinium salts [J]. Journal of Polymer Science Part A:Polymer Chemistry,2008,46(17):5724-5733.
    [85] RIZVI S A A, SHAMSI S A. Synthesis, Characterization, and Application ofChiral Ionic Liquids and Their Polymers in Micellar ElectrokineticChromatography [J]. Analytical Chemistry,2006,78(19):7061-7069.
    [86] MORI H, YAHAGI M, ENDO T. RAFT Polymerization ofN-Vinylimidazolium Salts and Synthesis of Thermoresponsive Ionic LiquidBlock Copolymers [J]. Macromolecules,2009,42(21):8082-8092.
    [87] MARCILLA R, SANCHEZ-PANIAGUA M, LOPEZ-RUIZ B, et al. Synthesisand characterization of new polymeric ionic liquid microgels [J]. Journal ofPolymer Science Part A: Polymer Chemistry,2006,44(13):3958-3965.
    [88] YAN F, TEXTER J. Surfactant ionic liquid-based microemulsions forpolymerization [J]. Chemical Communications,2006,0(25):2696-2698.
    [89] YU S, YAN F, ZHANG X, et al. Polymerization of Ionic Liquid-BasedMicroemulsions: A Versatile Method for the Synthesis of Polymer Electrolytes[J]. Macromolecules,2008,41(10):3389-3392.
    [90] YUAN J, ANTONIETTI M. Poly(ionic liquid) Latexes Prepared by DispersionPolymerization of Ionic Liquid Monomers [J]. Macromolecules,2011,44(4):744-750.
    [91] YOSHIO M, KAGATA T, HOSHINO K, et al. One-DimensionalIon-Conductive Polymer Films: Alignment and Fixation of Ionic ChannelsFormed by Self-Organization of Polymerizable Columnar Liquid Crystals [J].Journal of the American Chemical Society,2006,128(16):5570-5577.
    [92] NAKAJIMA H, OHNO H. Preparation of thermally stable polymer electrolytesfrom imidazolium-type ionic liquid derivatives [J]. Polymer,2005,46(25):11499-11504.
    [93] BARA J E, HATAKEYAMA E S, GABRIEL C J, et al. Synthesis and light gasseparations in cross-linked gemini room temperature ionic liquid polymermembranes [J]. Journal of Membrane Science,2008,316(1–2):186-191.
    [94] BARA J E, HATAKEYAMA E S, GIN D L, et al. Improving CO2permeabilityin polymerized room-temperature ionic liquid gas separation membranesthrough the formation of a solid composite with a room-temperature ionicliquid [J]. Polymers for Advanced Technologies,2008,19(10):1415-1420.
    [95] STATHATOS E, JOVANOVSKI V, OREL B, et al. Dye-Sensitized Solar CellsMade by Using a Polysilsesquioxane Polymeric Ionic Fluid as RedoxElectrolyte [J]. The Journal of Physical Chemistry C,2007,111(17):6528-6532.
    [96] MIZUMO T, WATANABE T, MATSUMI N, et al. Preparation of ionconductive inorganic–organic composite systems by in situ sol–gel reaction ofpolymerizable ionic liquids [J]. Polymers for Advanced Technologies,2008,19(10):1445-1450.
    [97] RICKS-LASKOSKI H L, SNOW A W. Synthesis and Electric Field Actuationof an Ionic Liquid Polymer [J]. Journal of the American Chemical Society,2006,128(38):12402-12403.
    [98] OHNO H, YOSHIZAWA M, OGIHARA W. Development of new class of ionconductive polymers based on ionic liquids [J]. Electrochimica Acta,2004,50(2–3):255-261.
    [99] WASHIRO S, YOSHIZAWA M, NAKAJIMA H, et al. Highly ion conductiveflexible films composed of network polymers based on polymerizable ionicliquids [J]. Polymer,2004,45(5):1577-1582.
    [100] JUGER J, MEYER F, VIDAL F, et al. Synthesis, polymerization andconducting properties of an ionic liquid-type anionic monomer [J]. TetrahedronLetters,2009,50(1):128-131.
    [101] NARITA A, SHIBAYAMA W, MATSUMI N, et al. Novel ion conductivematrix via dehydrocoupling polymerization of imidazolium-type ionic liquidand lithium9-borabicyclo[3,3,1]nonane hydride [J]. Polymer Bulletin,2006,57(1):109-114.
    [102] HUNLEY M T, ENGLAND J P, LONG T E. Influence of Counteranion on theThermal and Solution Behavior of Poly(2-(dimethylamino)ethylmethacrylate)-Based Polyelectrolytes [J]. Macromolecules,2010,43(23):9998-10005.
    [103] VYGODSKII Y S, MEL’NIK O A, SHAPLOV A S, et al. Synthesis and ionicconductivity of polymer ionic liquids [J]. Polymer Science Series A,2007,49(3):256-261.
    [104] LU W, FADEEV A G, QI B, et al. Use of Ionic Liquids for π-ConjugatedPolymer Electrochemical Devices [J]. Science,2002,297(5583):983-987.
    [105] KAWANO R, KATAKABE T, SHIMOSAWA H, et al. Solid-statedye-sensitized solar cells using polymerized ionic liquid electrolyte withplatinum-free counter electrode [J]. Physical Chemistry Chemical Physics,2010,12(8):1916-1921.
    [106] YU B, ZHOU F, WANG C, et al. A novel gel polymer electrolyte based on polyionic liquid1-ethyl3-(2-methacryloyloxy ethyl) imidazolium iodide [J].European Polymer Journal,2007,43(6):2699-2707.
    [107] WANG M, LIN Y, ZHOU X, et al. Solidification of liquid electrolyte withimidazole polymers for quasi-solid-state dye-sensitized solar cells [J]. MaterialsChemistry and Physics,2008,107(1):61-66.
    [108] WANG G, WANG L, ZHUO S, et al. An iodine-free electrolyte based on ionicliquid polymers for all-solid-state dye-sensitized solar cells [J]. ChemicalCommunications,2011,47(9):2700-2702.
    [109] MARCILLA R, ALCAIDE F, SARDON H, et al. Tailor-made polymerelectrolytes based upon ionic liquids and their application in all-plasticelectrochromic devices [J]. Electrochemistry Communications,2006,8(3):482-488.
    [110] MARCILLA R, OCHOTECO E, POZO-GONZALO C, et al. New OrganicDispersions of Conducting Polymers Using Polymeric Ionic Liquids asStabilizers [J]. Macromolecular Rapid Communications,2005,26(14):1122-1126.
    [111] MARCILLA R, POZO-GONZALO C, RODR GUEZ J, et al. Use of polymericionic liquids as stabilizers in the synthesis of polypyrrole organic dispersions[J]. Synthetic Metals,2006,156(16–17):1133-1138.
    [112] POZO-GONZALO C, MARCILLA R, SALSAMENDI M, et al.PEDOT:Poly(1-vinyl-3-ethylimidazolium) dispersions as alternative materialsfor optoelectronic devices [J]. Journal of Polymer Science Part A: PolymerChemistry,2008,46(9):3150-3154.
    [113] KIM T Y, LEE T H, KIM J E, et al. Organic solvent dispersion ofpoly(3,4-ethylenedioxythiophene) with the use of polymeric ionic liquid [J].Journal of Polymer Science Part A: Polymer Chemistry,2008,46(20):6872-6879.
    [114] KIM T, SUH M, KWON S J, et al. Poly(3,4-ethylenedioxythiophene) Derivedfrom Poly(ionic liquid) for the Use as Hole-Injecting Material in OrganicLight-Emitting Diodes [J]. Macromolecular Rapid Communications,2009,30(17):1477-1482.
    [115] KWON S J, KIM T Y, LEE B S, et al. Elastomeric conducting polymernano-composites derived from ionic liquid polymerstabilized-poly(3,4-ethylenedioxythiophene)[J]. Synthetic Metals,2010,160(9–10):1092-1096.
    [116] FUKUSHIMA T, KOSAKA A, ISHIMURA Y, et al. Molecular Ordering ofOrganic Molten Salts Triggered by Single-Walled Carbon Nanotubes [J].Science,2003,300(5628):2072-2074.
    [117] FUKUSHIMA T, KOSAKA A, YAMAMOTO Y, et al. Dramatic Effect ofDispersed Carbon Nanotubes on the Mechanical and ElectroconductiveProperties of Polymers Derived from Ionic Liquids [J]. Small,2006,2(4):554-560.
    [118] WU B, HU D, KUANG Y, et al. Functionalization of Carbon Nanotubes by anIonic-Liquid Polymer: Dispersion of Pt and PtRu Nanoparticles on CarbonNanotubes and Their Electrocatalytic Oxidation of Methanol [J]. AngewandteChemie International Edition,2009,48(26):4751-4754.
    [119] PEI X, XIA Y, LIU W, et al. Polyelectrolyte-grafted carbon nanotubes:Synthesis, reversible phase-transition behavior, and tribological properties aslubricant additives [J]. Journal of Polymer Science Part A: Polymer Chemistry,2008,46(21):7225-7237.
    [120] SONI S K, SELVAKANNAN P R, BHARGAVA S K, et al. Self-AssembledHistidine Acid Phosphatase Nanocapsules in Ionic Liquid [BMIM][BF4] asFunctional Templates for Hollow Metal Nanoparticles [J]. Langmuir,2012,28(28):10389-10397.
    [121] MARCILLA R, CURRI M L, COZZOLI P D, et al. Nano-Objects on a RoundTrip from Water to Organics in a Polymeric Ionic Liquid Vehicle [J]. Small,2006,2(4):507-512.
    [122] KIM T, LEE H, KIM J, et al. Synthesis of Phase Transferable Graphene SheetsUsing Ionic Liquid Polymers [J]. ACS Nano,2010,4(3):1612-1618.
    [123] PEARSON A, O'MULLANE A P, BANSAL V, et al. Galvanic replacementmediated transformation of Ag nanospheres into dendritic Au-Agnanostructures in the ionic liquid [BMIM][BF4][J]. Chemical Communications,2010,46(5):731-733.
    [124] TOLLAN C M, MARCILLA R, POMPOSO J A, et al. IrreversibleThermochromic Behavior in Gold and Silver Nanorod/Polymeric Ionic LiquidNanocomposite Films [J]. ACS Applied Materials&Interfaces,2008,1(2):348-352.
    [125] KIM T Y, LEE H W, STOLLER M, et al. High-Performance SupercapacitorsBased on Poly(ionic liquid)-Modified Graphene Electrodes [J]. ACS Nano,2010,5(1):436-442.
    [126] AZZARONI O, BROWN A A, HUCK W T S. Tunable Wettability by ClickingCounterions Into Polyelectrolyte Brushes [J]. Advanced Materials,2007,19(1):151-154.
    [127] YANG W, HE X, GAO J, et al. Synthesis, characterization, and tunablewettability of poly(ionic liquid) brushes via nitroxide-mediated radicalpolymerization (NMP)[J]. Chinese Science Bulletin,2010,55(31):3562-3568.
    [128] D BBELIN M, TENA-ZAERA R, MARCILLA R, et al. MultiresponsivePEDOT–Ionic Liquid Materials for the Design of Surfaces with SwitchableWettability [J]. Advanced Functional Materials,2009,19(20):3326-3333.
    [129] WU G, JIANG Y, XU D, et al. Thermoresponsive Inverse Opal FilmsFabricated with Liquid-Crystal Elastomers and Nematic Liquid Crystals [J].Langmuir,2010,27(4):1505-1509.
    [130] HU X, HUANG J, ZHANG W, et al. Photonic Ionic Liquids Polymer forNaked-Eye Detection of Anions [J]. Advanced Materials,2008,20(21):4074-4078.
    [131] HUANG J, TAO C-A, AN Q, et al.3D-ordered macroporous poly(ionic liquid)films as multifunctional materials [J]. Chemical Communications,2010,46(6):967-969.
    [132] HUANG J, TAO C-A, AN Q, et al. Visual indication of enviromental humidityby using poly(ionic liquid) photonic crystals [J]. Chemical Communications,2010,46(23):4103-4105.
    [133] YAN F, TEXTER J. Solvent-Reversible Poration in Ionic Liquid Copolymers[J]. Angewandte Chemie,2007,119(14):2492-2495.
    [134] TANG J, SUN W, TANG H, et al. Enhanced CO2Absorption of Poly(ionicliquid)s [J]. Macromolecules,2005,38(6):2037-2039.
    [135] BARA J E, GABRIEL C J, HATAKEYAMA E S, et al. Improving CO2selectivity in polymerized room-temperature ionic liquid gas separationmembranes through incorporation of polar substituents [J]. Journal ofMembrane Science,2008,321(1):3-7.
    [136] L PEZ M S-P, MECERREYES D, L PEZ-CABARCOS E, et al. Amperometricglucose biosensor based on polymerized ionic liquid microparticles [J].Biosensors and Bioelectronics,2006,21(12):2320-2328.
    [137] ZHANG Y, ZHAO L, PATRA P K, et al. Colloidal poly-imidazolium salts andderivatives [J]. Nano Today,2009,4(1):13-20.
    [138] GRACH G, PIETERS G G, DINUT A, et al. N-HeterocyclicPyridylmethylamines: Synthesis, Complexation, Molecular Structure, andApplication to Asymmetric Suzuki–Miyaura and Oxidative Coupling Reactions[J]. Organometallics,2011,30(15):4074-4086.
    [139] CASTANET A-S, COLOBERT F, BROUTIN P-E, et al. Asymmetric Suzukicross-coupling reaction: chirality reversal depending on the palladium–chiralphosphine ratio [J]. Tetrahedron: Asymmetry,2002,13(6):659-665.
    [140] URBANEJA X, MERCIER A, BESNARD C, et al. Highly efficientdesymmetrisation of a tricarbonylchromium1,4-dibromonaphthalene complexby asymmetric Suzuki-Miyaura coupling [J]. Chemical Communications,2011,47(13):3739-3741.
    [141] ZHAO Q, LI C, SENANAYAKE C H, et al. An Efficient Method for StericallyDemanding Suzuki–Miyaura Coupling Reactions [J]. Chemistry–A EuropeanJournal,2013,19(7):2261-2265.
    [142] VERMA A K, JHA R R, CHAUDHARY R, et al.2-(1-Benzotriazolyl)pyridine:A Robust Bidentate Ligand for the Palladium-Catalyzed C C (Suzuki, Heck,Fujiwara–Moritani, Sonogashira), C N and C SCoupling Reactions [J].Advanced Synthesis&Catalysis,2013,355(2-3):421-438.
    [143] BULLOUGH E K, LITTLE M A, WILLANS C E. Electrochemical Synthesisof a Tetradentate Copper N-Heterocyclic Carbene Calix[4]arene and ItsTransmetalation to Palladium: Activity of the Palladium Complex inSuzuki–Miyaura Cross-Coupling [J]. Organometallics,2013,32(2):570-577.
    [144] LI P, LU B, FU C, et al. Pd-catalyzed Suzuki coupling reaction ofchloroalkylidene-[small beta]-lactones with LB-Phos as the ligand [J]. Organic&Biomolecular Chemistry,2013,11(1):98-109.
    [145] CATTO N X, PERIC S M A. Synthesis of highly modular bis(oxazoline)ligands by Suzuki cross-coupling and evaluation as catalytic ligands [J].Tetrahedron,2009,65(39):8199-8205.
    [146] SHIGENG G, TANG J, ZHANG D, et al. Synthesis, structure, and catalyticactivity of palladium complexes with new chiral cyclohexane-1,2-baseddi-NHC-ligands [J]. Journal of Organometallic Chemistry,2012,700(0):223-229.
    [147] ALIZADEH A, KHODAEI M M, KORDESTANI D, et al. Highly efficientphosphine-free Suzuki aryl couplings mediated by an in situ generatedPd(OAc)2/metformin complex in green media [J]. Tetrahedron Letters,2013,54(4):291-294.
    [148] GAO C, ZHOU H, WEI S, et al. Novel bisimidazolium pincers as low loadingligands for in situ palladium-catalyzed Suzuki-Miyaura reaction in the ambientatmosphere [J]. Chemical Communications,2013,49(11):1127-1129.
    [149] CHAHEN L, THERRIEN B, S SS-FINK G. Square-planar dichloro palladiumcomplexes with trans-configurated phosphine ligands avoidingortho-metallation: Ligand design, complex synthesis, molecular structure andcatalytic potential for Suzuki cross-coupling reactions [J]. Journal ofOrganometallic Chemistry,2006,691(20):4257-4264.
    [150] CHUNG K H, SO C M, WONG S M, et al. An efficientpalladium-benzimidazolyl phosphine complex for the Suzuki-Miyaura couplingof aryl mesylates: facile ligand synthesis and metal complex characterization[J]. Chemical Communications,2012,48(14):1967-1969.
    [151] CHANG Y-Y, HONG F-E. Preparation and application of indolyl secondaryphosphine oxides in palladium complexes catalyzed Suzuki–Miyauracross-coupling reaction [J]. Tetrahedron,2013,69(10):2327-2335.
    [152] ZHOU X X, SHAO L X. N-Heterocyclic Carbene/Pd(II)/1-MethylimidazoleComplex Catalyzed Suzuki-Miyaura Coupling Reaction of Aryl Chlorides inWater [J]. Synthesis-Stuttgart,2011,(19):3138-3142.
    [153] TANG Y-Q, LU J-M, SHAO L-X. NHC–Pd(II)–Im (NHC=N-heterocycliccarbene; Im=1-methylimidazole) complexes as efficient catalysts forSuzuki-Miyaura coupling reactions of aryl chlorides [J]. Journal ofOrganometallic Chemistry,2011,696(23):3741-3744.
    [154] LIU Q-X, ZHANG W, ZHAO X-J, et al. NHC PdII Complex Bearing1,6-Hexylene Linker: Synthesis and Catalytic Activity in the Suzuki–Miyauraand Heck–Mizoroki Reactions [J]. European Journal of Organic Chemistry,2013,2013(7):1253-1261.
    [155] LEBLOND C R, ANDREWS A T, SUN Y, et al. Activation of Aryl Chloridesfor Suzuki Cross-Coupling by Ligandless, Heterogeneous Palladium [J].Organic Letters,2001,3(10):1555-1557.
    [156] LEADBEATER N E, MARCO M. Ligand-Free Palladium Catalysis of theSuzuki Reaction in Water Using Microwave Heating [J]. Organic Letters,2002,4(17):2973-2976.
    [157] YIN J, RAINKA M P, ZHANG X-X, et al. A Highly Active Suzuki Catalyst forthe Synthesis of Sterically Hindered Biaryls: Novel Ligand Coordination [J].Journal of the American Chemical Society,2002,124(7):1162-1163.
    [158] OLD D W, WOLFE J P, BUCHWALD S L. A Highly Active Catalyst forPalladium-Catalyzed Cross-Coupling Reactions: Room-Temperature SuzukiCouplings and Amination of Unactivated Aryl Chlorides [J]. Journal of theAmerican Chemical Society,1998,120(37):9722-9723.
    [159] WALKER S D, BARDER T E, MARTINELLI J R, et al. A RationallyDesigned Universal Catalyst for Suzuki–Miyaura Coupling Processes [J].Angewandte Chemie International Edition,2004,43(14):1871-1876.
    [160] BARCELO G, GRENOUILLAT D, SENET J-P, et al. Pentaalkylguanidines asetherification and esterification catalysts [J]. Tetrahedron,1990,46(6):1839-1848.
    [161] MA D, CHENG K. Enantioselective synthesis of functionalized α-amino acidsvia a chiral guanidine catalyzed Michael addition reaction [J]. Tetrahedron:Asymmetry,1999,10(4):713-719.
    [162] SIMONI D, INVIDIATA F P, MANFREDINI S, et al. Facile synthesis of2-nitroalkanols by tetramethylguanidine (TMG)-catalyzed addition of primarynitroalkanes to aldehydes and alicyclic ketones [J]. Tetrahedron Letters,1997,38(15):2749-2752.
    [163] ISOBE T, FUKUDA K, ISHIKAWA T. Simple preparation of chiral1,3-dimethyl-2-iminoimidazolidines (monocyclic guanidines) and applicationsto asymmetric alkylative esterification [J]. Tetrahedron: Asymmetry,1998,9(10):1729-1735.
    [164] SIMONI D, ROSSI M, RONDANIN R, et al. Strong Bicyclic GuanidineBase-Promoted Wittig and Horner Wadsworth Emmons Reactions [J].Organic Letters,2000,2(24):3765-3768.
    [165] TSUCHIYA Y, KUMAMOTO T, ISHIKAWA T. Guanidines as a NitrogenSource for Direct Conversion of Epoxides to Aziridines [J]. The Journal ofOrganic Chemistry,2004,69(24):8504-8505.
    [166] BAILEY P J, PACE S. The coordination chemistry of guanidines andguanidinates [J]. Coordination Chemistry Reviews,2001,214(1):91-141.
    [167] LI S H, XIE H B, ZHANG S B, et al. Tetramethylguanidine as an inexpensiveand efficient ligand for the palladium-catalyzed Heck reaction [J]. Synlett,2005,(12):1885-1888.
    [168] FOLEY S R, YAP G P A, RICHESON D S. Synthesis and Characterization ofIron Complexes with Monoanionic and DianionicN,N‘,N‘‘-Trialkylguanidinate Ligands [J]. Inorganic Chemistry,2002,41(16):4149-4157.
    [169]李胜海.胍、胍盐离子液体的合成及其在钯催化C-C键偶联反应中的应用
    [D];吉林大学,2006.
    [170]梁大鹏.胍、胍盐离子液体的合成及其在Michael加成反应中的应用[D];吉林大学,2007.
    [171]郭旭.胍盐及其离子液体的合成、性质和Br(?)nsted酸性胍盐离子液体应用研究[D];吉林大学,2007.
    [172]曹军刚.胍盐及其离子液体的合成、性质与应用[D];吉林大学,2005.
    [173] MAO P, YANG L, XIAO Y, et al. Suzuki cross-coupling catalyzed bypalladium (II) complexes bearing1-aryl-3,4,5,6-tetrahydropyrimidine ligands[J]. Journal of Organometallic Chemistry,2012,705(0):39-43.
    [174] VICENTE J, GAYUBO A G, ERE A J, et al. Improving the DME steamreforming catalyst by alkaline treatment of the HZSM-5zeolite [J]. AppliedCatalysis B: Environmental,2013,130–131(0):73-83.
    [175] BONACCORSI L, CALANDRA P, AMENITSCH H, et al. Growth of fractalaggregates during template directed SAPO-34zeolite formation [J].Microporous and Mesoporous Materials,2013,167(0):3-9.
    [176] KRESGE C T, LEONOWICZ M E, ROTH W J, et al. Ordered mesoporousmolecular sieves synthesized by a liquid-crystal template mechanism [J].Nature,1992,359(6397):710-712.
    [177] BECK J S, VARTULI J C, ROTH W J, et al. A new family of mesoporousmolecular sieves prepared with liquid crystal templates [J]. Journal of theAmerican Chemical Society,1992,114(27):10834-10843.
    [178] LEE P-H, COTTER S F, REYES PRIERI S C, et al. pH-gradient real-timeaeration control for nitritation community selection in a non-porous hollowfiber membrane biofilm reactor (MBfR) with dilute wastewater [J].Chemosphere,2013,90(8):2320-2325.
    [179] FARHA O K, SPOKOYNY A M, HAUSER B G, et al. Synthesis, Properties,and Gas Separation Studies of a Robust Diimide-Based Microporous OrganicPolymer [J]. Chemistry of Materials,2009,21(14):3033-3035.
    [180] ORTIZ G, BRAND S S, ROUSSELIN Y, et al. Selective CO2Adsorption by aTriazacyclononane-Bridged Microporous Metal–Organic Framework [J].Chemistry–A European Journal,2011,17(24):6689-6695.
    [181] HUANG S-L, JIN G-X. Selective CO2capture by a3d-4d coordinationpolymer material with1D channel [J]. CrystEngComm,2011,13(20):6013-6016.
    [182] CHEN Q, LUO M, HAMMERSH J P, et al. Microporous Polycarbazole withHigh Specific Surface Area for Gas Storage and Separation [J]. Journal of theAmerican Chemical Society,2012,134(14):6084-6087.
    [183] MACKINTOSH H J, BUDD P M, MCKEOWN N B. Catalysis by microporousphthalocyanine and porphyrin network polymers [J]. Journal of MaterialsChemistry,2008,18(5):573-578.
    [184] PALKOVITS R, ANTONIETTI M, KUHN P, et al. Solid Catalysts for theSelective Low-Temperature Oxidation of Methane to Methanol [J].Angewandte Chemie International Edition,2009,48(37):6909-6912.
    [185] CHAN-THAW C E, VILLA A, KATEKOMOL P, et al. Covalent TriazineFramework as Catalytic Support for Liquid Phase Reaction [J]. Nano Letters,2010,10(2):537-541.
    [186] DU X, SUN Y, TAN B, et al. Troger's base-functionalised organic nanoporouspolymer for heterogeneous catalysis [J]. Chemical Communications,2010,46(6):970-972.
    [187] JIANG J-X, WANG C, LAYBOURN A, et al. Metal–Organic ConjugatedMicroporous Polymers [J]. Angewandte Chemie International Edition,2011,50(5):1072-1075.
    [188] ROSE M, NOTZON A, HEITBAUM M, et al. N-Heterocyclic carbenecontaining element organic frameworks as heterogeneous organocatalysts [J].Chemical Communications,2011,47(16):4814-4816.
    [189] SCOTT B J, WIRNSBERGER G, STUCKY G D. Mesoporous andMesostructured Materials for Optical Applications [J]. Chemistry of Materials,2001,13(10):3140-3150.
    [190] XUAN W, ZHU C, LIU Y, et al. Mesoporous metal-organic frameworkmaterials [J]. Chemical Society Reviews,2012,41(5):1677-1695.
    [191] LI B, GONG R, WANG W, et al. A New Strategy to Microporous Polymers:Knitting Rigid Aromatic Building Blocks by External Cross-Linker [J].Macromolecules,2011,44(8):2410-2414.
    [192] MCKEOWN N B, BUDD P M, MSAYIB K J, et al. Polymers of IntrinsicMicroporosity (PIMs): Bridging the Void between Microporous and PolymericMaterials [J]. Chemistry–A European Journal,2005,11(9):2610-2620.
    [193] HOLST J R, ST CKEL E, ADAMS D J, et al. High Surface Area Networksfrom Tetrahedral Monomers: Metal-Catalyzed Coupling, ThermalPolymerization, and “Click” Chemistry [J]. Macromolecules,2010,43(20):8531-8538.
    [194] PARK T-H, HICKMAN A J, KOH K, et al. Highly Dispersed Palladium(II) in aDefective Metal–Organic Framework: Application to C–H Activation andFunctionalization [J]. Journal of the American Chemical Society,2011,133(50):20138-20141.
    [195] KASSAB R, JACKSON K, EL-KADRI O, et al. Nickel-catalyzed synthesis ofnanoporous organic frameworks and their potential use in gas storageapplications [J]. Research on Chemical Intermediates,2011,37(7):747-757.
    [196] RAO K V, HALDAR R, KULKARNI C, et al. Perylene Based PorousPolyimides: Tunable, High Surface Area with Tetrahedral and PyramidalMonomers [J]. Chemistry of Materials,2012,24(6):969-971.
    [197] JIN Y, VOSS B A, MCCAFFREY R, et al. Microwave-assisted syntheses ofhighly CO2-selective organic cage frameworks (OCFs)[J]. Chemical Science,2012,3(3):874-877.
    [198] ROCHELLE G T. Amine Scrubbing for CO2Capture [J]. Science,2009,325(5948):1652-1654.
    [199] HALE W R, DOHRER K K, TANT M R, et al. A diffusion model for watervapor transmission through microporous polyethylene/CaCo3films [J].Colloids and Surfaces A: Physicochemical and Engineering Aspects,2001,187–188(0):483-491.
    [200] ZHOU Z, BENBOUZID M, FR D RIC CHARPENTIER J, et al. A review ofenergy storage technologies for marine current energy systems [J]. Renewableand Sustainable Energy Reviews,2013,18(0):390-400.
    [201] MERINO-JIM NEZ I, PONCE DE LE N C, SHAH A A, et al. Developments indirect borohydride fuel cells and remaining challenges [J]. Journal of PowerSources,2012,219(0):339-357.
    [202] HWANG J-J. Sustainability study of hydrogen pathways for fuel cell vehicleapplications [J]. Renewable and Sustainable Energy Reviews,2013,19(0):220-229.
    [203] NETWALL C J, GOULD B D, RODGERS J A, et al. Decreasing contactresistance in proton-exchange membrane fuel cells with metal bipolar plates [J].Journal of Power Sources,2013,227(0):137-144.
    [204] NIKNAM T, GOLESTANEH F, MALEKPOUR A R. Probabilistic model ofpolymer exchange fuel cell power plants for hydrogen, thermal and electricalenergy management [J]. Journal of Power Sources,2013,229(0):285-298.
    [205] MCLEAN G F, NIET T, PRINCE-RICHARD S, et al. An assessment ofalkaline fuel cell technology [J]. International Journal of Hydrogen Energy,2002,27(5):507-526.
    [206] VARCOE J R, SLADE R C T, WRIGHT G L, et al. Steady-State dc andImpedance Investigations of H2/O2Alkaline Membrane Fuel Cells withCommercial Pt/C, Ag/C, and Au/C Cathodes [J]. The Journal of PhysicalChemistry B,2006,110(42):21041-21049.
    [207] VARCOE J R, SLADE R C T. Prospects for Alkaline Anion-ExchangeMembranes in Low Temperature Fuel Cells [J]. Fuel Cells,2005,5(2):187-200.
    [208] VARCOE J R, SLADE R C T, LAM HOW YEE E. An alkaline polymerelectrochemical interface: a breakthrough in application of alkalineanion-exchange membranes in fuel cells [J]. Chemical Communications,2006,0(13):1428-1429.
    [209] HOU H, SUN G, HE R, et al. Alkali doped polybenzimidazole membrane forhigh performance alkaline direct ethanol fuel cell [J]. Journal of Power Sources,2008,182(1):95-99.
    [210]XU T. Ion exchange membranes: State of their development and perspective [J].Journal of Membrane Science,2005,263(1–2):1-29.
    [211] FANG J, SHEN P K. Quaternized poly(phthalazinon ether sulfone ketone)membrane for anion exchange membrane fuel cells [J]. Journal of MembraneScience,2006,285(1–2):317-322.
    [212] VARCOE J R, SLADE R C T, LAM HOW YEE E, et al.Poly(ethylene-co-tetrafluoroethylene)-Derived Radiation-GraftedAnion-Exchange Membrane with Properties Specifically Tailored forApplication in Metal-Cation-Free Alkaline Polymer Electrolyte Fuel Cells [J].Chemistry of Materials,2007,19(10):2686-2693.
    [213] ZSCHOCKE P, QUELLMALZ D. Novel ion exchange membranes based on anaromatic polyethersulfone [J]. Journal of Membrane Science,1985,22(2–3):325-332.
    [214] MATEUS N M M, BRANCO L C, LOURENCO N M T, et al. Synthesis andproperties of tetra-alkyl-dimethylguanidinium salts as a potential newgeneration of ionic liquids [J]. Green Chemistry,2003,5(3):347-352.
    [215] HELLER W T. Comparison of the Thermal Denaturing of Human SerumAlbumin in the Presence of Guanidine Hydrochloride and1-Butyl-3-methylimidazolium Ionic Liquids [J]. The Journal of PhysicalChemistry B,2013,117(8):2378-2383.
    [216] ZOU M, FANG J, LIU J, et al. Synthesis and preparation of sulfonatedhyperbranched poly(arylene ether sulfone)/poly(ether sulfone) blendmembranes for proton exchange membranes [J]. Solid State Ionics,2012,220(0):23-31.
    [217] LIU Y L. Developments of highly proton-conductive sulfonated polymers forproton exchange membrane fuel cells [J]. Polymer Chemistry,2012,3(6):1373-1383.
    [218] ZHAO Y, YIN J. Synthesis of poly(arylene ether sulfone)-block-sulfonatedpolybutadiene: the selective post-sulfonation of block copolymers as protonexchange membranes [J]. Polymers for Advanced Technologies,2011,22(12):2336-2343.
    [219] ZHAO Z, WANG J, LI S, et al. Synthesis of multi-block poly(arylene ethersulfone) copolymer membrane with pendant quaternary ammonium groups foralkaline fuel cell [J]. Journal of Power Sources,2011,196(10):4445-4450.
    [220] GONG F, MAO H, ZHANG Y, et al. Synthesis of highly sulfonatedpoly(arylene ether sulfone)s with sulfonated triptycene pendants for protonexchange membranes [J]. Polymer,2011,52(8):1738-1747.
    [221] KIM T, CHOI Y-W, KIM C-S, et al. Sulfonated poly(arylene ether sulfone)membrane containing sulfated zirconia for high-temperature operation ofPEMFCs [J]. Journal of Materials Chemistry,2011,21(21):7612-7621.
    [222] ZHANG H, LI X, ZHAO C, et al. Composite membranes based on highlysulfonated PEEK and PBI: Morphology characteristics and performance [J].Journal of Membrane Science,2008,308(1–2):66-74.
    [223] KERRES J, TANG C-M, GRAF C. Improvement of Properties of Poly(etherketone) Ionomer Membranes by Blending and Cross-Linking [J]. Industrial&Engineering Chemistry Research,2004,43(16):4571-4579.
    [224] MIKHAILENKO S D, ROBERTSON G P, GUIVER M D, et al. Properties ofPEMs based on cross-linked sulfonated poly(ether ether ketone)[J]. Journal ofMembrane Science,2006,285(1–2):306-316.
    [225] SATA T, TESHIMA K, YAMAGUCHI T. Permselectivity between two anionsin anion exchange membranes crosslinked with various diamines inelectrodialysis [J]. Journal of Polymer Science Part A: Polymer Chemistry,1996,34(8):1475-1482.
    [226] PANDEY A K, GOSWAMI A, SEN D, et al. Formation and characterization ofhighly crosslinked anion-exchange membranes [J]. Journal of MembraneScience,2003,217(1–2):117-130.
    [227] TONGWEN X, ZHA F F. Fundamental studies on a new series of anionexchange membranes: effect of simultaneous amination-crosslinking processeson membranes ion-exchange capacity and dimensional stability [J]. Journal ofMembrane Science,2002,199(1–2):203-210.
    [228] BAUER B, GERNER F J, STRATHMANN H. Development of bipolarmembranes [J]. Desalination,1988,68(2–3):279-292.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700