硫醚单加氧酶产生菌的筛选及其应用方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
手性化合物的不对称合成或拆分已成为药物化工的研究热点和关键技术。手性亚砜由于其高度的光学稳定性,作为手性辅剂、手性催化剂配体以及起始原料,在不对称合成中具有广泛的用途。它的功能还进一步体现在一些含硫原子手性中心的手性药物中。本研究通过筛选获得一株红球菌Rhodococcus sp. ECU0066,它不仅能够高对映选择性地将硫醚氧化成手性亚砜,而且还可以对外消旋的手性亚砜进行对映体拆分。本论文研究了以目标反应为导向的筛选方法,并以芳香手性亚砜为目标产物,对来自土壤中的微生物进行了广泛的筛选;对筛选得到的红球菌ECU0066的产酶和反应特性进行了考察,并拓展了其底物谱;针对疏水性硫醚底物氧化过程中的瓶颈问题,寻找合适的解决方法,提高了细胞的利用率;对硫醚氧化和亚砜拆分两种生产手性亚砜的途径进行了比较,发现在单一的水相体系中,外消旋亚砜的拆分更具有优势。
     本论文主要分为四个部分。在第一部分中,以手性亚砜为目标产物,根据目标反应建立了以目标产物为导向的筛选模型,对土壤中的微生物进行了广泛筛选。通过初筛得到了100株具有硫醚单加氧酶活性的菌株,其中能生成R构型产物的为57株;能生成S构型产物的为43株;转化率在20%以上的占60%;综合考虑活性和立体选择性因素,选定了菌株ECU0066为最终的研究对象。后续研究发现它可以通过两步对映选择性氧化,使产物(S)-苯甲亚砜的ee值从80%左右提高到99%以上。菌株ECU0066经16S rDNA鉴定为红球菌属,命名为Rhodococcus sp. ECU0066。该菌株已交由中国普通微生物保藏中心保藏,编号为CGMCC 2547。
     在第二部分中,在摇瓶中对红球菌ECU0066细胞生长及产酶进程进行了考察,最佳产酶培养时间为30 h;在对数生长前期加入底物苯甲硫醚或者苯甲亚砜可以对酶活进行诱导,诱导后的酶活力提高了约10倍多(比活力由0.064 U/g提高至0.76 U/g);红球菌ECU0066中硫醚单加氧酶存在于细胞膜上,利用辅酶NADPH对硫醚进行不对称氧化。优化了红球菌ECU0066催化苯甲硫醚不对称氧化的反应条件,最适温度为30℃,pH为8.0。考察了红球菌ECU0066对底物苯甲硫醚的耐受性,发现ECU0066可以耐受的底物浓度较低,能完全转化底物的最高浓度为10 mM,葡萄糖可以作为辅底物帮助辅酶再生,葡萄糖的加入可以使20 mM的底物几乎完全转化。利用红球菌ECU0066整细胞作为催化剂,对其底物谱进行了拓展,成功地实现了一系列手性亚砜的生物制备。
     在第三部分中,采用了细胞固定化和两相反应体系两种方法来缓解苯甲硫醚对细胞的抑制作用。实验结果表明:海藻酸钙固定化细胞对细胞有保护作用,细胞固定化后其半衰期提高为游离细胞的2.1倍,固定化小球内较高的含水量可以对底物起到稀释作用,缓解了底物的抑制。以固定化细胞作为催化剂,反应可以重复进行10次,底物总量达50 mM,与游离细胞所能完全转化的10 mM底物浓度相比提高了4倍。在水-异辛烷两相体系中,利用红球菌整细胞催化苯甲硫醚不对称氧化,当有机相中底物浓度为150 mM时,得到的水相中产物浓度最高,达18.3 mM,远远高于相同反应条件下单一水相体系中2.17 mM的产物浓度,并且ee值也从单一水相的59.9%提高到了99.0%以上。利用生长细胞作为催化剂,对在水-异辛烷两相体系中催化苯甲硫醚的氧化反应进行了上罐放大,反应总体系3.0 L,反应结束后水相产物的终浓度高达26.0 mM,ee>99.0%,得率为86.7%,相对于静息细胞催化的反应又有了进一步的提高。
     第四部分中,对硫醚氧化和亚砜拆分两种生产手性亚砜的途径进行了比较,苯甲硫醚对细胞的毒性较大,对红球菌细胞抑制明显,最大反应速率Vmax=0.063 mmol h-1 g-1 wet cell,米氏常数Km=0.26 mM;而底物苯甲亚砜对细胞几乎没有毒性,抑制作用不明显,最大反应速率Vmax=0.27 mmol h-1 g-1 wet cell,米氏常数Km=0.69 mM。优化了红球菌细胞催化拆分苯甲亚砜的条件;反应通过采用分批补料的方式,得到产物(S)-苯甲亚砜的浓度高达37.8 mM,ee值为93.7%,远远高于苯甲硫醚氧化反应得到的结果(10 mM,80% ee);表明在单一的水相体系中,亚砜的拆分更具有优势。拓展了红球菌催化亚砜拆分的底物谱,成功地实现了四种手性亚砜和相应砜的生物制备。最后,利用生长细胞实现了苯甲亚砜拆分反应的放大制备,反应采取分批补料的方式,反应体积2.5 L,反应液中产物终浓度为21.8 mM,ee>99.0%,最后对反应的产物进行了分离纯化,得到了(S)-苯甲亚砜6.35 g,分离得率为36.2%。
Nowadays, asymmetric synthesis and resolution of chiral compounds have been a hot topic of research and key technology in the chemical and pharmaceutical industries. Because of the high configurational stability of sulfinyl group, chiral sulfoxides as valuable starting materials or chiral auxiliaries are widely used in asymmetric synthesis. The value.of its functionality is further illustrated by their diverse biological activities and pharmaceutical uses. A new biocatalyst-Rhodococcus sp. ECU0066, had been discovered in this study, which could not only oxidize sulfides to sulfoxides with high enantioselectivity, but also enantioselectively transform racemic sulfoxides to sulfone to produce enantiopure sulfoxides. The main purpose of this work was to design the strageties of target reaction-oriented screening, to screen for new biocatalysts from soil using chiral sulfoxide as the target product, to optimize the culture and reaction conditions of Rhodococcus sp. ECU0066, to extend its use for asymmetric oxidation of some other prochiral sulfides, to investigate the causes of this biocatalyst deactivation, to present some methods to improve the yield, and to compare the two methods of asymmetric oxidation and kinetic resolution for the preparation of chiral sulfoxides.
     The study aimed to search for new biocatalyst with excellent enantioselectivity and high activity. The target reaction-oriented screening model was established using chiral sulfoxide as the target product, and 100 strains with obvious sulfide monooxygenase activity were obtained after primary screening, of which 57 could oxidize phenyl methyl sulfide (PMS) to (R)-phenyl methyl sulfoxide (PMSO),43 could produce (S)-PMSO, and 60%had>20% conversion. According to the overall performances including conversion and product ee, a bacterial strain marked as ECU0066 was selected for further study. This strain could transform PMS to (S)-PMSO with 99% ee via two steps of enantioselective oxidations. The 16S rDNA sequencing and taxonomic analyses revealed that this strain belongs to the genus Rhodococcus. Therefore, the strain ECU0066 was marked as Rhodococcus sp. ECU0066, which was presently deposited in China General Microbiological Cultures Center, with an accession number of CGMCC No.2547.
     The time courses of cell growth and enzyme production were investigated, the optimum cultivation time was 30 h, its enzyme activity could be effectively induced by adding PMS or racemic PMSO directly to the medium at the early log phase of fermentation, resulting in over 10 times higher production of the enzyme. The sulfide monooxygenase of Rhodococcus sp. ECU0066 is located on the cell membrane, which only use NADPH for asymmetric oxidation of sulfide. The reaction conditions of Rhodococcus sp. ECU0066 catalyzed asymmetric oxidation of PMS were optimized, the pH and temperature optima were shown to be pH 8.0 and 30℃, respectively. The substrate tolerance of Rhodococcus sp. ECU0066 was examined, the highest substrate concentration that the bacterium could transform was only 10 mM, but such a concentration (10 mM) still represents the highest level. Glucose was helpful for the regeneration of coenzyme. The addition of glucose could enhance the substrate concentration that the bacterium could transform from 10 to 20 mM. The substrate spectrum of Rhodococcus sp. ECU0066 was investigated, a series of chiral sulfoxides were successfully prepared with resting cells of Rhodococcus sp. ECU0066.
     The immobilized cells in alginate beads and water-organic solvent biphasic system were used to alleviate the substrate inhibition. The results indicated that the half-life of the immobilized cells is 2.1 times as much as that of free cells, and also the amount of water in alginate beads could dilute the substrate and make substrate concentration around cells decreased, which prevents the toxicity to cells and inhibition. The asymmetric oxidation of PMS proceeded for 10 batches using immobilized cells as the catalyst, the total PMS concentration was increased up to 50 mM, which was 4 times higher than that of the result obtained from the reaction catalyzed by free cells. The asymmetric oxidation of PMS in water/isooctane biphasic system was investigated by the resting cells of Rhodococcus sp. ECU0066, when the PMS concentration of 150 mM in isooctane was employed, the final product concentration reached as high as 18.3 mM with>99.0% ee, which were much higher than that of the results (2.17 mM,59.9% ee) in aqueous system under the same reaction conditions. Scale-up reaction for asymmetric oxidation of PMS during the cultivation of Rhodococcus sp. ECU0066 in water/isooctane biphasic system was studied, reaction volume was amplified to 3.0 L, after reaction, higher product concentration (26.0 mM) and yield (86.7%) were achieved than before.
     Comparison of the substrate toxicity and kinetic characteristics was made between the whole-cell-catalyzed asymmetric oxidation of sulfides and kinetic resolution of sulfoxides. The toxicity of PMS to the resting cells of Rhodococcus sp. ECU0066 was higher than that of rac-PMSO. Determination of apparent kinetic parameters indicated that severe substrate inhibition was observed when PMS was used as substrate, but vice verse for substrate rac-PMSO. The apparent maximum reaction rate (Vmax) and Michaelis-Menten constant (Km) were 0.063 mmol h-1 g"1 wet cell and 0.26 mM for PMS, and 0.27 mmol h-1 g-1 wet cell and 0.69 mM for rac-PMSO, respectively. The reaction conditions for kinetic resolution of rac-PMSO were optimized in a fed-batch reaction, where the product (S)-PMSO was formed in a high concentration of 37.8 mM and good selelctivity of 93.7% ee, which are much better than those of the product from asymmetric oxidation of PMS (10 mM,80%ee). The substrate spectrum of kinetic resolution of rac-sulfoxides by the resting cell of Rhodococcus sp. ECU0066 was investigated. Four kinds of enantiopure sulfoxides and corresponding sulfones were successfully prepared. The kinetic resolution of rac-PMSO using growing cells of Rhodococcus sp. ECU0066 was scale-up to 2.5 L, resulting in a final product concentration of 21.8 mM with>99.0%ee, and the product was isolated and purified, giving 6.35 g of (S)-PMSO with an isolated yield of 36.2%.
引文
[1]尤启冬,林国强.手性药物[M].化学工业出版社,北京,2004.
    [2]黄量,戴立信.手性药物的化学与生物学[M].化学工业出版社,北京,2002.
    [3]徐寿昌.有机化学[M].人民教育出版社,北京,2002.
    [4]张玉彬.生物催化的手性合成[M].化学工业出版社,北京,2002.
    [5]Pandey A, Benjamin S, Soccol CR, Nigam P, Krieger N, Soccol VT. The realm of microbial lipases in biotechnology. Biotechnol. Appl. Biochem.1999,29:119-131.
    [6]Tian SQ, Liu HC. Stereoselectivity in pharmacodynamics of chiral drug enantiomers. J. Pharm. Practice 1999,17:346-348.
    [7]华维一,许国友.药物手性,药理作用与新药开发.现代应用药学1993,10:4-10.
    [8]汪朝阳.手性技术.自然杂志2002,24(4):220.
    [9]袁中一.酶工程与有机合成.分子催化1997,11:468-475.
    [10]Franckowiak G, Bechem M, Schramm M, Thomas G. The optical isomers of thel, 4-dihydropyridine BAY K 8644 show opposite effects on Ca channels. Eur. J. Pharmacol.1985,114:223-226.
    [11]Bellemann P, Franckowiak G. Different receptor affinities of the enantiomers of BAY K8644, a dihydropyridine Ca channel activator. Eur. J. Pharmacol.1985,118:187-188.
    [12]Hof RP, Ruegg UT, Hof A, Vogel A. Stereoselectivity at the calcium channel: oppositeaction of the enantiomers of a 1,4-dihydropyridine. J. Cardiovasc. Pharmacol. 1985,7:689-693.
    [13]Robertson DW, Steinberg M. Potassium channel modulators:scientific applications andtherapeutic promise. J. Med. Chem.1990,33:1529-1541.
    [14]Tamai I, Ling HY, Timbul SM, Nishikido J, Tsuji A. Stereospecific absorption anddegradation of cephalexin. J. Pharm. Pharmacol.1988,40:320-324.
    [15]Drayer DE. Pharmacodynamic and pharmacokinetic differences between drug enantiomers in humans:an overview. Clin. Pharmacol. Ther.1986,40:125-133.
    [16]Agranat I, Cancer H, Caldwell J. Putting chirality to work:the strategy of chiral switches. Nat. Rev. Drug. Discov.2002,1(10):753-768.
    [17]Peng SX, Qu SX. Progress in Medical Chemistry [M]. Beijing:Chemical Industry Publishing House,2001:1-20.
    [18]Oti-Amoako K, Vozeh S, Ha HR. The relative potency of major metabolites and enantiomers of propafenone in an experimental reperfusion arrhythmia model. J. Cardiovasc. Pharmacol.1990,15(1):75-81.
    [19]FDA, Chirality,1992,4:338.
    [20]Carey. New resolutions in drug design. J. Chem. Brit.1993,29:1053-1056.
    [21]Caldwell. Chiral pharmacology and the regulation of new drugs. J. Chem. Ind.1995,6: 176-179.
    [22]张骁,张韬.手性药物国内外研发最近进展.中国制药信息2009,25(11):4-11.
    [23]许建和,谢谚,赵丽丽,刘旭勤.工业生物催化前线动态及名家观点.生物加工过程2007,5(1):1-8.
    [24]刘厚淳,奇云.开创手性催化反应研究的新领域—2001年诺贝尔化学奖评价.生物化学与生物物理进展2001,28(5):778.
    [25]Arnold FH, Gliedery A. Chemistry and biotechnology:a productive union meets newchallenges. Curr. Opin. Biotechnol.2003,14:567-569.
    [26]孙志浩.手性技术与生物催化.生物加工过程2004,2(4):6-10.
    [27]Walker AJ. Asymmetric carbon-carbon bond formation using sulfoxide-stabilised carbanions. Tetrahedron:Asymmetry 1992,3:961-998.
    [28]Rayner DR, Gordon AJ, Mislow K. Thermal racemization of diaryl, alkyl aryl, and dialkyl sulfoxides by pyramidal inversion. J. Am. Chem. Soc.1968,90:4854-4860.
    [29]Mislow K, Siegel J. Stereoisomerism and local chirality. J. Am. Chem. Soc.1984,106: 3319-3328.
    [30]Solladie G, Collobert F, Sonny F.1,4 Asymmetric induction in the carbonyl reduction of a y-ketosulfoxide. Tetrahedron Lett.1999,40:1227-1228.
    [31]Fernandez I, Khiar N. Recent developments in the synthesis and utilization of chiral sulfoxides. Chem. Rev.2003,103:3651-3705.
    [32]Legros J, Dehli J R, Bolm C. Applications of catalytic asymmetric sulfide oxidations to the synthesis of biologically active sulfoxides. Adv. Synth. Catal.2005,347:19-31.
    [33]Jacobsen E N, Pfaltz A, Yamamoto H. Comprehensive Asymmetric Catalysis. Berlin: Springer,1999,697.
    [34]曾庆乐.手性亚砜合成.化学进展2007,19:745-750.
    [35]Bolm C, Simic O, Highly enantioselective hetero-diels-alder reactions catalyzed by a C2-symmetric bis(sulfoximine) copper (Ⅱ) complex. J. Am. Chem. Soc.2001,123: 3830-3831.
    [36]Kobayashi S, Ogawa C, Konishi H, Sugiura M. Chiral sulfoxides as neutral coordinate-organocatalysts in asymmetric allylation of N-acylhydrazones using allyltrichlorosilanes. J. Am. Chem. Soc.2003,125:6610-6611.
    [37]Carreno MC. Applications of sulfoxides to asymmetric synthesis of biologically active compounds. Chem. Rev.1995,95:1717-1760.
    [38]Unge SV, Langer V, Sjolin L. Stereochemical assignment of the enantiomers of omeprazole from Xray analysis of a fenchyloxymethyl derivative of (+)-(R)-omeprazole. Tetrahedron:Asymmetry 1997,8(12):1967-1970.
    [39]Ashton MJ, Bridge AW, Bush RC, Dron DI, Harris NV, Jones GD, Lythgoe DJ, Ridell D, Smith C. RP 70676:A potent systemically available inhibitor of acyl-CoA:Cholesterol O-acyl transferase (ACAT). Bioorg. Med. Chem. Lett.1992,2:375-380.
    [40]Brown TJ, Chapman RF, Cook DC, Hart TW, McLay IM, Jordan R, Mason JS, Palfreyman MN, Walsh RJA, Withnall MT, Aloup JC, Cavero I, Fargen D, James C, Mondot S. Synthesis and biological activity of trans-(+)-N-methyl-2-(3-pyridyl)-2-tetrahydrothiopyrancarbothioamide 1-oxide (RP 49356) and analogs:a new class of potassium channel opener. J. Med. Chem.1992,35:3613-3617.
    [41]Ortega MP, Garcia MDC, Gijon MA, Casa-Juana MFD, Priego JG, Crespo MS, Sunkel C.1,4-Dihydropyridines, a new class of platelet-activating factor receptor antagonists:in vitro pharmacologic studies. J. Pharmacol. Exp. Ther.1990,255:28-33.
    [42]Farrell N, Kiley DM, Schmidt W, Hacker MP. Chemical properties and antitumor activity of complexes of platinum containing substituted sulfoxides [PtCl(R'R"SO)(diamine)]NO3. Chirality and leaving-group ability of sulfoxide affecting biological activity. Inorg. Chem.1990,29:397-403.
    [43]Okamoto K, Nishito T. Mechanism of inhibition of xanthine oxidase with a new tight binding inhibitor. J. Biol. Chem.1995,270:7816-7821.
    [44]Chooi SYM, Leung PH, Sim KY, Tan KS, Kon OL. In vitro cytotoxic properties of gold (I) and platinum (II) compounds containing asymmetric (2-Methylsulfinyl)ethyl-diphenylarsine and its phosphine analogue. Tetrahedron:Asymmetry 1994,5:49-56.
    [45]Deng JG, Chi YX, Fu FM, Cui X, Yu KB, Zhu J, Jiang YZ. Resolution of omeprazole by inclusion complexation with a chiral host BINOL. Tetrahedron:Asymmetry 2000,11: 1729-1732
    [46]Hoveyda AH, Evans DA, Fu G. Substrate-directable chemical reactions. Chem. Rev. 1993,93:1307-1370.
    [47]Davis FA, Chen BC. Asymmetric hydroxylation of enolates with N-sulfonyloxaziridines. Chem. Rev.1992,92:919-934.
    [48]Adam W, Korb, MN, Roschmann KJ, Saha-Moller CK. Titanium-catalyzed, asymmetric sulfoxidation of alkyl aryl sulfides with optically active hydroperoxides. J. Org. Chem. 1998,63:3423-3428.
    [49]Schenk WA, Durr M. Synthesis of (R)-sulforaphane using [cpru(R, R)-CHIRAPHOS)]+ as chiral auxiliary. Chem. Eur. J.1997,3:713-716.
    [50]Fanizzi FP, Alicino V, Cardellicchio C, Tortilla P, Rourke JP. trans-Dichloro(stilbazole)(methyl n-alkyl sulfoxide)platinum (II) complexes:the first examples of metallomesogens containing chiral centres directly bonded to the metal. Chem. Commun.2000,673-674.
    [51]Han Z, Krishnamurthy D, Grover P, Fang QK, Senanayake CH. Properly designed modular asymmetricsynthesis for enantiopure sulfinamide auxiliaries from N-Sulfonyl-1,2,3-oxathiazolidine-2-oxide agents. J. Am. Chem. Soc.2002,124: 7880-7881.
    [52]Zhang T, Saito S, Koizumi T. Stereochemical research on the hydrolysis of optically pure spirosulfuranes:efficient synthesis of chiral sulfoxides with completely opposite stereochemistry.J. Org. Chem.1998,63:9375-9384.
    [53]黄秋亚.朱槿.邓金根.金属催化硫醚的不对称氧化研究进展.有机化学2005,25(5):496-506.
    [54]Komatsu N, Nishibayashi Y, Sugita T, Uemura S. Catalytic asymmetric oxidation of sulfides to sulfoxides using R-(+)-binaphthol. Tetrahedron Lett.1992,33:5391-5394.
    [55]Komatsu N, Hashizume M, Sugita T, Uemura S. Kinetic resolution of sulfoxides catalyzed by chiral Titanium-Binaphthol complex. Org. Chem.1993,58:4529-4533.
    [56]Superchi MI, Rosini C. Catalytic asymmetric oxidation of aryl methyl sulfides mediated by a (S,S)-1,2-diphenylethan-1,2-diol/titanium/water complex. Tetrahedron:Asymmetry 1997,8:349-352.
    [57]Donnoli MI, Superchi MI, Rosini C. Catalytic asymmetric oxidation of aryl sulfides with a Ti/H2O/(R,R)-diphenylethane-1,2-diol complex:a versatile and highly enantioselective oxidation protocol. J. Org. Chem.1998,63:9392-9395.
    [58]Superchi MI, Donnoli MI, Rosini C. Enantiopure,p,p'-disubstituted 1,2-diphenylethane-l, 2-diols as chiral inducers in the Ti-mediated oxidation of sulfides:a case of reversal of asymmetric induction by fluorine substitution. Tetrahedron Lett.1998,39:8541-8544.
    [59]Di Furia F, Licini G, Modena G, Motterle R, Nugent W. Enantioselective titanium-catalyzed sulfides oxidation:novel ligands provide significantly improved catalyst life. J. Org. Chem.1996,61:5175-5177.
    [60]Bonchio M, Licini G, Modena G, Moro S, Bartolini O, Traldi P, Nugentmm WA. Use of electrospray ionization mass spectrometry to characterize chiral reactive intermediates in a titanium alkoxide mediated sulfoxidation reaction. Chem. Commum.1997,869-870.
    [61]Bonchio M, Calloi S, Di Furia F, Licini G, Modena G, Moro S, Nugent W. Titanium (IV)-(R,R,R)-Tris(2-phenylethoxy)amine-alkylperoxo complex mediated oxidations:the biphilic nature of the oxygen transfer to organic sulfur compounds. J. Am. Chem. Soc.1997,119:6935-6936.
    [62]Bonchio M, Licini G, Modena G, Bartolini O, Moro S, Nugent W. Enantioselective Ti(IV) sulfoxidation catalysts bearing C3-Symmetric trialkanolamine ligands:solution speciation by 1H NMR and ESI-MS analysis. J. Am. Chem. Soc.1999,121:6258-6268.
    [63]Saito B, Katsuki T. Ti(salen)-catalyzed enantioselective sulfoxidation using hydrogen peroxide as a terminal oxidant. Tetrahedron Lett.2001,42:3873-3876.
    [64]Vicente G. Biocatalysis applied to the preparation of pharmaceuticals. Org. Process Res. Dev.2002,6:420-426.
    [65]Coon MJ, Ding X, Pemecky SJ. Cytochrome P450:Progress and predictions. FASEBJ. 1992,6:669-673.
    [66]van Berkel WJH, Kamerbeek NM, Fraaije MW. Flavoprotein monooxygenases, a diverse class of oxidative biocatalysts. J. Biotechnol.2006,124:670-689.
    [67]Walsh CT, Chen YCJ. Enzymatic Baeyer-Villiger oxidations by flavin-dependent monooxygenase. Angew. Chem. Int. Ed. Engl.1988,27:333-343.
    [68]Colonna S, Gaggero N, Richelmi C and Pasta P. Recent biotechnological developments in the use of peroxidases. Trends Biotechnol.1999,17:163-168.
    [69]Light DR, Waxman DJ, Walsh CT. Studies on the chirality of sulfoxidation catalyzed by bacterial flavoenzyme cyclohexanone monooxygenase and hog liver flavin adenine dinucleotide containing monooxygenase. Biochemistry 1982,21:2490-2498.
    [70]Takata T, Yamazaki M, Fujimori K, Kim YH, Iyanagi T, Oae S. Enzymatic oxygenation of sulfides with cytochrome P-450 from rabbit liver. Stereochemistry of sulfoxide formation. Bull. Chem. Soc. Jpn.1983,56:2300-2310.
    [71]May SW, Phillips RS. Asymmetric sulfoxidation by dopamine-β-hydroxylase, an oxygenase heretofore considered specific for methylene hydroxylation. J. Am. Chem. Soc.1980,102:5983-5984.
    [72]Donoghue NA, Norris DB, Trudgill PW. The purification and properties of cyclohexanone oxygenase from Nocardia globerula and Acinetobacter NCIB 9871. Eur. J. Biochem.1976,63:175-192.
    [73]May AW, Katopodis AG. Oxygenation of alcohol and sulphide substrates by a prototypical non-haem iron monooxygenase:catalysis and biotechnological potential. Enzyme Microb. Technol.1986,8:17-21.
    [74]de Gonzalo G.4-Hydroxyacetophenone monooxygenase from Pseudomonas fluorescens ACB as an oxidative biocatalyst in the synthesis of optically active sulfoxides. Tetrahedron:Asymmetry 2006,17:130-135.
    [75]Lee K, Brand JM and Gibson DT. Stereospecific sulfoxidation by toluene and naphthalene dioxygenases. Biochem. Biophys. Res. Commun.1995,212:9-15.
    [76]Boyd DR, Sharma ND, Haughey SA, Kennedy MA, McMurray BT, Sheldrake GN, Allen CCR, Dalton H, Sproule K. Toluene and naphthalene dioxygenase-catalysed sulfoxidation of alkyl aryl sulfides. J. Chem. Soc. Perkin Trans.Ⅰ 1998,12:1929-1933.
    [77]Blee E, Schuber F. Mechanisim of S-oxidation reactions catalyzed by a soybean hydroperoxide-dependent oxygenase. Biochemistry 1989,28:4962-4967.
    [78]Galzigna L, Rizzoli V, Schiappelli MP, Rigobello MP, Scarpa M, Rigo A. Horseradish peroxidase-catalyzed sulfoxidation of promethazine and properties of promethazine sulfoxide. Free Radical Biol. Med.1996,20:807-811.
    [79]Colonna S, Gaggero N, Manfredi A, Casella L, Gullotti M, Carrea G, Pasta P. Enantioselective oxidations of sulfides catalyzed by chloroperoxidase. Biochemistry 1990,29:10465-10468.
    [80]ten Brink HB, Hollang HL, Shoemaker HE, van Lingen H, Wever R. Probing the scope of the sulfoxidation activity of vanadium bromoperoxidase from Ascophyllum nodosum. Tetrahedron:Asymmetry 1999,10:4563-4572.
    [81]Andersson MA, Allenmark SG. Asymmetric sulfoxidation catalyzed by a vanadium bromoperoxidase:Substrate requirements of the catalyst. Tetrahedron 1998,54: 15293-15304.
    [82]Tsan MF. Myeloperoxidase-mediated oxidation of methionine. J. Cell. Physiol.1982, 111:49-54.
    [83]Doerge DR. Oxygenation of organosulfur compounds by peroxidases:Evidence of an electron transfer mechanism for lactoperoxidase. Arch. Biochem. Biophys.1986,244: 678-685.
    [84]Fujimori K, Matsuura E, Mikami A, Watanabe Y, Oae S, Lyanagl T. Stereochemisty of oxygenation of organic sulphides with pig liver microsomal FAD-containing mono-oxygenase:comparison with cytochrome P-450PB oxidations. J. Chem. Soc. Perkin Trans.11990,1435-1440.
    [85]Kamerbeek NM, Olsthoorn AJJ, Fraaije MW, Janssen DB. Substrate specificity and enantioselectivity of 4-hydroxyacetophenone monooxygenase. Appl. Environ. Microbiol. 2003,69:419-426.
    [86]Fraaije MW, Wu J, Heuts DPHM, van Hellemond EW, Spelberg JH, Janssen DB. Discovery of a thermostable Baeyer-Villiger monooxygenase by genome mining. Appl. Microbiol. Biotechnol.2005,66 (4):393-400.
    [87]de Gonzalo G, Ottolina G, Zambianchi F, Fraaije MW, Carrea G. Biocatalytic properties of Baeyer-Villiger monooxygenases in aqueous-organic media. J. Mol. Catal. B Enzymatic 2006,39:91-97.
    [88]de Gonzalo G, Torres Pazmino DE, Ottolina G, Fraaije MW, Carrea G,. Oxidations catalyzed by phenylacetone monooxygenase from Thermobifida fusca. Tetrahedron: Asymmetry 2005,16:3077-3083.
    [89]Pasta P, Carrea G, Holland HL, Dallavalle S. Synthesis of chiral benzyl alkyl sulfoxides by cyclohexanone monooxygenase from Acinetobacter NCIMB 9871. Tetrahedron Asymmetry 1995,6:933-936.
    [90]Carrea G, Redigolo B, Riva S, Colonna S, Gaggero N, Battistel E, Bianchi D. Effects of substrate structure on the enantioselectivity and stereochemical course of sulfoxidation catalyzed by cyclohexanone monooxygenase. Tetrahedron:Asymmetry 1992,3: 1063-1068.
    [91]Colonna S, Gaggero N, Carrea G and Pasta P. A new enzymatic enantioselective synthesis of dialkyl sulfoxides catalysed by monooxygenases. Chem. Commun.1997, 439-440.
    [92]Walsh CT, Chen YCJ. Enzymic Baeyer-Villiger oxidations by flavin-dependent monooxygenases. Angew. Chem. Int. Ed. Engl.1988,27:333-343.
    [93]Colonna S, Gaggero N, Pasta P, Manfredi A, Casella L, Gullotti M, Carrea G, Pasta P. Enantioselective oxidations of sulfides catalyzed by chloroperoxidase. Biochemistry 1990,29:10465-10468.
    [94]Ottolina G, Pasta P, Varley D and Holland HL. Active site model of cyclohexanone monooxygenase.3. The case of benzyl sulfides bearing polar groups. Tetrahedron: Asymmetry 1996,7:3427-3430.
    [95]Ottolina G, Pasta P, Carrea G, Colonna S, Dallavalle S and Holland HL. A predictive active site model for the cyclohexanone monooxygenase catalyzed oxidation of sulfides to chiral sulfoxides. Tetrahedron:Asymmetry 1995,6:1375-386.
    [96]Colonna S, Gaggero N, Pasta P, Ottolina G. Enantioselective oxidation of sulfides to sulfoxides catalysed by bacterial cyclohexanone monooxygenases. Chem. Commun. 1996,2303-2307.
    [97]Colonna S, Gaggero N, Manfredi A, Casella L, Gullotti M. Enantioselective oxidation of 1,3-dithioacetals catalysed by cyclohexanone monooxygenase. J. Chem. Soc., Chem. Commun.1995,1123-1124.
    [98]Lee K, Brand JM and Gibson DT. Stereospecific sulfoxidation by toluene and naphthalene dioxygenases. Biochem. Biophys. Res. Commun.1995,212:9-15.
    [99]Shaw PD, Hager LP. Chloroperoxidase:A component of the β-ketoadipate chlorinase system. J. Biol. Chem.1961,236:1626-1636.
    [100]Kobayashi S, Nakaro M, Kimura T, Schaap AP. On the mechanism of the peroxidase catalyzed oxygen transfer reaction. Biochemistry 1987,26:5019-5022.
    [101]Colonna S, Gaggero N, Casella L, Carrea G, Pasta P. Chloroperoxidase and hydrogen peroxide:An efficient system for enzymatic enantioselective sulfoxidations. Tetrahedron:Asymmetry 1992,3:95-106.
    [102]Colonna S, Gaggero N, Carrea G, Pasta P. A new enzymatic enantioselective synthesis of dialkyl sulfoxides catalysed by monooxygenases. Chem. Commun.1997,439-440.
    [103]Dembitsky VM. Oxidation, epoxidation and sulfoxidation reactions catalysed by haloperoxidases. Tetrahedron 2003,59:4701-4720.
    [104]Fu H, Kondo H, Ichikawa Y, Look GC, Wong CH. Chloroperoxidase catalyzed asymmetric synthesis:enantioselective reactions of chiral hydroperoxides with sulfides and bromohydration of glycals. J. Org. Chem.1992,57:7265-7270.
    [105]Van Deurzen MPJ, Remkes IJ, van Rantwijk F, Sheldon RA. Chloroperoxidase catalyzed oxidations in t-butyl alcohol/water mixtures. J. Mol. Catal. A:Chem.1997, 117:329-337
    [106]Van Deurzen MPJ, van Rantwijk F, Sheldon RA. Selective oxidations catalyzed by peroxidases. Tetrahedron 1997,53:13183-13220.
    [107]Pasta P, Carrea G, Monzani E, Gaggero N, Colonna S. Chloroperoxidase-catalyzed enantioselective oxidation of methyl phenyl sulfide with dihydroxyfumaric acid/oxygen or ascorbic acid/oxygen as oxidants. Biotechnol. Bioeng.1999,62:489-493.
    [108]Van de Velde F, Lourenco ND, Bakker M, Van Rantwijk F, Sheldon RA. Improved operational stability of peroxidases by coimmobilization with glucose oxidase. Biotechnol. Bioeng.2000,69:286-291.
    [109]Littlechild J. Haloperoxidases and their role in biotransformations. Curr. Opin. Chem. Biol.1999,3:28-34.
    [110]Andersson M, Willets A and Allenmark S. Asymmetric sulfoxidation catalyzed by a vanadium-containing bromoperoxidase. J. Org. Chem.1997,62:8455-8458.
    [111]ten Brink HB, Tuynman A, Dekker HL, Hemrika W, Izumi Y, Oshiro T, Schoemaker HE, Wever R. Enantioselective sulfoxidation catalysed by vanadium haloperoxidases. Inorg. Chem.1998,37:6780-6784.
    [112]Smith TS, Pecoraro VL. Oxidation of organic sulfides by vanadium haloperoxidase model complex. Inorg. Chem.2002,41:6754-670.
    [113]ten Brink HB, Dekker HL, Schoemaker HE, Wever R. Oxidation reactions catalyzed by vanadium chloroperoxidase from Curvularia inaequalis. J. Inorg. Biochem.2000,80: 91-98.
    [114]ten Brink HB, Schoemaker HE, Wever R. Sulfoxidation mechanism of vanadium bromoperoxidase from Ascophyllum nodosum-Evidence for direct oxygen transfer catalysis. Eur. J. Biochem.2001,268:132-138.
    [115]Tuynman A, Schoemaker HE and Wever R. Enantioselective sulfoxidations catalyzed by horseradish peroxidase, manganese peroxidase, and myeloperoxidase. Monatsh Chem. 2000,131:687-695.
    [116]Ozaki S, Ortiz de Montellano PR. Molecular engineering of horseradish peroxidase. Highly enantioselective sulfoxidation of aryl alkyl sulfides by Phe41→Leu mutant. J. Am. Chem. Soc.1994,116:4487-4488.
    [117]Ozaki S, Ortiz de Montellano PR. Molecular engineering of horseradish peroxidase: thioether sulfoxidation and styrene epoxidation by Phe41 leucine and threonine mutants. J. Am. Chem. Soc.1995,117:7056-7064.
    [118]Ozaki S, Matsui T, Watanabe Y. Conversion of myoglobin into a highly stereospecific peroxygenase by the L29H/H64L mutation. J. Am. Chem. Soc.1996,118:9784-9785.
    [119]Ozaki S, Matsui T, Watanabe Y. Conversion of myoglobin into a peroxygenase:a catalytic intermediate of sulfoxidation and epoxidation by the F43H/H64L mutant. J. Am. Chem. Soc.1997,119:6666-6667.
    [120]Miller VP, DePillis GD, Ferrer JC, Mauk AG, Ortiz deMontellano PR. Monooxygenase activity of cytochrome c peroxidase. J. Biol. Chem.1992,267:8936-8924.
    [121]Colonna S, Gaggero N, Carrea G, Pasta P. The microperoxidase-11 catalyzed oxidation of sulfides is enantioselective. Tetrahedron Lett.1994,35:9103-9106.
    [122]Colonna S, Gaggero N, Richelmi C, Carrea G, Pasta P. Gazz Chim. Ital.1995,125: 479-482.
    [123]Tuynman A, Vink MK, Dekker HL, Schoemaker HE, Wever R. The sulphoxidation of thioanisole catalysed by lactoperoxidase and Coprinus cinereus peroxidase:Evidence for an oxygen-rebound mechanism. Eur, J, Biochem.1998,258(2):906-913.
    [124]Baciocchi E, Gerini MF, Harvey PJ, Lanzalunga O, Mancinelli S. Oxidation of aromatic sulfides by lignin peroxidase from Phanerochaete chrysosporium. Eur. J. Biochem.2000, 267:2705-2710.
    [125]Yamazaki Y, Hesse C, Okuno H, Abraham WR. Stereoselectivity of microbial oxygenation of metallocene sulphides with different substituent size and central atom. Appl. Microbiol. Biotechnol.1996,45:595-599.
    [126]Cashman JR, Olsen LD, Boyd DR, McMordie RAS, Dulop R, Dalton H. Stereoselectivity of enzymic and chemical oxygenation of sulfur atoms in 2-methyl-1,3-benzodithiole. J. Am. Chem. Soc.1992,114:8772-8777.
    [127]Allen CCR, Boyd DR, Dalton H, Sharma ND, Haughey SA, McMordie RAS, McMurray BT, Sheldrake GN, Sproule K. Sulfoxides of high enantiopurity from bacterial dioxygenase-catalysed oxidation. J. Chem. Soc., Chem. Commun.1995, 119-120.
    [128]Kerridge A, Willetts A, Holland H. Stereoselective oxidation of sulfides by cloned naphthalene dioxygenase. J. Mol. Catal. B:Enzymatic 1999,6:59-65.
    [129]Boyd DR, Sharma ND, Brannigan IN, S. Haughey A, Malone JF, Clarke DA, Dalton H. Dioxygenase-catalysed formation of cis/trans-dihydrodiol metabolites of mono-and bi-cyclic heteroarenes. Chem. Commun.1996,2361-2362.
    [130]Beecher J, Richardson P, Roberts S, Willetts A. Oxidative biotransformations by microorganism:Stereoselective sulfoxide formation by Saccharomyces cerevisiae. Biotechnol. Lett.1994,17:1069-1074.
    [131]Alphand V, Gaggero N, Colonna S, Pasta P, Furstoss R. Microbiological transformations 36:Preparative scale synthesis of chiral thioacetal and thioketal sulfoxides using whole-cell biotransformations. Tetrahedron 1997,53:9695-9706.
    [132]Kelly DC, Knowles J, Mahdi G, Jassem I, Taylor and Wright M. The enantioselective oxidation of sulfides to sulfoxides with Acinetobacter sp. NCIMB 9871, Pseudomonas sp. NCIMB 9872, Xanthobacter autotrophicus DSM 431 (NCIMB 10811) and the black yeast NV-2. Tetrahedron Asymmetry 1996,7:365-368.
    [133]Adam W, Heckel F, Saha-Moller CR, Taupp M, Schreier P. A highly enantioselective biocatalytic sulfoxidation by the topsoil bacterium Pseudomonas frederiksbergensis. Tetrahedron:Asymmetry 2004,15:983-985.
    [134]Holland HL, Brown FM, Kerridge A, Penkos P, Arensdor J. Biotransformation of sulfides by Rhodococcus erythropolis. J. Mol. Catal. B Enzymatic 2003,22:219-223.
    [135]Foster BC, McLeish J, Wilson DL, Whitehouse LW, Zamecnik J, Lodge BA. Biotransformation of tri-substituted methoxyamphetamines by Cunninghamella echinulata. Xenobiotica,1992,22:1383-1394.
    [136]Holland HL, Poddar S, Tripet B. Effect of cell immobilization and organic solvents on sulfoxidation and steroid hydroxylation by Mortierella isabellina. J. Ind. Microbiol. 1992,10:195-197.
    [137]Holland HL, Brown FM, Larsen BG. Biotransformation of organic sulfides-IV. Formation of chiral benzyl alkyl and phenyl alkyl sulfoxides by Helminthosporium species NRRL 4671. Bioorg. Med. Chem.1994,2:647-652.
    [138]Holland HL, Brown FM, Larsen BG. Biotransformation of organic sulfides. Part 5. Formation of chiral para-alkyl benzyl methyl sulfoxides by Helminthosporium species NRRL 4671. Tetrahedron:Asymmetry 1994,5:1241-1248.
    [139]Holland HL, Brown FM, Larsen BG. Biotransformation of organic sulfides. Part 6. Formation of chirall para-substituted benzyl methyl sulfoxides by Helminthosporium species NRRL 4671. Tetrahedron:Asymmetry 1995,6:1561-1567.
    [140]Holland HL, Brown FM, Larsen BG. Preparation of (R)-sulforaphane by biotransformation using Helminthosporium species NRRL 4671. Tetrahedron: Asymmetry 1994,5:1129-1130.
    [141]Holland HL, Brown FM, Larsen BG, Zabic M. Biotransformation of organic sulfides. Part 7. Formation of chiral isothiocyanato sulfoxides and related compounds by microbial biotransformation. Tetrahedron:Asymmetry 1995,6:1569-1574.
    [142]Holland HL, Brown FM, Lakshmaiah G, Larsen BG, Patel M. Biotransformation of organic sulfides-VII. A predictive model for sulfoxidation by Helminthosporium species NRRL 4671. Tetrahedron:Asymmetry 1997,8:683-697.
    [143]Holland HL, Bommann MJ, Lakshmaiah G. Biotransformation of organic sulfides. Part 9. Formation of (S) para-substituted phenyl methyl sulfoxides by biotransformation using Helminthosporium species NRRL 4671. J. Mol. Ca(?)al. B Enzymatic 1996,1: 97-102.
    [144]Holland HL, Brown FM, Kerridge A, Turner CD. Biotransformation of organic sulfides: Part.1.0. Formation of chiral ortho-and meta-substituted benzyl methyl sulfoxides by biotransformation using Helminthosporium species NRRL 4671. J. Mol. Catal. B: Enzymatic 1999,6:463-471.
    [145]Holland HL, Gu J-X, Kerridge A, Willetts A. Biotransformation of organic sulfides. Part 11. preparation of functionalised phenyl propyl sulfoxides using Helminthosporium Species and Mortierella Isabellina. Biocatal. Biotransform.1999,17:305-317.
    [146]Holland HL, Turner CD, Andreana PR, Nguyen D. Biotransformation of organic sulfides. Part 12. Conversion of heterocyclic sulfides to chiral sulfoxides by Helminthosporium sp. NRRL 4671 and Mortierella isabellina ATCC 42613. Can. J. Chem.1999,77:463-471.
    [147]Ricci LC, Comasseto JV, Andrade LH, Capelari M, Cass QB, Porto ALM. Biotransformations of aryl alkyl sulfides by whole cells of white-rot Basidiomycetes. Enzyme Microb. Technol.2005,36:937-946.
    [148]Pinedo-Rivilla C, Aleu J, Collado IG. Enantiomeric oxidation of organic sulfides by the filamentous fungi Botrytis cinerea, Eutypa lata and Trichoderma viride. J. Mol. Catal. B Enzymatic 2007,49:18-23.
    [149]Tang J, Brackenridge I, Roberts SM, Beecher J, Willetts AJ. Bakers'yeast oxidation of methyl para-tolysulfide synthesis of a chiral intermediate in the preparation of the mevinic acid-type hypocholestemic agents. Tetrahedron 1995,51:13217-13238.
    [150]Buist PH, Marecak DM. Stereochemical analysis of a quasisymmetrical dialkyl sulfoxide obtained by a diverted biodehydrogenation reaction. J. Am. Chem. Soc.1991, 113:5877-5878.
    [151]Buist PH, Marecak DM, Dawson B, Black B. Use of 19F NMR as a direct probe of A9 desaturase cryptoregiochemistry:a feasibility study. Can. J. Chem.1996,74:453-456.
    [152]Buist PH, Marecak DM. Sulfoxidation of a 9-thia-analogue of steric acid does not occur in a △9-desaturase-deficient mutant of Saccharomyces Cerevisiae. Tetrahedron Lett. 1991,32:891-894.
    [153]Beecher J, Brackenridge I, Roberts SM, Tang J, Willetts AJ. Oxidation of methyl p-tolylsulfide with bakers'yeast:preparation of a synthon of the mevinic acid-type hypocholestemic agents. J. Chem. Soc., Perkin Trans.11995,1641-1643.
    [154]Chen G, Kayser MM, Mihovilovic MD, Mrstik ME, Martinez CA, Stewart JD. Asymmetric oxidations at sulfur catalyzed by engineered strains that overexpress cyclohexanone monooxygenase. New J. Chem.1999,23:827-832.
    [155]Daligault F, Nugier-Chauvin C, Patin H. Microalga Chlorella sorokiniana:a new sulfoxidation biocatalyst. Org. Biomol. Chem.2006,4,1474-1477.
    [156]Auret BJ, Boyd DR, Henbest HB. Stereoselectivity in the oxidation of sulphoxides to sulphones.in the presence of Aspergillus niger. J. Chem. Soc. C 1968,2374-2376.
    [157]Auret BJ, Boyd DR, Henbest HB, Watson CG, Balenovic K, Polak V, Johanides V, Divjak S. Species-strain dependence of stereoselectivity in microbial oxidation of thioethers. Phytochemistry 1974,13:65-68.
    [158]Auret BJ, Boyd DR, Breen F, Greene RME, Robinson PM. Stereoselective enzyme-catalysed oxidation-reduction reactions of thioacetals-thioacetal sulphoxides by Fungi. J. Chem. Soc. Perkin Trans.l 1981,930-933.
    [159]Davis PJ, Guenthner LE. Sulindac oxidation/reduction by microbial cultures; microbial models of mammalian metabolism. Xenobiotica 1985,15:845-857.
    [160]Fahey JW, Haristoy X, Dolan PM, Kensler TW, Sholters I, Stephenson KK, Talay P, Lozniewski A. Sulforaphane inhibits extracellular, intracellular, and antibiotic-resistant strains of Helicobacter pylori and prevents benzo[a]pyreneinduced stomach tumors. Proc. Natl. Acad. Sci. U.S.A.2002,99:7610-7615.
    [161]Holland HL, Brown FM. Biocatalytic and chemical preparation of all four diastereomers of methionine sulfoxide. Tetrahedron:Asymmetry 1998,9:535-538.
    [162]Holland HL, Andreana PR, Brown FM. Biocatalytic and chemical routes to all the stereoisomers of methionine and ethionine sulfoxides. Tetrahedron:Asymmetry 1999,10: 2833-2843.
    [163]Holt T, Lindberg P, Reeve C, Taylor S. Preparation of pharmaceutically active compounds by biooxidation. U.S. Patent 5,840,552,1998.
    [164]Ni Y, Xu JH. Asymmetric reduction of aryl ketones with a new isolate Rhodotorula sp. AS2.2241. J. Mol.Catal. B:Enzymatic 2002,18:233-241.
    [165]沈端,许建和,宫鹏飞,刘幽燕,武慧渊.酮基布洛芬拆分用酯酶产生菌的筛选及其催化特性.微生物学通报2002,29:45-49.
    [166]Gong PF, Wu HY, Xu JH, Shen D, Liu YY. Biocatalytic preparation of enantiopure (R)-ketoprofen from its racemic ester by a new yeast isolate Citeromyces matriensis CGMCC 0573. Appl. Microbiol. Biotechnol.2002,58:728-734.
    [167]Firouzabadi H, Iranpoor N, Jafari AA, Riazymontazer E. Metal-free chemoselective oxidation of sulfides to sulfoxides by hydrogen peroxide catalyzed by in situ generated dodecyl hydrogen sulfate in the absence of organic co-solvents. Adv. Synth. Catal.2006, 348:434-438.
    [168]Zambianchi F, Fraaije MW, Carrea G, Gonzalo G, Rodriguez C, Gotor V, Ottolina G. Titration and assignment of residues that regulate the enantioselectivity of phenylacetone monooxygenase. Adv. Synth. Catal.2007,349:1327-1331.
    [169]Folsom BR, Schieche D R, Digrazia PM, Werner J, Palmer S. Microbial desulfurization of alkylated dibenzothiophenes from a hydrodesulfurized middle distillate by Rhodococcus. erythropolis Ⅰ-19. Appl. Environ. Microbiol.1999,65:4967-4972.
    [170]Kirimura K, Furuya T, Sato R, Ishii Y, Kino K, Usami S. Biodesulfurization of naphthothiophene and benzothiophene through selective cleavage of carbon-sulfur bonds by Rhodococcus sp. strain WU-K2R. Appl. Environ. Microbiol.2002,68:3867-3872.
    [171]Mata EG. Recent advances in the synthesis of sulfoxides from sulfides. Phosphorus 1996,117:231-286.
    [172]Nakamura S, Watanabe Y, Toru T. Extremely efficient chiral induction in conjugate additions of of-tolyl a-lithio-β-(trimethylsilyl)ethyl sulfoxide and subsequent electrophilic trapping reactions. J. Org. Chem.2000,65:1758-1766
    [173]Solladie G. Asymmetric synthesis usingnucleophilic reagents containing a chiral sulfoxide group. Synthesis 1981,185-196.
    [174]Holland HL, Allen LJ, Chernishenko MJ, Diez M, Kohl A, Ozog J, Gu JX. Side chain oxidation of aromatic compounds by fungi.7. A rationale for sulfoxidation, benzylic hydroxylation, and olefin oxidation by Mortierella isabellina. J. Mol. Catal. B Enzymatic 1997,3:311-324.
    [175]Beer J, Richardson P, Willetts A. Baeyer-Villiger monooxygenase dependent biotransformations:Stereospecific heteroatom oxidations by camphor-grown Pseudomonas putida to produce chiral sulfoxides. Biotechnol. Lett.1994,16:909-912.
    [176]Seenivasaperumal M, Federsel H-J, Ertan A, Szabo K. Factors influencing the selectivity in asymmetric oxidation of sulfides attached to nitrogen containing heterocycles. Chem. Commun.2007,2187-2189.
    [177]Rane RA, Pathak RK, Kaushik CP, Prasad Rao KVV, Kumar A. Synth. Commun.2002, 32(8):1211-1217.
    [178]Zhang Q, Wu YK. Further explorations on bridged 1,2,4-trioxanes. Tetrahedron 2007, 63:10189-10201.
    [179]Benechie M, Khuong-Huu F. Total synthesis of (-)-Maytansinol. J. Org. Chem.1996, 61:7133-7138.
    [180]Brunei JM, Diter P, Duetsch M, Kagan HB. Highly enantioselective oxidation of sulfides mediated by a chiral titanium complex. J. Org. Chem.1995,60:8086-8088.
    [181]Umemura K, Matsuyama H, Watanabe N, Kobayashi M, Kamigata N. Asymmetric alkylation of β-keto esters with optically active sulfonium salts. J. Org. Chem.1989,54: 2374-2383.
    [182]Boyd DR, Sharma ND, Gunaratne N, Haughey SA, Kennedy MA, Malone JF, Allen CCR, Dalton H. Dioxygenase-catalysed oxidation of monosubstituted thiophenes: sulfoxidation versus dihydrodiol formation. Org. Biol. Chem.2003,1:984-994.
    [183]Li YN, Shi XA, Zong MH, Meng C, Dong YQ, Guo YH. Asymmetric reduction of 2-octanone in water/organic solvent biphasic system with Baker's yeast FD-12. Enzyme .Microb. Technol.2007,40:1305-1311.
    [184]Gong PF, Xu JH. Bio-resolution of a chiral epoxide using whole cells of Bacillus megaterium ECU1001 in a biphasic system. Enzyme Microb. Technol.2005,36: 252-257
    [185]Nakamura K, Matsuda T. Biocatalytic reduction of carbonyl groups. Curr. Org. Chem. 2006,10:1217-1246.
    [186]Matsuda T, Harada T, Nakamura K. Alcohol dehydrogenase is active in supercritical carbon dioxide. Chem. Commun.2000,1367-1368.
    [187]Lou WY, Zong MH, Smith TJ. Use of ionic liquids to improve whole-cell biocatalytic asymmetric reduction of acetyltrimethylsilane for efficient synthesis of enantiopure (S)-1-trimethylsilylethanol. Green Chem.2006,8:147-155.
    [188]Anderson BA, Hansen MM, Harkness AR, Henry CL, Vicenzi JT, Zmijewski MJ. Application of a practical biocatalytic reduction to an enantioselective synthesis of the 5H-2,3-benzodiazepine LY300164. J. Am. Chem. Soc.1995,117(49):12358-12359.
    [189]Vicenzi JT, Zmijewski MJ, Reinhard MR, Landen BE, Muth WL, Marler PG. Large-scale stereoselective enzymatic ketone reduction with in situ product removal via polymeric adsorbent resins. Enzyme Microb. Technol.1997,20(7):494-499.
    [190]Brodeur MR, Brissette L, Falstrault L, Ouellet P, Moreau R. Influence of oxidized low-density lipoproteins (LDL) on the viability of osteoblastic cells. Free Radic. Biol. Med.2008,44:506-517.
    [191]Fernandes P, Vidinha P, Ferreira T, Silvestre H, Cabral JMS, Prazeres DMF. Use of free and immobilized Pseudomonas putida cells for the reduction of a thiophene derivative in organic media. J. Mol. Catal. B:Enzymatic 2002,19-20:353-361.
    [192]Luo DH, Zong MH, Xu JH. Biocatalytic synthesis of (-)-1-trimethylsily ethanol by asymmetric reduction of acetyltrimethylsilane with a new isolate Rhodotorula sp. AS2. 2241. J. Mol. Catal. B:Enzymatic 2003,24-25:83-88.
    [193]Philips RS. Temperature modulation of the stereochemistry of enzymatic catalysis: prospects for exploitation. Trends Biotechnol.1996,14:13-16.
    [194]Hilker I, Baldwin C, Alphand V, Furtoss R, Woodley J, Wohlgemuth R. On the influence of oxygen and cell concentration in a SFPR whole cell biocatalytic Baeyer-Villiger oxidation process. Biotechnol. Bioeng.2006,93(6):1138-1144.
    [195]Shimizu S, Kataoka M, Katoh M, Morikawa T, Miyoshi T, Yamada H. Stereoselective reduction of ethyl 4-chloro-3-oxobutanoate by a microbial aldehyde reductase in an organic solvent-water diphasic system. Appl. Environ. Microbiol.1990,56:2374-2377.
    [196]Yang JZ, Wang SZ, Lorrain MJ, Rho D, Abokitse K, Lau PCK. Bioproduction of lauryl lactone and 4-vinyl guaiacol as value-added chemicals in two-phase biotransformation systems. Appl. Microbiol. Biotechnol.2009,84:867-876.
    [197]谭晓军,王党生,李吉海.由硫醚或亚砜氧化制砜的研究进展.化学研究2004,15(3):68-72.
    [198]Willer RK. Encyclopedia of chemical technology,4th edition. New York:Wiley,1997, pp.217-232.
    [199]Hollingworth GL. Comprehensive functional group transformations. Oxford,1995, p 144-152.
    [200]Holland HL. Chiral sulfoxidation by biotransformation of organic sulfides. Chem. Rev. 1988,88:473-485.
    [201]Amanullah A, Hewitt CJ, Nienow AW, Lee C, Chartrain M, Buckland BC, Drew SW, Woodley JM. Application of multi-parameter flow cytometry using fluorescent probes to study substrate toxicity in the indene bioconversion. Biotechnol. Bioeng.2002,80(3): 239-249.
    [202]Im WB, Roth JA, McCormick DB, Wright LD. Bacterial degradation of biotin:V. metabolism of 14C-carbonyl-labeled biotin d-sulfoxide. J. Biol. Chem.1970,245: 6269-6273.
    [203]Okamoto Y, Ohta H, Tsuchihashi G. Asymmetric microbial oxidation of formaldehyde dithioacetals. Chem. Lett.1986,7-12:2049-2052.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700