限制几何构型茂金属催化剂的合成、表征及催化烯烃聚合反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
限制几何构型茂金属催化剂在过去的二十年中因其具有很高的催化活性及优秀的共聚合能力无论在叙述领域还是在工业应用中都得到了人们极大的关注。到目前为止人们通过对其配体进行各种修饰已经合成了为数众多催化性能各异的茂金属催化剂
     本论文的主要工作如下:设计合成了10个未见文献报道的化合物,其中包括3个配体和3个金属配合物,这些化合均通过下面的分析手段进行了表征:元素分析、核磁共振谱和X-射线晶体结构测定。研究了配合物催化乙烯与α-烯烃共聚,乙烯与环烯烃共聚反应的催化性能。
     在第二章中利用2,3,4,5-四甲基环戊烯酮与相应的酚锂盐反应制备三种新配体:2-(四甲基环戊二烯基)-4-甲基-6-金刚烷基苯酚,2-(四甲基环戊二烯基)-4-叔丁基-6-金刚烷基苯酚,2-(3,4-二苯基环戊二烯基)-4-叔丁基-6-金刚烷基苯酚。并用此三种配体首次合成三个钛类茂金属配合物:[2-(四甲基环戊二烯基)-4-甲基-6-金刚烷基-苯氧基]二氯化钛,[2-(四甲基环戊二烯基)-4-叔丁基-6-金刚烷基-苯氧基]二氯化钛,[2-(3,4-二苯基环戊二烯基)-4-叔丁基-6-金刚烷基苯苯氧基]二氯化钛。
     在第三章中用所合成的新型限制几何构型茂金属催化剂8-10/TIBA/B进行了催化5-亚乙基-2-降冰片烯(ENB)均聚以及乙烯与5-亚乙基-2-降冰片烯共聚研究。三个催化体系在ENB均聚及一个大气压下E/ENB共聚中都表现出较好的催化活性。通过对ENB均聚物的氢谱分析可以看到ENB单体是通过环内双键参与了聚合反应而保留了环外的亚乙烯基的双键。通过对由不同催化剂(9,11.12)得到的ENB均聚样品的氢谱进行对比分析可以看到在此三个催化体系中9具有较好的立体选择性。同催化体系11/TIBA/B相比较,催化体系9/TIBA/B在E/ENB的共聚中表现出更高的催化活性和及更好的共单体吸收能力。在E/ENB共聚中我们考察了聚合条件如温度、Al/Ti、共单体初始浓度及主催化剂上取代基的变化对催化剂活性和聚合物性质的影响,解释了催化剂的结构和性能的之间关系。
     在第四章中8-10/TIBA/B及11/TIBA/B四个催化体系进行了催化乙烯/1-己烯共聚的研究。通过对共聚样品的GPC分析可以看到由9/TIBA/B得到共聚物的分子量比由11/TIBA/B得到的共聚物得分子量稍大。四个催化体系在乙烯/1-己烯共聚中的催化活性顺序为:9>8>11>10。同时我们还用[2-四甲基环戊二烯基-4-6-二叔丁基苯氧基]二氯化钛(11),[2-四甲基环戊二烯基-6-叔丁基苯氧基]二氯化钛(12)-[2-四甲基环戊二烯基-6-甲基苯氧基]二氯化钛(13)及[2-四甲基环戊二烯基-6-苯基苯氧基]二氯化钛(14)四个化合物在TIBA/B活化下进行了催化乙烯/1-十八碳烯共聚的研究。系统考察了聚合条件如:铝钛摩尔比,聚合温度,聚合压力,聚合时间及共单体浓度对聚合性能的影响。在四个催化体系中11/TIBA/B表现出最高的催化活性,12/TIBA/B在相同条件下所得到的共聚物的分子量最高,而14/TIBA/B在乙烯/1-十八碳烯的共聚中催化活性最低。四个催化体系随着共单体浓度的变化均表现出明显的共单体效应。对11/TIBA/B催化体系进行竟聚率研究,乙烯与1-十八碳烯的竞聚率值分别为:rE=16.78,r1-O=1.039,其乘积值rE r1-O=1.039表明共聚过程中共单体的插入是随机进行的。
     用两个系列的限制几何构型茂金属配合物进行了催化乙烯/1-己烯、乙烯/-十八碳烯共聚聚合反应的研究,考察了几何条件以及主催化剂配体上取代基的变化对催化剂活性和聚合物性质的影响,解释了催化剂的结构和性能的关系。
In the last two decades, the so-called constrained geometry metallocene catalysts (CGC) with the general formula of [η5:η1-C5R4(SiMe2)NR1]TiCl2 (I in Chart 1) have been widely studied in academic [1-4] and industrial [5-8] institutions because of their high performance in catalyzing the copolymerization of different olefins. Various modifications on the chelating ligands have been made in order to improve the catalytic performance of the CGC catalysts through steric and electronic effects of their ligands.
     In this paper, ten new compounds were synthesized including three ligands and three Ti complexes. These complexes were characterized by by means of 1H and 13C NMR spectroscopy and elemental analysis, and single crystal X-ray crystallography. The catalytic properties of the Ti complexes for the compolymerization of ethylene/a-olefins and ethylene/5-ethylidene-2-norbornene were investigated.
     In chapter two, we have synthesized three new ligangd:2-(Me4C5H)-4-Me-6-Ad-phenol,2-(Me4C5H)-4-tBu-6-Ad-phenol, and 2-(3,4-Ph2C5H2)-4-'Bu-6-Ad-phenol from the reaction of their corresponding phenol-lithium with 2,3,4,5-tetramethylcyclopent-2-enone. And three new half sandwich titanium. [η5:η1-2-C5Me4-4-Me-6-AdC6H2O]TiCl2 (8), [η5:η1-2-C5Me4-4-tBu-6-AdC6H2O]TiCl2 (9) and [η5:η1-2-C5H2Ph2-4-tBu-6-AdC6H2O]TiCl2 (10) were synthesized from the reaction of their corresponding ligand with TiCl4. These new Ti complexes were characterized by means of 1H and 13C NMR spectroscopy and elemental analysis, and the structures of [η5:η1-2-C5Me4-4-Me-6-AdC6H2O]TiCl2 and [η5:η1-2-C5Me4-4-tBu-6-AdC6H2O]TiC12 were determined by single crystal X-ray crystallography.
     In chapter three, the catalytic performance for 5-ethylidene-2-norbornene (ENB) homopolymerization and ethylene/ENB copolymerization using 8-10 constrained geometry catalysts in the presence of Al'Bu3 (TIBA) and [Ph3C][B(C6F5)4] (B) were investigated. The three catalyst systems show good activity on the homopolymerization of ENB, and higher activity of on the copolymerization of E/ENB under atmosphere pressure of ethylene. 1H NMR analysis of polymer indicates that ENB was inserted into polymerchain through the endocyclic double bond regiosectively. leaving the ethylidene double bond unreacted.1H NMR analysis of polymer also indicates that the catalyst systerm of 9/TIBA/B showed better steroselectivity in homopolymeriztion of ENB than the catalyst systerm of 11 or 12/TIBA/B. In comparence with the catalyst systerm of 11/TIBA/B, the catalyst systerm of 9 showed higer capability of comomoner incorporation under the same condition. The effects of the polymerization temperature and initial ENB concentration on the catalytic activity, content of ENB in the copolymer, molecular weight of copolymer, and glass transition temperature of copolymer were examined. The relation between the structure of the complexes and their catalytic properties was explained.
     In chapter four, the catalytic performances for ethylene/1-hexene copolymerization of 8-11 catalyst systerms were investigated. The results of GPC analysis showed that the result copolymer obtained by 9/TIBA/B has a little higher molecular weight thant that obtained by 11/TIBA/B. Copolymerization of ethylene with 1-octadecene using constrained geometry catalysts 2-(tetramethylcyclopentadienyl)-4, 6-di-tert-butylphenoxytitanium dichloride (11), 2-(tetramethylcyclopentadienyl)-6-tert-butylphenoxytitanium dichloride (12), 2-(tetramethylcyclopentadienyl)-6-methylphenoxytitanium dichloride (13). and 2-(tetramethylcyclopentadienyl)-6-phenylphenoxytitanium dichloride (14) was studied in the presence of TIBA/B were studied. The effects of the catalyst structure, and reaction parameters such as the Al/Ti molar ratio, polymerization temperature, and comonomer feed concentration on the catalytic activity, comonomer incorporation, and molecular weight of the copolymers were also examined. The reactivity ratio product (rE·rOD was 1.039) values is close to 1, which demonstrates that the ethylene/1-octene and ethylene/1-octadecene copolymerization proceeds in a random manner. Among the four catalyst systems 11/TIBA/B showed the highest activity and the result copolymer obtained by 12/TIBA/B has the highest molecular weight under the same condition. The catalyst systerm of 14/TIBA/B showed the lowest activity among the four catalytic systerms. The relation between the structure of the complexes and their catalytic properties was explained.
引文
[1]The iron sandwich. A recollection of the first four months. G. Wilkinson, J. Organomet. Chem.,1975.100.273-178.
    [2]C. Elschenbroich, A. Salzer, Organometallics. Weinheim:VCH Verlagsge-sellschaft, mbH,1992.
    [3]J. Buckingham, Dictionary of Organometallics Chemistry. London:Chapman and Hall,1984.
    [4]D. S. Breslow, N. R. Newburg. J. Am. Chem. Soc.,1957.79.5072.
    [5]K. H. Reichert, K. R. Meyer. Makromol. Chem.,1973,169,163.
    [6]P. W. Long, D. S. Breslow, Liebigs. Ann. Chem.,1975.463.
    [7]A. Anderson, H. G. Cordes, J. Herwig. W. Kaminsky. A. Merck, R. Motterle, J. Pein, H. Sinn, H. J. Vollmer, Angew. Chem., Int. Ed. Engl., 1976,15,63.
    [8]H. Sinn, W. Kaminsky, H. J. Vollmer, R. Woldt, Angew. Chem., Int. Ed. Engl., 1980.19,390-392.
    [9]W. Kaminsky. Macromol. Chem. Phys.,1996,197.3907-3945.
    [10]Y. Koide, S. G. Bott, and A. R. Barron, Organometallics,1996,15,2213-2226. [11] H. Sinn, W. Kaminsky. Adv. Organomet. Chem.,1980,80.99.
    [12]D. Cam. F. Sartori. A. Maldotti, Macromol. Chem. Phys.,1994,195.2817-2826. [13] J. A. Ewen, J. Am. Chem. Soc.,1984,106, 6355-6364.
    [14]W. Kaminsky, K. Kulper, H. H. Brintzinger, F. R. W. P. Wild, Angew. Chew., Int. Ed. Engl.,1985,24.507-508.
    [15]Syndiospecific propylene polymerizations with Group IVB metallocenes. J. A. Ewen, R. L. Jones, A. Razavi, and J. D. Ferrara, J. Am. Chem. Soc.,1988,110, 6255-6256.
    [16]J. E. Bercaw, Presented at 3rd Chemical Congress of North America, Toronto, Canada, June 1988.
    [17]G. Erker. M. Aulbach, M. Knickmeier, D. Wingbennuhle, C. Kruger, M. Nolte, S. Werner. J. Am. Chem. Soc., 1993.115.4590. [18] G. W. Coates. R. M. Waymouth. Science.1995,267.217.
    [19]Y. X. Chen. P. F. Fu, C. L. Stern, T. J. Marks, Organometallics,1997,16. 5958-5963. [20] V. P. Marin. L. A. Nekheava. et al., Metalloorg,1990,3.474.
    [21]A. L. Nekheava. B. A. Krentsel, et al., Vysokomol. Soedin. Ser. A.,1992,34.84.
    [22]I. M. Lee, W. J. Cauthier, J. M. Ball. B. Iyenger. and S. Collins. Organometallics. 1992, 11,2115-2122.
    [23]V. Busico, R. Cipullo, W. P. Kretschmer, G. Talarico, M. Vacatello. and V. V. A. Castelli. Angew. Chem., Int. Ed. Engl.,2002.41.505-508.
    [24]M. A. Xchmid. H. G. Alt. and W. Milius. J. Organomet. Chem.,1995,501, 101-106.
    [25]A. Puranen, M. Linnolahti, T. Piel. P. Elo. I. Mutikainen, T. Pakkanen. B. L-ofgren, E. Aitola. J. Sepp, M. Leskel, and T. Repo. Organometallics, 2010, 29, 4018-4024.
    [26]I. Greger. G. Kehr, R. Frohlich. and G. Erker, Organometallics,2010,29. 860-866.
    [27]T. Uozumi. K. Miyazawa. T. Sano. et al. Macromol. Rapid Commun.,1997.18. 883.
    [28]J. Jin. T. Uozumi. T. Sano. et al. Macromol. Rapid Commun.,1998.19,337.
    [29]M. K. Leclerc, R. M. Waymouth. Angew. Chem. Int. Ed.,1998,37.922.
    [30]R. Mulhaupt, J. Suhm. M. J. Schneider. J. Mol. Catal., A,1998.128,215.
    [31]K. Nomura, K. Oya, T. Komatus. et al, Macromolecules,2001,33,3187.
    [32]Y. L. Qian, S. S. Chen. Transition. Met. Chem.,1996.21,393-397.
    [33]Y. L. Qian. J. L. Huang. Macromol. Symp.,1996,105,205.
    [34]金国新,周光远,刘宇,CN-ZL981256511.
    [35]B. Rieger. A. Reinmuth, W. Roll, H. H. Brintzinger, J. Mol. Catal.,1993.82. 67-73.
    [36]E. B. Coughlin, and J. E. Bercan, J. Am. Chem. Soc.,1992,114.7606-7607.
    [37]K. Nomura. Dalton trans.,2009.8811-8823.
    [38](a) K. Nomura, N. Naga, M. Miki K. Yanagi and A. Imai, Organometallics,1998. 17.2152; (b) K. Nomura. N. Naga, M. Miki and K. Yanagi, Macromolecules,1998.31, 7588.
    [39]K. Nomura and K. Itagaki. Macromolecules.2005.38.8121.
    [40]F. Z. Khan. K. Kakinuki and K. Nomura. Macromolecules,2009.42.3767.
    [41]K. Nomura, J. Polym. Sci., 2008.26.513.
    [42](a) K. Nomura. M. Tsubota and M. Fujiki. Macromolecules.2003.36.3797; (b) W. Wang. T. Tanaka. M. Tsubota. M. Fujiki. S. Yamanaka and K. Nomura. Adv. Synth. Catal.,2005,347,433. (c) K. Nomura, W. Wang, M. Fujiki and J. Liu. Chem. Commun.,2006.2659. (d) K.Nomura. J. Yamada. W. Wang and J. Liu. J. Organomet. Chem.,2007.692. 4675.
    [43]J. Liu and K. Nomura, Adv. Synth. Catal.,2007,349,2235.
    [44]w. Wang, M. Fujiki and K. Nomura, J. Am. Chem. Soc.,2005.127,4582.
    [45]K. Nomura and B. Kitiyanan. Curr. Org. Synth.,2008.5.217.
    [46]K. Nomura. J. Liu, M. Fujiki and A. Takemoto, J. Am. Chem. Soc.,2007,129, 14170.
    [47](a) J. Liu and K. Nomura, Macromolecules,2008,41.1070. (b) K.Nomura, K. Kakinuki, M. Fujiki and K. Itagaki. Macromolecules.2008,41, 8974.
    [48]J. Okuda. Chem. Ber.,1990,123,1649-1651.
    [49]P. Jutzi, Chem. Rev.,1986.86,983-996.
    [50]J. Organomet. Chem.,1994,482,169-181.
    [51]H. V. R. Dias, Z. Wang, and S. G. Bott, J. Organomet. Chem.,1996,508,91-99.
    [52]P. Foster, M. D. Rausch. J. C. W. Chine, J. Organomet. Chem.,1997,527,71-74.
    [53]T. Senda, H. Hanaoka, Y. Okado, Y. Oda, H. Tsurugi, and K. Mashima, Organometallics,2009,28,6915-6926.
    [54](a) S. B. Amin, T. J. Marks, Angew. Chem., Int. Ed.,2008,47,2006-2025. (b) S. H. Kim. G. A. Somorjai, Proc. Nat. Acad. Sci. U.S.A.2006, 103.15289-15294. (c) W. Kaminsky, J. Polym. Sci., Part A:Polym. Chem.2004,42,3911-3921.
    [55]L. A. Williams. T. J. Marks, Organometallics,2009,28.2053-2061
    [56]T. Sugano. J. Mol. Catal..1993,82.93.
    [57]T. fujita.. EP 498657.
    [58]G. G. Hlatky. H. W. Truner. R. R. Eckman. J. Am. Chem. Soc.,1989.111.2728.
    [59]H. W. Turner, Eur. Pat. Appl.,1988,277003.
    [60]X. Yang. G. L. Stern, and T. J. Marks. J. Am. Chem. Soc.,1991.113.3623-3625
    [61]J. A.Gladysz, Chem. Rev.,2000,100,167-1604.
    [62]L. Resconi, J. C. Chadwick, L. Cavallo, In Comprehensive Organometallic Chemistry Ⅲ; R. H. Crabtree, D. M. P. Mingos, Elsevier:Amsterdam,2007,4. 1005-1166.
    [63]T. Fujita. H. Makio, In Comprehensive Organometallic Chemistry III; R. H. Crabtree, D. M. P. Mingos, Elsevier:Amsterdam,2007,11,691-734.
    [64]A. Tuchbreiter, R. M€ulhaupt, Macromol. Symp.,2001.173.1.
    [65]W. Kaminsky. Macromol. Symp.,2006.236.1-258.
    [66]H. G. Alt. Chem. Rev.,2006,250,1-272.
    [67]X. Li, Z. Hou. Organometallic catalysts for the copolymerization of cyclic olefins. Coord. Chem. Rev.,2008,252,1842.
    [68]V. Busico, Metal catalyzed olefin polymerizations:A perspective and outlook. Dalton Trans.,2009,8794.
    [69]P. C. M€ohring, N. J. Coville, Group 4 metallocene catalysts:quantification of ring substituents effects. Coord. Chem. Rev.,2006,250,18.
    [70]A. Razavi, U. Thewalt, Site selective ligand modification and tactic variation in polypropylene chains with metallocene catalysts. Coord. Chem. Rev.,2006,250, 155.
    [71]C. Cobzaru, S. Hild, A. Boger, C. Troll, B. Rieger, "Dualside" catalysts for high and ultra-high molecular weight polypropylene elastomers and plastomers. Coord. Chem. Rev.,2006,250,189.
    [72]K. Nomura, J. Liu, S. Padmanabhan, B. Kitiyanan, Nonbridged half-metallocenes containing anionic ancillary donor ligands:New promising candidates as catalysts for precise olefin polymerization. J. Mol. Catal. A:Chem.,2007,267,1.
    [73]D. W. Stephan, The road to early transition metal phosphinimide olefin polymerization catalysts. Organometallics,2005,24,2548.
    [74]V. C. Gibson, S. K. Spitzmesser, Advances in non-metallocene olefin polymerization catalysis. Chem. Rev.,2003,103,283.
    [75]V. C. Gibson, C. Redshaw, G. R. Solan, Bis(imino)pyridines:Surprisingly reactive ligands and a gateway to new families of catalysts. Chem. Rev.,2007, 107,1745.
    [76](a) T. Matsugi, T. Fujita, High-performance olefin polymerization catalysts discovered on the basis of a new design concept. Chem. Soc. Rev.,2008,37, 1264. (b) H. Makio, T. Fujita, Development and application of FⅠ catalysts for olefin polymerization:Unique catalysts and distinctive polymer formation. Acc. Chem. Res.,2009,42,1532.
    [77]V. Busico, R. Cipullo, R. Pellecchia, S. Ronca, G. Roviello, G. Talarico, Design of stereoselective Ziegler-Natta propene polymerization catalysts. Proc. Natl. Acad. Sci.,2006,103,15321.
    [78]E. Y. X. Chen, T. J. Marks, Cocatalysts for metal-catalyzed olefin polymerization: Activators, activation processes, and structureactivity relationships. Chem. Rev. 2000,100,1391.
    [79]L. Resconi, L. Cavallo, A. Fait, F. Piemontesi, Selectivity in propene polymerization with metallocene catalysts. Chem. Rev.,2000,100,1253.
    [80]G. W. Coates. P. D. Hustad, S. Reinartz, Catalysts for the living polymerization of alkenes:access to new polyolefin architectures using Ziegler-Natta chemistry. Angew. Chem., Int. Ed.,2002,41,2236.
    [81]G. J. Domski, J. M. Rose, G. W. Coates. A. D. Bolig, M. Brookhart, Living alkene polymerization:New methods for the precision synthesis of polyolefins. Prog. Polym. Sci., 2007,32.30.
    [82]M. Bochmann, Kinetic and mechanistic aspects of metallocene polymerization catalysts. J, Organomet. Chem.,2004,689,3982.
    [83]M. Bochmann, Use of spectroscopy in metallocene-based polymerization catalysis. In Mechanisms in Homogeneous Catalysis; B.Heaton, Ed.; Wiley-VCH: Weinheim, Germany,2005,311.
    [84]P. D. Hustad. Frontiers in olefin polymerization:reinventing the world's most common synthetic polymers. Science,2009,325,704.
    [85]W. E. Piers. Adv. Organomet. Chem.,2004,52,1.
    [86](a) F. Focante, P. Mercandelli, A. Sironi, L. Resconi, Coord. Chem. Rev.,2006, 250,170. For furtherB(C6F5)3 adducts see:(b) A. J. Mountford, S. J. Lancaster. S. J. Coles. P. N. Horton. D. L. Hughes, M. B. Hursthouse, M. E. Light, Inorg. Chem., 2005.44.5921. (c) A. M. Fuller, A. J. Mountford, M. L. Scott, S. J. Coles, P. N. Horton, D. L. Hughes, M. B. Hursthouse, S. J. Lancaster, Inorg. Chem.,2009,48.11474.
    [87]J. Zhou, S. J. Lancaster, D. A. Walker, S. Beck, M. Thornton-Pett, M. Bochmann, J. Am. Chem. Soc.,2001,123,223.
    [88]M. Bochmann, S. J. Lancaster, M. D. Hannant, A. Rodriguez, M. Schormann, D. A. Walker, T. J. Woodman, Pure Appl. Chem.,2003,75,1183.
    [89]M. H. Hannant, J. A. Wright, S. J. Lancaster, D. L. Hughes, P. N. Horton. M. Bochmann, Dalton Trans..2006.2415.
    [90]G. P. Abramo, L. Li, T. J. Marks, J. Am. Chem. Soc.,2002.124,13966.
    [91]M. C. Chen. J. A. S. Roberts. A. M. Seyam, L. Li, C. Zuccaccia. N. G. Stahl. T. J. Marks. Organometallics,2006,25,2833.
    [92]U. Wieser. D. Babushkin, H. H. Brintzinger. Organometallics,2002,21,920.
    [93]F. Schaper. A.Geyer. H. H. Brintzinger. Organometallics,2002.21.473.
    [94]P. A. Wilson, J. A. Wright, V. Oganesyan, S. J. Lancaster, M. Bochmann. Organometallics,2008.27.6371.
    [95]E. P. Talsi, J. L. Eilertsen. M. Ystenes. E. Rytter, J. Organomet. Chem.,2003. 677,10.
    [96](a) C. P. Casey, D. W. Carpenetti. Organometallics,2000,19,3970. (b) C. P. Casey, D.W. Carpenetti. H. Sakurai, Organometallics,2001,20,4262.
    [97]J. F. Carpentier. Z. Wu, C.W. Lee, S. Str€omberg, J. N. Christopher, R. F. Jordan, J. Am. Chem. Soc.,2000,122,7750.
    [98]C. G. Brandow, A. Mendiratta, J. E. Bercaw, Organometallics,2001,20,4253.
    [99]G. Martinez, P. Royo, Organometallics,2005,24,4782.
    [100]E. J. Stoebenau. R. F. Jordan, J. Am. Chem. Soc.,2006,128,8162.
    [101]E. J. Stoebenau. R. F. Jordan, J. Am. Chem. Soc.,2006.128,8638.
    [102]M. Vatamann. G. Stojcevic, M. C. Baird, J. Am. Chem. Soc.,2008,130,454.
    [103]F. Sauriol, E. Wong, A. M. H. Leung, I. E. Donaghue, M. C. Baird. T. Wondimagegn, T. Ziegler, Angew. Chem., Int. Ed.,2009,48.3342.
    [104]A. Al-Humydi, J. C. Garrison, M. Mohammed, W. J. Youngs, S. Collins, Polyhedron,2005,24,1234.
    [105]S. Lieber. M. H. Prosenc H. H. Brintzinger, Organometallics,2000.19,377.
    [106]R. J. Keaton, K. C. Jayaratne, D. A. Henningsen, L. A. Koterwas. L. R. Sita, J. Am. Chem. Soc.,2001,123,6197.
    [107]Y. Zhang,; E. K. Reeder, R. J. Keaton, L. R. Sita, Organometallics,2004,23, 3512.
    [108]K. C. Jayaratne, L. R. Sita, J. Am. Chem. Soc.,2001,123,10754.
    [109]R. J. Keaton, K. C. Jayaratne, J. C. Fettinger, L. R. Sita, J. Am. Chem. Soc., 2000,122.12909.
    [110]S. Zhang, W. E. Piers, Organometallics,2001,20.2088.
    [111]M. Bochmann. T. Cuenca, D. T. Hardy, J. Organomet. Chem.,1994,484, C10.
    [112]A. E. Fenwick, K. Phomphrai, M. G. Thorn. J. S. Vilardo, C. A. Trefun. B. Hanna, P. E. Fanwick, I. P. Rothwell, Organometallics,2004,23,2146.
    [113]G. Erker, G. Kehr. R. Fr€ohlich, J. Organomet. Chem.,2005,690,6254.
    [114]M. Dahlmann. G. Erker. K. Bergander, J. Am. Chem. Soc.,2000,122,7986.
    [115]F. Hannig. R. Fr€ohlich, K. Bergander, G. Erker, J. L. Petersen, Organometallics,2004,23,4495.
    [116]G. S. Hair, R. A. Jones, A. H. Cowley, V. Lynch. Inorg. Chem.,2001,40.1014.
    [117]N. Yue, E. Hollink. F. Gu_erin. D. W. Stephan. Organometallics,2001.20, 4424.
    [118]J. Cano, P. Royo. M. Lanfranchi. M.A. Pellinghelli. A. Tiripicchio, Angew. Chem., Int. Ed.,2001,40,2495.
    [119]J. Cano, M. Sudupe. P. J. Royo, Organomet. Chem.,2007,692,4448.
    [120]J. Jin, D. R. Wilson. E. Y. X. Chen, Chem. Commun.,2002,708.
    [121](a) C. Wang, H. K. Luo, M. van Meurs. L. P. Stubbs, P. K. Wong, Organometallics,2008.27,2908. (b) C. Wang. M. van Meurs, L. P. Stubbs. B. Y. Tay, X. J. Tan, S. Aitpamula, J. Chacko. H. K. Luo, P. K. Wong, S. Ye. Dalton Trans.,2010,807.
    [122]J. A. Martinho-Sim-oes, J. L. Beauchamp, Chem. Rev.1990,90,629.
    [123]M. B. Harney. R. J. Keaton, J. C. Fettinger, L. R. Sita. J. Am. Chem. Soc.,2006. 128,3420.
    [124]M. Bochmann, S. J. Lancaster, Angew. Chem. Int. Ed. Engl.,1994,33,1634.
    [125]D. E. Babushkin. N. V. Semikolenova, V. A. Zakharov, E. P. Talsi, Macromol. Chem. Phys.,2000,201,558.
    [126]K. P. Bryliakov. E. P. Talsi, M. Bochmann. Organometallics,2004,23,149.
    [127](a) P. D. Bolton, E. Clot, A. R. Cowley, P. Mountford. Chem. Commun.,2005, 3313. (b) P. D. Bolton, E. Clot. A. R. Cowley, P. Mountford, J. Am. Chem. Soc.,2006, 128.15005.
    [128]E. P. Talsi. N. V. Semikolenova. V. N. Panchenko, A. P. Sobolev, D. E. Babushkin. A. A. Shubin. V. A. Zakharov, J. Mol. Catal.,1999,139,131.
    [129]O. Wrobel. F. Schaper, H. H. Brintzinger, Organometallics,2004,23,900.
    [130]O. Wrobel, F. Schaper, U. Wieser. H. Gregorius, H. H. Brintzinger, Organometallics,2003,22.1320.
    [131]B. Richter, A. Meetsma, B. Hessen, J. H. Teuben, Angew. Chem., Int. Ed.,2002, 41.2166.
    [132]U. Wieser, F. Schaper, H. H. Brintzinger, Macromol. Symp.,2006,236,63.
    [133]D. E. Babushkin. C. Naundorf, H. H. Brintzinger, Dalton Trans.,2006,4539.
    [134]S. A. Miller, J. E. Bercaw, Organometallics,2004,23.1777.
    [135]L. J. Irwin, J. H. Reibenspiess, S. A. Miller, J. Am. Chem. Soc.,2004,126, 16716.
    [136]M. Bochmann, S. J. Lancaster. J. Organomet. Chem.,1995.497,55.
    [137]N. N. Bhriain, H. H. Brintzinger, D. Ruchatz, G. Fink, Macromolecules,2005. 38,2056.
    [138]D. E. Babushkin. H. H. Brintzinger. J. Am. Chem. Soc.,2010.132,452.
    [139]O. Y. Lyakin. K. P. Bryliakov. N. V. Semikolenova. A. Y. Lebedev. A. Z. Voskoboynikov. V. A. Zakharov. E. P. Talsi, Organometallics.2007.26,1536.
    [140]K. P. Bryliakov. N. V. Semikolenova, V. N. Panchenko. V. A. Zakharov, H. H. Brintzinger. E. P. Talsi. Macromol. Chem. Phys.,2006,207,327.
    [141]D. E. Babushkin. H. H. Brintzinger, Chem. Eur. J.,2007,13,5294.
    [142]S. M. Baldwin. J. E. Bercaw, H. H. Brintzinger, J. Am. Chem. Soc.,2008.130. 17423.
    [143]C. G€otz, A. Rau, G. Luft, J. Mol. Catal. A:Chem.,2002,184,95.
    [144]A. G. Carr, D. M. Dawson, M. Thornton-Pett, M. Bochmann, Organometallics, 1999,18.2933.
    [145]K. P. Bryliakov, E. P. Talsi, N. V. Semikolenova, V. A. Zakharov. J. Brand, C. Alonso-Moreno. M. Bochmann, J. Organomet. Chem.,2007,692.859.
    [146]K. P. Bryliakov, E. P. Talsi, A. Z. Voskoboynikov, S. J. Lancaster, M. Bochmann, Organometallics,2008,27.6333.
    [147]O. Y. Lyakin. K. P. Bryliakov, V. N. Panchenko, N. V. Semikolenova. V. A. Zakharov. E. P. Talsi. Macromol. Chem. Phys.,2007,208,1168.
    [148]W. Kaminsky. J. Chem. Soc., Dalton. Trans.,1998,1413.
    [149]S. Juling, R. Mlhaupt, H. Plenio. J. Organomet. Chem.,1993,460,191.
    [150]N. Ishihara, M. Kuramoto, and M. Uoi, Macromolecules,1988,21,3356-3360.
    [151]T. Yasin. Z. Fan. L. Feng, Eur. Polym. J.2004,40.517-522.
    [152]D. Fischer, R. Mulhaupt. J. Organomet. Chem.1991.417. C7-C11.
    [153]J. C. Vizzini. J. C. W. Chein. G. N. Babu, R. A. Newmark, J. Polym. Sci. Polym. Chem.,1994,32.2049.
    [154]P. Longo, L. Oliva, A. Grassi, C. Pellecchia. Makromol. Chem.1989,190, 2357.
    [155]N. Herfert, C. Fink, Makromol. Chem.1992,193.773
    [1]F. Amor, J. Okuda, J. Organomet. Chem.,1996,520,245-248.
    [2]H. G. Alt, R. Alexander, W. Milius, A. Weis, J. Organomet. Chem.,2001,628, 169-182.
    [3]K. Kunz, G. Erker, G. Kehr, R. Frohlich, H. Jacobsen, H. Berke, O. Blacque, J. Am. Chem. Soc.,2002,124,3316-3326.
    [4]A. L. McKnight, R. M. Waymouth, Chem. Rev.,1998,98,2587-2598.
    [5]J. C. Stevens, F. J. Timmers, D. R. Wilson, G. F. Schmidt, P. N. Nickas, R. K. Rosen, G. W. Knight, S.Y. Lai, Eur. Pat. Appl. EP 416815 A2,1991 (Dow).
    [6]J. A. M. Canich, Eur. Pat. Appl. EP 420436 Al,1991 (Exxon).
    [7]J. A. M. Canich, US Patent 5,026,798,1991 (Exxon).
    [8]J. A. M. Canich, PCT Int. Appl. WO 96/00244,1996 (Exxon).
    [9]J. Okuda, F. J. Schattenmann, S. Wocadlo, W. Massa, Organometallics,1996,14, 789-795.
    [10]L. J. Irwin, J. H. Reibenspies, S. A. Miller, J. Am. Chem. Soc.,2004,126, 6716-16717.
    [11]A. Rau, S. Schmitz, G. Luft, J. Organomet. Chem.,2000,608,71-75.
    [12]C. J. Wu, S. H. Lee, H. Yun, B. Y. Lee, Organometallics,2007,26,6685-6687.
    [13]S. J. Na, C. J. Wu. J. Yoo, B. E. Kim, B. Y. Lee, Macromolecules,2008,41, 4055-4057.
    [14]J. H. Park, S. H. Do, A. Cyriac, H. Yun, B. Y.Lee, Dalton Trans.,2010,39, 9994-10002.
    [15]Y. X. Chen, C. L. Stern, S. T. Yang, T. J. Marks, J. Am. Chem. Soc., 1996,118, 12451-12452.
    [16]Y. X. Chen, T. J. Marks, Organometallics,1997,16,5958-5963.
    [17]Y. Zhang, Y. Mu, Organometallics,2006,26,631-634.
    [18]Y. Zhang, Y. Mu, C. Lii, G. Li, J. Xu, Y. Zhang, D. Zhu, S. Feng, Organometallics,2004,23,540-546.
    [19]Y. Zhang, J. Wang, Y. Mu,; Z. Shi, C. Lu, Y. Zhang, L. Qiao, S. Feng, Organometallics.2003,22,3877-3883.
    [20]T. Senda, H. Hanaoka, S. Nakahara, Y. Oda. H. Tsurugi, K. Mashima, Macromolecules.2010,43,2299-2306.
    [21]T. Senda, H. Hanaoka, T. Hino,Y. Oda, H. Tsurugi, K. Mashima. Macromolecules,2009,42,8006-8009.
    [22]G. Altenhoff, S. Bredeau, G. Erker, G. Kehr, O. Kataeva, R. Frohlich, Organometallics.2002,21,4084-4089.
    [23]S. J. Brown, X. L. Gao. D. G. Harrison. L. Koch. R. E. V. H. Spence, G. P. A. Yap, Organometallics,1998,17,445-5447.
    [24]A. J. Ashe,; X. G. Fang,; J. W. Kampf, Organometallics,1999,18,1363-1365;
    [25]C. J. Wu. S. H. Lee. S. T. Yu. S. J. Na, H. Yun, B. Y. Lee, Organometallics, 2008,27,3907-3917.
    [26]H. Braunschweig, F. M. Breitling, C. V. Koblinski, A. J. P. White, D. J. Williams, Dalton Trans.,2004.938-943.
    [27]U. G. Joung,; C. J. Wu,; S. H. Lee,; C. H. Lee,; E. J. Lee,; W. S. Han,; S. O. Kang; B. Y. Lee Organometallics.2006,25,5122-5130.
    [28]T.Senda, H. Hanaoka, Y. Okado,; Y. Oda, H. Tsurugi, K. Mashima, Organo metallics,2009,28.6915-6926.
    [29]J. Ni. C. Lu, Y. Zhang, Z. Liu, Y. Mu. Polymer,2008,49,211-216.
    [30]H. Li. J. Li, Y. Zhang, Y. Mu, Polymer,2008,49.2839-2844.
    [31]. D. F. Shriver. McGraw-Hill:New York,1969.
    [32]T. A. Geissmann. C. F. Koelsch, J. Org. Chem.,1939,3.489-502.
    [33]G. M. Sheldrick. SHELX97:Program System for Crystal Structure Determination; University of Gottingen:Gottingen, Germany.1997.
    [34]G. M. Sheldrick, SHELXTL Structure Determination Programs, Version 5.0. PC Siemens Analytical Systems:Madison, WI,1994.
    [35]G. M. Diamond. R. F. Jordan. J. L. Petersen. J. Am. Chem. Soc.,1996,118, 8024-8033.
    [36]Y. Mu. W. E. Piers, M. A. MacDonald. M. J. Zaworotko, Can. J. Chem.,1995, 73,2233-2238.
    [37]R. W. Baker, B. J. Wallace, Chem. Commun.,1999.1405-1406.
    [38]Y. Mu, W. E. Piers, D. C. MacQuarrie, M. J. Zaworotko. V. G. Young. Organometallics,1996.15,2720-2726.
    [39]Y. X. Chen, T. J. Marks, Organometallics,1997,16,3649-3657.
    [40]T. E. Ready, J. C. W. Chien. M. D. Rausch. J. Organomet. Chem.,1996,519. 21-28.
    [41]A. M. Cardoso, R. J. H. Clark. S. Moorhouse. J. Chem. Soc. Dalton Trans.,1980, 1156-1160.
    [42]C. H. Winter. X.X. Zhou, D. A. Dobbs. M. J. Heeg, Organometallics,1991.10. 210-214.
    [1]J. Suzuki. Y. Kino, T. Uozumi, T. Sano, T. Teranishi. J. Jin. K. Soga, T. Shiono, J Appl Polym Sci,1999,72:103-108.
    [2]Kim. Reactive & Functional Polymers,2001,49:197-204.
    [3]G. H. Zohuri, M. M. Mortazavi, R. Jamjah, S. Ahmadjo, J Appl Polym Sci,2004. 93,2597-2605.
    [4]Y. V. Kissin, F. M. Mirabella, C. C. Meverden, J Polym Sci Part A:Polym Chem, 2005,43,4351-4362.
    [5]H. Lasarov, T. T. Pakkanen, Macromol Chem Phys.2000,201.1780-1786.
    [6]S. Marathe, S. Sivaram, Macromolecules,1994,27,1083-1086.
    [7]R. Mulhaupt, T. Duschek, B. Rieger. Macromol. Chem. Macromol. Symp.,1991, 48/49,317.
    [8]W. Wang, T. Tanaka, M. Tsubota, M. Fujiki, S. Yamanaka, K. Nomura, Synth. Catal.,2005,347:433-446.
    [9]A. G. Massey, A. J. Park, J. Org. Chem.,1962,2,245-250.
    [10]A. G. Massey. A. J. Park, J. Organomet. Chem.,1966,5,218-225.
    [11]J. C. W. Chien, W. M. Tsai, M. D. Rasch, J. Am. Chem. Soc.,1991.113, 8570-8571.
    [12]K. Nomura, N. Naga, M. Miki, K. Yanagi, A. Imai, Organometallics,1998,17, 2152-2154。
    [13]K. Nomura,; N. Naga,; M. Miki,; K. Yanagi, Macromolecules,1998,31, 7588-7597.
    [14]H. Li, J. Li, Y. Zhang, Y. Mu, Polymer, 2008.49,2839-2844.
    [15]T. Hasan, T. Ikeda, T. Shiono, J. Polym. Sci. Part A:Polym. Chem.,2007,45, 4581-4587.
    [16]S. Marathe, S. Sivaram. Macromolecules,1994,27,1083-1086.
    [17]H. Lasarov, T. T. Pakkanen. Macromol. Rapid Commun.,1999.20.356-360.
    [18]J. Ni. C. Lii.Y. Zhang. Z. Liu. Y. Mu, Polymer,2008.49,211-216;
    [19]X. Mi. Z. Ma. L. Y. Wang. Y. C. Ke. Y. L. Hu. Macromol. Chem. Phys.,2003, 204,868-876.
    [20]K. Nomura, M. Tsubota. M. Fujiki, Macromolecules,2003,36,3797-3799.
    [21]I. N. Meshkova, V. G. Grinev, E. V. Kiseleva, L. N. Paspopov, S. P. Kuznetsov, A. I. Udovenko. Polym. Sci. Ser. A.2007.49,1165-1172.
    [22]N. Naga,; G. Tsuchiya,; A. Toyota. Polymer,2006,47.520-526.
    [23]S. P. Kuznetsov, Y. A. Lapushkin. A. V. Mitrofanov, S. V. Shestov, A. I. Udovenko, A. V. Shelagin, et al. Crystallogr. Rep.,2007,52,496-499.
    [24]H. Han, Z. C. Zhang, T. C. M. Chung, R. W. Lee. J Polym Sci Part A:Polym Chem,2007,45.639.
    [1]J. A. M. Canich, G. G. Hlatky, H. W. Turner, Appl WO 92-00333,1992.
    [2]J. A. M. Canich, U.S. Pat.5.026,798.1991.
    [3]J. A. M. Canich, G. F. Licciard, U.S. Pat.5.057,475,1991.
    [4]J. A. M. Canich, (Exxon) PCT Int. Appl. WO 96/00244,1996.
    [5]A. L. Mcknight, R. M. Waymouth, Chem Rev,1998.98,2587.
    [6]U. Siemeling, Chem Rev,2000,100,1495.
    [7]V. C. Gibson, Chem Rev,2003,103,283.
    [8]A. K. Hughes, A. Meetsma, J. H. Teuben, Organometallics,1993.12,1936.
    [9]K. E. Du Plooy, U. Moll,; S. Wocadol. W. Massa, J. Okuda. Organometallics, 1995,14,3129.
    [10]F. Amor, J. Okuda, J. Organomet. Chem.,1996,520,245.
    [11]J. T. Park, S. C. Yoon, B. J. Bae, W. S. Seo, I. H. Suh, T. K. Han, J. R. Park, Organometallics,2000.19,1269.
    [12]M. Dahlmann. J. Schottek. R. Frohlich. D. Kunz, J. Chem. Soc. Dalton Trans. 2000,1881.
    [13]Y. X. Chen, C. L. Stern, S. Yang, T. J. Marks, J. Am. Chem. Soc.,1996,118, 12451.
    [14]H. G. Alt, A. Reb. W. Milins. A. Weis, J. Organomet. Chem.,2001,628,169.
    [15]A. Rau. S. Schmitz. G. Luft, J. Organomet. Chem.,2000,608.71.
    [16]S. D. R. Christie. K. W. Man. R. J. Whitby. A. M. Z. Slawin. Organometallics, 1999.18.348.
    [17]E. E. C. G.Gielens, J. Y. Tiesnitsch, B. Hessen, J. H. Teuben. Organometallics, 1998.17.1652.
    [18]Z. A. Vander, C. Matteis. Organometallics,1997,16,2651.
    [19]G. Trouve, D. A. Laske, A. Meetsma, J. H. Teuben, J. Organomet. Chem.,1996. 511,255.
    [20]K. Kunz, G. Erker, G. Kehr, R. Frohlich, H. Jacobsen, H. Berke, O. Blacque, J. Am. Chem. Soc., 2002, 124, 3316.
    [21]Y. L. Qian, J. L. Huang, Polyhedron.1994, 13, 1105.
    [22]Y. X. Chen. T. J. Marks. Organometallics,1997.16.5958.
    [23]M. K. Rajieswari, E. B. Coughlin. Macromolecules,2003,36,6300.
    [24]D. Michaela, R. M. Waymouth, Macromolecules,2003,36,3815.
    [25]N. Kotohiro, N. Naofumi, T. Kazuo. Macromolecules,1998.31.8009.
    [26]G. B. Galland. R. F. De Souza. R. S. Mauler. F. F. Nunes, Macromolecules,1999. 32,1620.
    [27]J. C. Randall. Macromol Chem Phys,1989.29,201.
    [28]J. Koivumaki. Polym Bull (Berlin),1995,34,413.
    [29]J. Koivumaki, Polym Bull (Berlin).1996.36.7.
    [30]P. Lehmus. O. Harkki, R. Leino. Macromol. Chem. Phys.,1998.199,1965.
    [31]R. Quijada, A. Narva'ez. R. Rojas, Macromo.l Chem. Phys.,1999,200,1306.
    [32]H. Li, J. Li, Y. Zhang, Y. Mu, J. Appl. Polym. Sci.,2008,109,3030.
    [33]Y. Zhang. Y. Mu, C. Lu, Organometallics,2004.23.540.
    [34]Y. Zhang, Y. Mu, Organometallics,2006,25,631
    [35]C. Lu, Y. Zhang, Y. Mu, J. Mol. Catal. A. Chem.,2006,258.146.
    [36]J. Ni, C. Lu, Y. Zhang. Z. Liu, Y. Mu. Polymer,2008,49.211.
    [37]H. Li, J. Li. Y. Zhang, Y. Mu. Polymer,2008.49.2839.
    [38]A. G. Massey, A. J. Park. J. Organomet. Chem.,1966.5,18.
    [39]J. C. W. Chien, W. M. Tsai, M. D. Rasch, J. Am. Chem. Soc.,1991,113,8570.
    [40]P. C. Mohring. N. J. Coville, J. Organomet. Chem.,1994.479,1-29.
    [41]Y. X. Chen, T. J. Marks, Organometallics,1997,16.3649-3657.
    [42]Y. Zhang, J. Wang, Y. Mu, Z. Shi. C. Lii. Y. Zhang, L. Qiao, S. Feng, Organometallics,2003,22.3877-3883.
    [43]J. Hung, M. Robert, J. Polym. Sci. Part A: Polym. Chem.,2005,43,3840.
    [44]M. Bochmann. J. M. Sarsfield. Organometallics,1998.17.5908-5912
    [45]S. X. Li(孙秀丽).B. Q. Wang (王佰全),S. S. Xu (徐善生)et al.. Chem.J. Chinese Universities(高等学校化学学报)[J],200021(2):222-226.
    [46]G. Y. Zhou, X. Jing. B. T. Huang. Chem. J. Chinese Universities [J].2000, 21(9):1489-1493.
    [47]J. S. Yoon, D. H. Lee, E. S. Park, I. M. Lee. D. K. Park, S. O. Jung, J. Appl. Polym. Sci.,2000.75:928.
    [48]J. Koivumaki, J. V. Seppala, Macromolecules.1993,26.5535.
    [49]R. Quijada. J. Dupont, M. Lacerda, R. Sciopioni, Barrera. G. Macromol. Chem. Phys.,1995,196,3991.
    [50]W. Kaminsky, C. Piel. K. Scharlach, Macromo.l Symp.,2005.226.25.
    [51]H. Han, Z. C. Zhang, T. C. M. Chung, R. W. Lee. J. Polym. Sci. Part A: Polym. Chem.,2007,45,639.
    [52]M. Fineman. S. D. Ross. J. Polym. Sci.,1950,5,259.
    [53]L. P. Linderman.N. O. Adams. Anal. Chem.,1971,43.1245.
    [54]K. Nomura, K. Itagaki, Macromolecules,2005,38,8121.
    [55]K. Soga, H. Yanagihara, D. Lee, Makromol. Chem.,1989,190,995.
    [56]J. Koivumaki, G. Fink, J.V. Seppala, Macromolecules,1994,27:6254-6258.
    [57]I. Camurati, B. Cavicchi, T. Dall'Occo, Macromol. Chem. Phys.,2001, 202:701-709

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700