影响TS-1/H_2O_2体系催化氧化性能结构性因素的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钛硅分子筛TS-1自1983年成功合成以来,得到了广泛的研究。基于TS-1构建的TS-1/H2O2催化新体系也已在大宗化学品绿色化工新工艺技术中工业应用。TS-1/H2O2体系催化反应的化学本质探究一直是充分利用和发挥该体系催化性能的科学基础。本论文以TS-1/H2O2体系结构性因素决定其催化氧化性质为研究主线,从高性能TS-1的合成、高催化活性Ti中心的构筑、双氢键活性中间体的构建及结构稳定性的分析等方面进行系统研究,试图阐明该体系催化反应的化学本质,形成影响该体系催化氧化性能的系统认识,为进一步充分利用和发挥TS-1/H2O2体系的催化作用奠定科学基础。
     (1)从探索TS-1合成过程Ti活性中心的形成规律出发,通过水解过程的控制,采用两步或多步水解法,在较低TPAOH/SiO2(0.08或0.065)比时,合成出高性能Ts-1。发现,第一步水解过程决定了TS-1的催化氧化性能,而Ti的引入过程影响不大。通过XRD、UV-Vis、SEM、FT-IR、BET及TG的表征,可知得到的TS-1的物化和催化性质与传统的高TPAOH/SiO2(≥10.18)条件一步水解合成的“黑莓状”TS-1类似。在TS-1合成过程中,有机酯的水解是关键。在高TPAOH/SiO2比条件下,可形成较多晶核,是最终形成“黑莓状”TS-1的基础。第二步水解时,硅源可以是有机硅或无机硅,拓宽了高性能TS-1合成的原料来源,也能有效降低废弃物的排放和生产成本。两步或多步水解合成法为TS-1的低成本环境友好工业生产具有指导意义。
     (2)钛硅分子筛骨架Ti原子具有三种配位状态。通过水热处理方式,将TS-1分子筛骨架四配位Ti(Ⅳ)物种定向转化为骨架高配位Ti物种。通过UV-Vis、 UV-Raman、29Si MAS NMR、IR等表征,发现采用244nm光源激发时,UV-Raman谱中700cm-1处的振动峰归属为具有骨架六配位Ti(Ⅵ)物种(TiO6)的特征峰,此外,UV-Vis谱中-280nm处吸收峰及采用325nm光源激发时UV-Raman谱中130、650、670cm-1振动峰的出现均与高配位Ti存在相关;骨架高Ti物种的形成还表现在归属于骨架Ti(Ⅳ)结构特征的UV-Vis谱中-210nm、UV-Raman谱中960和1125cm-1处的吸收峰及IR谱中960cm-1处的吸收峰强度均随之降低。催化研究结果表明,骨架高配位Ti物种是具有明显高于骨架Ti(Ⅳ)物种催化活化H202能力的活性中心,进而显著提升其催化烯烃环氧化反应性能,其TON值为骨架Ti(Ⅳ)物种活性中心的2-3倍。
     (3)TS-1/H2O2催化体系中,由骨架Ti原子活性中心活化H2O2形成的反应活性中间体Ti-Oα-Oβ-Hend的稳定性直接影响其催化氧化能力。通过在反应体系中引入氢键受体,构建与反应活性中间体Ti-Oα-Oβ-Hend中的Hend原子相互作用的新氢键,进一步稳定活性中间体,形成了具有双氢键结构的新反应活性中间体。DFT模拟计算表明该双氢键活性中间体的存在的可能性。反应动力学研究表明,反应体系中双氢键活性中间体的形成,降低了催化活化H202的活化能,进而大幅度提高其催化烯烃环氧化反应性能,最高增幅达到约50%。构建新氢键的反应活性中间体在钛硅分子筛/H202催化体系中具有普适性。并且,采用水热法或浸渍法,可在TS-1分子筛孔道中成功原位构筑了氢键受体,具有良好的水热稳定性(≤373K)。
     (4)采用环己酮氨肟化浆态床连续反应考察了TS-1分子筛的结构稳定性。结果表明,在单程运行周期内,TS-1分子筛具有较高的结构稳定性,骨架Ti中心的流失极少,有机物堵塞孔道是造成TS-1分子筛失活的主要原因。加入多孔硅物种可吸附部分有机物,减缓了TS-1分子筛吸附有机物的速率,进而提高其运行周期。
Since TS-1was successfully synthesized in1983, titanosilicate zeolite has been widely studied as a heterogeneous catalyst in various hydrocarbon oxidations. TS-1/H2O2catalytic system has also been carried out in green industrial application of the bulk chemicals. The research of catalytic nature in the TS-1/H2O2catalytic reaction system has provided scientific basis to fully utilization of the catalytic properties. In this dissertation, based on the structural factors of TS-1/H2O2on the catalytic oxidation activity, we have a systematic research on the TS-1/H2O2catalytic reaction system, such as synthesis of high-perfrmance TS-1, formation of high-coordination Ti species with high catalytic activity, build of intermediates with double hydrogen bonds and the structural stability of TS-1. Through the study of the TS-1/H2O2catalytic reaction system, the further understanding was attempted to gain about the influencing factors to the catalytic activity.
     In the first part, starting from the exploration on the formation law of Ti active site in the systhesis of TS-1, TS-1has been successfully synthesized in ultralow molar ratio of TPAOH/SiO2(0.08and0.065) by two-step and multistep hydrolysis process through a controlled hydrolysis process. We found that the catalytic activity depends on hydrosis of the first step. Combined characterization of XRD, UV-Vis, SEM, FT-IR, BET and TG shows that currently synthesized TS-1samples have the typical "blackberry" morphology, similar to that of the conventional TS-1synthesized at a high molar ratio of TPAOH/SiO2(>0.18). The hydrolysis of the organic esters is the key step in the synthesis of TS-1. Fast hydrolysis of a small part of TEOS at a high concentration of TPA+in the first step induces more nuclei In the second step, the silicon source could be either organic or inorganic silicon, which broadens synthetic raw sources of TS-1. This strategy can greatly reduce waste emissions and the synthesis cost of TS-1, which is suitable for synthesis of TS-1on an industrial scale.
     In the second part, there are three coordinated state of Ti species in TS-1zeolite. Part of framework four-coordination Ti(IV) species are inverted to framework high-coordination Ti(VI) species through hydrothermal posttreatment. Combined characterization of UV-Vis, UV-Raman, FT-IR,29Si MAS NMR shows that the vibration peak at700cm-1excited at244nm laser line in UV-Raman spectra are assigned to the characteristic peak of hexacoordinated Ti species (TiO6). The absorption band at~280nm in UV-Vis spectra and the vibration peak at130,650,670cm"1excited at325nm laser line in UV-Raman spectra are related with the formation of framework high-coordination Ti. Moreover, the intensity of the absorption band at210nm in UV-Vis spectra and the vibration peak at960and1125cm-1in UV-Raman spectra are decreased. The catalytic results show that the framework high-coordination Ti species exhibite more excellent catalytic activity in H2O2activation, thereby significantly enhancing its catalytic epoxidation of alkene. The TON in epoxidation is also2-3times higher than the four-coordination Ti(IV) species.
     In the third part, the stability of the intermediate Ti-Oα-Oβ-Hend is related with the catalytic activity of titanosilicates. A new intermediate with double hydrogen bonds is formed in a catalytic system over titanosilicates by introducing a hydrogen bond acceptor, and the catalytic activity is enhanced significantly as a result of the new intermediate with suitable stability. Furthermore, DFT result indicates the possibility of double hydrogen-banding reactive intermediates. The result of reaction kinetics shows that the apparent activation energy of Ti-Oα-Oβ-Hend formed over TS-1was decreased when the hydrogen bond acceptor was introduced into the catalytic oxidation system. Its catalytic performance is improved and the relatively highest increase is almost50%. This new intermediate is universal in titanosilicate/H2O2catalytic system. Except that, the new intermediate with good hydrothermal stability(≤373K) could successfully be in situ built in the pores of TS-1by hydrothermal or impregnation method.
     In the fourth part, we examine the structural stability of TS-1using the continuous reaction of cyclohexanone ammoximation. The results shows that in the single-run period, TS-1has a high structural stability with little loss of framework Ti species, and the main reason of TS-1inactivation is due to blockage of the pore. The introduced porous silicon may adsorb part of organic compounds, further to slo w the adsorption rate of TS-1, and to improve its operating life.
引文
[1]谢在库,等著.新结构高性能多孔催化材料[M].北京:中国石化出版社,2009:1-20.
    [2]刘志成,王仰东,谢在库.从工业催化角度看分子筛催化剂未来发展的若干思考[J].催化学报,2012,33:22-38.
    [3]徐如人,等著.分子筛与多孔材料化学M].北京:科学出版社,2004,13-23.
    [4]M. TARAMASSO, G. PEREGO, B. NOTARI. Preparation of porous crystalline synthetic material comprised of silicon and titanium oxides:US,4410501A[P], 1983-10-18.
    [5]M. MOLINER, A. CORMA. Advances in the synthesis of titanosilicates:From the medium pore TS-1 zeolite to highly-accessible ordered materials[J]. Micro. Meso. Mater.,2014,189:31-40.
    [6]http://www.iza-structure.org/databases.
    [7]P. RATNASAMY, D. SRINIVAS AND H. KNOZINGER, Active sites and reactive intermediates in titanium silicate molecular sieves[J]. Adv. Catal.,2004,48:1-169.
    [8]高焕新,索继栓,吕功煊,等.钛硅分子筛(Ts-1)的合成、结构表征及催化性能研究[J].分子催化,1996,10:25-32.
    [9]C. Perego, A. Carati, P. Ingallina, M. A. Mantegazza, G Bellussi, Production of titanium containing molecular sieves and their application in catalysis[J]. Appl. Catal. A-Gen.,2001,221:63-72.
    [10]周继承,王祥生.催化新材料-钛硅分子筛合成及应用研究[J].化学进展,1998,10:381-394
    [11]周继承,王祥生,无机钛硅原料体系合成TS-1催化丙烯环氧化反应[J].分子催化,2000,14:363-367.
    [12]S. GONTIER, A. TUEL. Synthesis of titanium silicalite-1 using amorphous SiO2 as silicon source[J]. Zeo lites,1996,16:184-195.
    [13]张义华,王祥生,郭新闻,等.以TiCl4醇溶液作钛源在水热体系中合成钛硅 分子筛TS-1[J].燃料化学学报,2000,28:550-554.
    [14]M. WANG, J. ZHOU, G MAO, et al. Synthesis of TS-1 from an inorganic reactant system and its catalytic properties for allyl chloride epoxidation[J]. Ind. Eng. Chem. Res.,2012,51:12730-12738
    [15]M. F. BORIN, T. DA SILVA, R. F. FELISBINO, et al. Synthesis of TS-1 molecular sieves using a new Ti source[J]. J. Phys. Chem. B,2006,110: 15080-15084.
    [16]C. S. CUNDY, P. A. COX. The hydrothermal synthesis of zeolites:Precursors, intermediates and reaction mechanism[J]. Micro. Meso. Mater.,2005,82:1-78.
    [17]L. TOSHEVA, V. P. VALTCHEV. Nanozeolites:synthesis, crystallization mechanism, and applications [J]. Chem. Mater.,2005,17:2494-2513.
    [18]C. S. CUNDY, J. O. FORREST, R J. PLAISTED. Some observations on the preparation and properties of colloidal silicalites. Part I:synthesis of colloidal silicalite-1 and titanosilicalite-1 (TS-1) [J]. Micro. Meso. Mater.,2003,66:143-156.
    [19]X. DENG, Y. WANG, L. SHEN, et al. Low-cost synthesis of titanium silicalite-1 (TS-1) with highly catalytic oxidation performance through a controlled hydrolysis process[J]. Ind. Eng. Chem. Res.,2013,52:1190-1196.
    [20]许震中,曹贵平.含钛分子筛的合成与应用研究进展[J].精细石油化工,2005,4:55-60.
    [21]张海娇.钛硅分子筛合成新方法及其性能研究[D].上海:华东师范大学,2007.
    [22]郑玉婷.钛硅分子筛TS-1合成新方法及其应用的研究[D].上海华东师范大学,2010.
    [23]B KRAUSHAR, J H C.VAN HOOFF. A new method for the preparation of titanium-silicalite (TS-1) [J]. Catal. Lett.,1988,1:81-84.
    [24]YK. HWANG, J. CHANQ S. PARK, et al. Microwave febrication of MFI zeolite crystals with a fibrous morphology and their applications[J]. Angew. Chem. Int. Ed., 2005,44:556-560.
    [25]C. XU, T. JIN, S. H. JHUNQ et al. Hydrophobicity and catalytic properties of Ti-MFI zeolites synthesized by microwave and conventional heating[J]. Catal. Today, 2006,111:366-372.
    [26]H. JIN, N. JIANQ S. PARK. Nanoarchitectured synthesis of TS-1 depending on microwave power[J]. J. Phy. Chem. Solids,2008,69:1136-1138.
    [27]S. PARK, K. CHOI. Green catalysis by microwave synthesized nanostructured materials[J]. J. Phy. Chem. Solids,2008,69:1501-1504.
    [28]H. JIN, N. JIANG, S. OH, S. PARK. Epoxidation of linear olefins over stacked TS-1 zeolite catalysts[J]. Top. Catal.,2009,52:169-177.
    [29]JIN, H., E. A. PRASETYANTO, N. JIANQ et al, Length dependency of hydrocarbon adsorption on nanostacked MFI zeolite by tracer chromatography[J]. Appl. Surf. Sci.,2010,256:5508-5512.
    [30]杨迎春,李鹤,何登华,等.微波合成TS-1分子筛的催化性能研究[J].化学学报,2006,64:1411-1415.
    [31]W. S. AHN, K. K. KANG. K. Y. KIM. Synthesis of TS-1 by microwave heating of temp late-impregnated SiO2-TiO2 xerogels[J]. Catal. Lett.,2001,72:229-232.
    [32]A. CORMA. From microporous to mesoporous molecular sieve materials and their use in catalysis[J]. Chem. Rev.,1997,97:2373-2420.
    [33]L. H. Chen, X. Y. Li, J. C. Rooke, et al, Hierarchically structured zeolites: synthesis, mass transport properties and applications [J]. J. Mater. Chem.,2012,22: 17381-17403.
    [34]J. CEJKA, A. CORMA, S. ZONES, Zeolites and catalysis:synthesis, reactions and applications[M]. Weinheim:Wiley-VCH Verlag GmbH & Co. KGaA,2010, 1-911.
    [35]I. SCHMIDT, A. KROGH, K. WIENBERG, et al. Catalytic epoxidation of alkenes with hydrogen peroxide over first mesoporous titanium-containing zeolite[J]. Chem. Commun.,2000,21:2157-2158.
    [36]H. C. XIN, J. ZHAO, S. T. XU, et al, Enhanced catalytic oxidation by hierarchically structured TS-1 zeolite[J]. J. Phys. Chem. C,2010,114:6553-6559.
    [37]K. JOHANNSEN, A. BOISEN, M. BRORSON, et al, Preparation and characterization of mesoporous TS-1 catalyst[J]. Stud. Surf. Sci. Catal.,2002,142: 109-115.
    [38]A. BOISEN, I. SCHMIDT, A. CARLSSON, et al. TEM stereo-imaging of mesoporous zeolite single crystals[J]. Chem. Commun.,2003,8:958-959.
    [39]Y. TAO, H. KANOH, K. KANEKO, ZSM-5 monolith of uniform mesoporous channels[J]. J. Am, Chem. Soc.,2003,125:6044-6045.
    [40]Y. M. FANG, H. Q. HU. Mesoporous TS-1:Nanocasting synthesis with CMK-3 as template and its performance in catalytic oxidation of aromatic thiophene[J]. Catal. Commun.,2007,8:817-820.
    [41]W. H. WANG, G LI, W. G LI, et al. Synthesis of hierarchical TS-1 by caramel templating[J]. Chem. Commun.,2011,47:3529-3531.
    [42]M. CHOI, H.S. CHO, R. SRIVASTAVA,et al. Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunable mesoporosity[J]. Nat. Mater.,2006,5: 718-723.
    [43]V. N. SHETTI, J. KIM, R. SRIVASTAVA, et al. Assessment of the mesopore wall catalytic activities of MFI zeolite with mesoporous/microporous hierarchical structures[J]. J. Catal.,2008,254:296-303.
    [44]Z. L. ZHAO, Y. M. LIU, H. H. WU, et al. Hydrothermal synthesis of mesoporous titanosilicate with the aid of amphiphilic organosilane[J]. J Porous Mater., 2010,17:399-408.
    [45]D. SERRANO, R. SANZ, P. PIZARRO, et al. Turning TS-1 zeolite into a highly active catalyst for olefin epoxidation with organic hydroperoxides[J]. Chem. Commun.,2009,1407-1409.
    [46]P. Y. CHAO, S. T. TSAI, T. C. TSAI, et al. Phenol hydroxylation over alkaline treated TS-1 catalysts [J]. Top. Catal.,2009,52:185-192.
    [47]Y. GOA, H. YOSHITAKE, P. WU, T. TATSUMI. Controlled detitanation of ETS-10 materials through the post-synthetic treatment and their applications to the liquid-phase epoxidation of alkenes[J]. Micro. Meso. Mater.,2004,70:93-101.
    [48]P. WU, H. XU, L. XU, et al. MWW-type titanosilicate:synthesis, structural modification and catalytic applications to green oxidations[M]. SpringerBriefs in Molecular Science 2013,1-131.
    [49]M. CHOI, K. NA, J. KIM, et al. Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts[J]. Nature,2009,461:246.
    [50]K. NA, C. JO, J. KIM, et al. MFI titanosilicate nanosheets with single-unit-cell thickness as an oxidation catalyst using peroxides[J]. ACS Catal.,2011,1:901-907.
    [51]J. G. WANG, L. XU, K. ZHANG, et al. Multilayer structured MFI-type titano silicate:Synthesis and catalytic properties in selective epoxidation of bulky molecules[J]. J Catal.,2012,288:16-23.
    [52]P. WU, T. TATSUMI, T. KOMATSU, T. YASHIMA. A novel titanosilicate with MWW structure. I. hydrothermal synthesis, elimination of extraframework titanium, and characterizations[J]. J. Phys. Chem.B,2001,105:2897-2905.
    [53]P. WU, T. TATSUMI, T. KOMATSU, et al. A novel titanosilicate with MWW structure Ⅱ. catalytic properties in the selective oxidation of a kenes[J]. J. Catal.,2001, 202:245-255.
    [54]谢伟,刘月明,汪玲玲,吴鹏.具有MWW结构钛硅分子筛的研究进展[J].催化学报,2010,31:502-513.
    [55]P. WU, D. NUNTASRI, J. RUAN, et al. Delamination of Ti-MWW and high efficiency in epoxidation of alkenes with various molecular sizes[J]. J. Phys. Chem. B, 2004,108:19126-19131.
    [56]L. WANG, Y. WANG, Y. LIU, et al. Post-transformation of MWW-type lamellar precursors into MCM-56 analogues[J]. Micro. Meso. Mater.,2008,113:435-444.
    [57]S. Y. KIM, H. J. BAN, W. S. AHN. Ti-MCM-36:a new mesoporous epoxidation catalyst[J]. Catal. Lett.,2007,113:160-164.
    [58]L. L. WANG, Y. WANG, Y. M. LIU, et al. Alkoxysilylation of Ti-MWW lamellar precursors into inter layer pore-expanded titanosilicates[J]. J Mater. Chem.,2009,19: 8594-8602.
    [59]W. FAN, P. WU, S. NAMBA, et al. A titanosilicate that is structurally analogous to an MWW-type lamellar precursor[J]. Angew. Chem.,2004,116:238-242.
    [60]X. FANG, Q. WANG, A. ZHENG, et al. Fluorine-planted titanosilicate with enhanced catalytic activity in alkene epoxidation with hydrogen peroxide[J]. Catal. Sci. Technol, 2012,2:2433-2435.
    [61]X.FANQ Q. WANQ A. ZHENQ et al. Post-synthesis, characterization and catalytic properties of fluorine-planted MWW-type titanosilicate[J]. Phys. Chem. Chem. Phys.,2013,15:4930-4938.
    [62]M. A. CAMBLOR, A. CORMA, A.MARTINEZ et al. Synthesis of a titaniumsilicoaluminate isomorphous to zeolite beta and its application as a catalyst for the selective oxidation of large organic molecules[J]. J. Chem. Soc., Chem. Commun.,1992,589-590.
    [63]T. DE BAERDEMAEKER, B. STEENACKERS, D. DE VOS. Ti-substituted zeolite Beta:a milestone in the design of large pore oxidation catalysts[J]. Chem. Commun.,2013,49:7474-7476.
    [64]Y. GO A, P. WU, T. TATSUMI. Influence of fluorine on the catalytic performance of Ti-Beta zeolite[J]. J. Phys. Chem. B,2004,108:4242-4244.
    [65]H. XU, Y. T. ZHANQ H. H. WU, et al. Postsynthesis of mesoporous MOR-type titano silicate and its unique catalytic properties in liquid-phase oxidations[J]. J Catal., 2011,281:263-272.
    [66]丁姜宏,徐乐,徐浩,等.Ti-MOR钛硅分子筛催化甲乙酮氨氧化反应性能[J]. 催化学报,2013,34:243-250.
    [67]J. S. REDDY, R. KUMAR, P. RATNASAMY. Titanium silicate-2:synthesis, characterization and catalytic properties[J]. Appl. Catal.,1990,58:L1-L4.
    [68]A. TUEL. Synthesis, characterization, and catalytic properties of the new TiZSM-12 zeolite[J]. Zeolites,1995,15:236-242.
    [69]D. P. SERRANO, H. X. LI, M E. DAVIS. Synthesis of titanium-containing ZSM-48[J]. J. Chem. Soc, Chem. Comnun,1992,745-747.
    [70]A. CORMA, M. T. NAVARRO, J. P. PARIENTE. Synthesis of an ultralarge pore titanium silicate isomorphous to MCM-41 and its application as a catalyst for selective oxidation of hydrocarbons[J]. J Chem. Soc., Chem. Commun.,1994, 147-148.
    [71]B. L. NEWALKAR, J. OLANREWAJU, S. KOMARNERI. Direct synthesis of titanium-substituted mesoporous SBA-15 molecular sieve under microwave-h ydrothermal conditions[J]. Chem. Mater.,2001,13:552-557.
    [72]P. T. TANEV, M. CHIBWE, T. J. PINNAVAIA. Titanium-containing mesoporous molecular sieves for catalytic oxidation of aromatic compounds[J]. Nature,1994,368: 321-323.
    [73]P. WU, T. TATSUMI, T. KOMATSU, et al. Postsynthesis, characterization, and catalytic properties in alkene epoxidation of hydrothermally stable mesoporous Ti-SBA-15[J]. Chem. Mater.,2002,14:1657-1664.
    [74]马乾志,郭杨龙,王艳芹,等.含MFI结构单元的介孔Ti-HMS-1的合成、表征及催化氧化性能[J].无机材料学报,2007,22:943-948.
    [75]J. BU, H. K. RHEE. Silylation of Ti-MCM-41 by trimethylsilyl-imidazole and its effect on the olefin epoxidation with aqueous H2O2[J]. Catal. Lett.,2000,66:245-249.
    [76]M. G CLERICI, O. A. KHOLDEEVA. Liquid phase oxidation via heterogeneous catalysis:organic synthesis and industrial applications[M]. John Wiley & Sons,2013: 1-549.
    [77]蒋见.分子氧环氧化烯烃多相催化剂的研究[D].兰州:兰州大学,2010.
    [78]N. YAP, R.P. ANDRES, W.N. DELGASS. Reactivity and stability of Au in and on TS-1 for epoxidation of propylene with H2 and O2[J]. J. Catal.,2004,226: 156-170.
    [79]Y. A. KALVACHEV, T. HAYASHI, S. TSUBOTA, et al. Vapor-phase selective oxidation of aliphatic hydrocarbons over gold deposited on mesoporous titanium silicates in the co-presence of oxygen and hydro gen[J]. J. Catal.,1999,186:228-233.
    [80]L. CUMARANATUNGE, W. N. DELGASS. Enhancement of Au capture efficiency and activity of Au/TS-1 catalysts for propylene epoxidation[J]. J. Catal., 2005,232:38-42.
    [81]A. PRIETO, M. PALOMINO, U. DIAZ, et al. Propylene epoxidation with in situ generated H2O2 in supercritical conditions [J]. Catal. Today,2014,227:87-95.
    [82]Y. CHENEVIERE, F. CHIEUX, V. CAPS, et al. Synthesis and catalytic properties of TS-1 with mesoporous/microporous hierarchical structures obtained in the presence of amphiphilic organosilanes[J]. J. CataL,2010,269:161-168.
    [83]G. DEO, A. M. TUREK, I. E. WACHS, et al. Characterization of Titania silicalites[J]. Zeolites,1993,13:365-373.
    [84]汪玲玲.Ti-MWW钛硅分子筛的后处理改性、表征及催化性能[D].上海:华东师范大学,2008.
    [85]于剑昆,于林红.异丙苯过氧化氢作氧化剂合成环氧丙烷的新技术[J].化学推进剂与高分子材料,2007,5(5):1-8.
    [86]王桂茹.催化剂与催化作用[M].大连:大连理工大学出版社,2007:1-253.
    [87]王桂茹.钛硅沸石分子筛(TS-1)的合成物化特性及催化反应[J].精细石油化工,1993,1:12-17.
    [88]R. MILLINI, E. P. MASSARA, G. PEREGO, et al. Framework composition of titanium silicalite-1 [J]. J. Catal.,1992,137:497-503.
    [89]W. B. FAN, R. G. DUAN, T. YOKOI, et al. Synthesis, crystallization mechanism, and catalytic properties of Titanium-rich TS-1 free of extraframework titanium species[J]. J. Am. Chem. Soc.,2008,130:10150-10164.
    [90]G ZHU, L. NI, W. QI, S. Ding, et al. Synthesis and morphology research of framework Ti-rich TS-1 containing no extraframework Ti species in the presence of CO2[J]. Inorg. Chem. Commun.,2014,40:129-132.
    [91]S. S. SONG, P. F. WANG, Y. HE, et al. Preparation, characterization and catalytic properties of Ti-rich Ti-YNU-1[J]. Microp.Meso. Mater.,2012,159:74-80.
    [92]J. SU, G XIONQ J. C. ZHOU, et al. Amorphous Ti species in titanium silicalite-1 structural features, chemical properties, and inactivation with sulfosalt[J]. J. Catal,2012,288:1-7.
    [93]P. WU, T. TATSUMI. A novel titanosilicate with MWW structure:Ⅲ. Highly efficient and selective production of glycidol through epoxidation of allyl alcohol with H2O2[J]. J. Catal.,2003,214:317-326.
    [94]A. J. H. P. VAN DER POL, A. J. VERDUYN, J. H. C.VAN HOOFF, Why are some titanium silicalite-1 samples active and others not? [J]. Appl. Catal. A,1992,92: 113-130.
    [95]易国斌,郭建维,王乐夫,等.晶粒大小对钛硅分子筛TS-1催化氧化活性的影响[J].材料科学与工程学报,2005,23:373.
    [96]L. L. WANG Y. M. LIU, W. XIE, et al. Improving the hydrophobicity and oxidation activity of Ti-MWW by reversible structural rearrangement[J]. J. Phys. Chem. C,2008,112:6132-6138.
    [97]D. R. C. HUYBRECHTS, I. VAESEN, H. X. LI, et al. Factors influencing the catalytic activity of titanium silicalites in selective oxidations[J]. Catal. Lett.,1991,8: 237-244.
    [98]H. ICHIHASHI, H. SATO. The development of new heterogeneous catalytic processes for the production of ε-capro lactam[J]. Appl. Catal. A:Gen.,2001,221: 359-366.
    [99]Y. WANG, Y. M. LIU, X. H. LI, et al. Intermolecular condensation of ethylenediamine to 1,4-diazabicyclo [2,2,2] octane over TS-1 catalysts[J]. J.CataL, 2009,266:258-267.
    [100]刘文欢,郭鹏,苏际,等.钛硅分子筛TS-1的酸性表征及酸催化性能[J].催化学报,2009,3:482-484.
    [101]庄建勤,严志敏,刘秀梅,等.TS-1分子筛酸性的固体核磁表征[J].分子催化,2002,16:69-74.
    [102]G THIELE. Process for the production of epoxides from olefins:US, 5675026[P],1997-10-7.
    [103]G L. CROCCO, J.G ZAJACEK. Process for titanium silicalite-catalyzed epoxidation:US,5646314[P],1997-7-8.
    [104]V. ARCA, P. FURLAN, R BUZZONI. Process for the preparation of olefinic epoxides:US,6103915[P],2000-8-15.
    [105]H. LI, Q. LEI, X. M. ZHANG, et al. Nitro gen-incorporated TS-1 zeolite: Synthesis, characterization and application in the epoxidation of propylene [J]. Micro. Meso. Mater.,2012,147:110-116.
    [106]M. G CLERICI G. BELLUSSI, U. ROMANO. Synthesis of propylene oxide from propylene and hydrogen peroxide catalyzed by titanium silicalite[J]. J. Catal. 1991,129:159-167.
    [107]T. MASCHMEYER, F. REY, G SANKAR. Heterogeneous catalysts obtained by grafting metallocene complexes onto mesoporous silica[J]. Nature,1995,378: 159-162.
    [108]C. S. CUNDY, J. FORREST. Some observations on the preparation and properties of colloidal silicalites:Part II:Preparation, characterisation and properties of colloidal silicalite-1, TS-1, silicalite-2 and TS-2[J]. Micro. Meso. Mater.,2004,72: 67-80.
    [109]G RICCHIARDI, A. DAMIN, S. BORDIGA, et al. Vibrational structure of titanium silicate catalysts, a spectroscopic and theoretical study[J]. J. Am. Chem. Soc, 2001,123:11409-11419.
    [110]M. A. CAMBLOR, A. CORMA, J. PEREZ-PARIENTE. Infrared spectroscopic investigation of titanium in zeolites. A new assignment of the 960 cm-1 band[J]. J. Chem. Soc., Chem. Commun,1993,557-558.
    [111]K. S. SMIRNOV, B. VAN DE GRAAF. On the origin of the band at 960 cm-1 in the vibrational spectra of Ti-substituted zeolites[J]. Micro. Material,1996,7:133-138.
    [112]D. R. C. HUYBRETCHS, P. L. BURSKENS. Physicochemical and catalytic properties of titanium silicalites[J]. J. Mol, Catal.,1992,71:129-147.
    [113]J. KLASS, K. KULAWIK, G. SCHULZ-EKLOFF. Comparative spectroscopic study of TS-1 and zeolite-hosted extraframework titanium oxide dispersions[M], Stud. Surf. Sci. Catal.,1994,84:2261-2268.
    [114]D. P. SERRANO, M. A. UGUINA, G OVEJERO, et al. Evidence of solid-solid transformations during the TS-1 crystallization from amorphous wetness impregnated SiO2-TiO2 xerogels[J]. Micro. Mater.,1996,7:309-321.
    [115]S. BORDIGA, F. BOSCHERINI, S. COLUCCIA, et al. XAFS study of Ti-silicalite:structure of framework Ti(IV) in presence and in absence of reactive molecules (H2O, NH3) [J]. Catal. Lett.,1994,26:195-208.
    [116]K. CHAUDHARI, D. SRINIVAS, P. RATNASAMY. Reactive oxygen species in titanosilicates TS-1 and TMCM-41:an in situ EPR spectroscopic study[J]. J. Catal., 2001,203:25-32.
    [117]D. SRINIVAS, P. MANIKANDAN, S.C. LAHA, et al. Reactive oxo-titanium species in titanosilicate molecular sieves:EPR investigations and structure-activity correlations[J]. J. Catal.,2003,217:160-171.
    [118]T. BLASCO, M. A. CAMBLOR, A. CORMA, et al, Direct synthesis and characterization of hydrophobic aluminum-free Ti-Beta zeolite[J]. J. Phys. Chem. B, 1998,102:75-88.
    [119]C. LI, G XIONQ Q. XIN, et al. UV Resonance Raman spectroscopic identification of titanium atoms in the framework of TS-1 zeolite[J]. Angew. Chem. Int. Ed.,1999,38:2220-2222.
    [120]熊光,李灿.紫外拉曼光谱及其在催化研究中的应用[J].光散射学报,2000,12(2):71-76.
    [121]C. LI, G. XIONQ J. K. LIU, et al. Identifying framework titanium in TS-1 zeolite by UV resonance Raman spectroscopy [J]. J. Phys. Chem. B,2001,105: 2993-2997
    [122]F. T. FAN, Z. C. FENG, C. LI. UV Raman spectroscopic studies on active sites and synthesis mechanisms of transition metal-containing microporous and mesoporous materials [J]. Accounts of Chemical Research,2010,43:378-387.
    [123]范峰滔,徐倩,夏海岸,等.催化材料的紫外拉曼光谱研究[J].催化学报,2009,30:717-739.
    [124]C. LAMBERTI, S. BORDIGA, D. ARDUINO, et al. Evidence of the presence of two different framework Ti (IV) species in Ti-silicalite-1 in vacuo conditions:an EXAFS and a photo luminescence study[J]. J. Phys. Chem. B,1998,102:6382-6390.
    [125]A. S. SOULT, D. D. POORE, E. I. MAYO, et al. Electronic spectroscopy of the titanium centers in titanium silicalite[J]. J. Phys. Chem. B,2001,105:2687-2693.
    [126]D. GLEESON, G SANKAR, C. RICHARD A. CATLOW, et aL The architect-ture of catalytically active centers in Titanosilicate (TS-1) and related selective-oxidation catalysts[Jj. Phys. Chem. Chem. Phys.,2000,2:4812-4817.
    [127]L. LE NOC, D. TRONG ON, S. SOLOMYKINA,et al.Characterization of two different framework titanium sites and quantification of extra-framework species in TS-1 silicalites[J]. Stud. Surf Sci. CataL,1996,101:611-621.
    [128]D. H. WELLS, JR., W. N. DELGASS, K. T. THOMSON. Evidence of Defect-promoted reactivity for epoxidation of propylene in titanosilicate (TS-1) catalysts-a DFT study[J]. J. Am. Chem. Soc.,2004,126:2956-2962.
    [129]D. H. WELLS, JR., A. M. JOSHI, W. N. DELGASS, et al. A Quantum chemical study of comparison of various propylene epoxidation mechanisms using H2O2 and TS-1 catalyst[J]. J. Phys. Chem. B,2006,110:14627-14639.
    [130]G PETRINI, A. CESANA, G DE ALBERTI, et al. Deactivation phenomena on Ti-Silicalite[M]. Stud. Surf Sci. Catal.,1991,68:761-766.
    [131]B. NOTARI. Titanium silicalites[J]. Catal. Today,1993,18:163.
    [132]Z. LIU, R.J. DAVIS. Investigation of the structure of microporous Ti-Si mixed oxides by X-ray, UV reflectance, FT-Raman, and FT-IR spectroscopies[J]. J. Phys. Chem.,1994,98:1253-1261.
    [133]T. BLASCO, M. A. CAMBLOR, A. CORMA, et al. The state of Ti in titanoaluminosilicates isomorphous with zeolite Beta[J]. J. Am. Chem. Soc.,1993, 115:11806-11813.
    [134]J. ZHANG, M. J. LI, Z. C. FENG, et al. UV Raman spectroscopic study on TiO2. I. phase transformation at the surface and in the bulk[J]. J. Phys. Chem. B,2006,110: 927-935.
    [135]J. ZHANG, Q. XU, M. J. LI, et al.UV Raman spectroscopic study on TiO2. Ⅱ. effect of nanoparticle size on the outer-inner phase trans forma tions[J]. J. Phys. Chem. C,2009,113:1698-1704.
    [136]D. TRONG ON, L. BONNEVIOT, A. BITTAR, et al. Titanium sites in Titanium silicalites:An XPS, XANES and EXAFS study[J]. J. Mol. Catal.,1992,74:233-246.
    [137]S. VETTER, G. SCHULZ-EKLOFF, K. KULAWIK, et aL On the para/ortho product ratio of phenol and anisole hydroxylation over titanium silicalite-1[J]. Chem. Eng. Technol.,1994,17:348-353.
    [138]姚明恺,杨俊霞,赵松,等.固定床反应器中Ti-MWW催化H2O2分解[J].催化学报,2009,30:590-594.
    [139]张义华,郭新闻,王祥生,等.TS-1分子筛中非骨架钛物种(TiO2)x对丙烯环氧化反应的影响[J].石油学报(石油加工),2000,16:41-46.
    [140]J.F. BEN GO A, N.G GALLEGOS, S.G. MARCHETTI, et al. Influence of TS-1 structural properties and operation conditions on benzene catalytic oxidation with H2O2[J]. Micro. Meso. Mater.,1998,24:163-172.
    [141]D. R. C. HUYBRECHTS, L. DE BRUYCKER, P. A. JACOBS. Physico-chemical and catalytic properties of Titanium silicalites[J]. J. Mol. Catal.,1992,71: 129-147.
    [142]G N. VAYSSILOV. Structural and physicochemical features of Titanium silicalites[J]. CataL Rev.:Sci. and Eng.,1997,39:209-251.
    [143]C. B. KHOUW, C. B. DARTT, J. A. LABINGER, et al. Studies on the catalytic-oxidation of alkanes and alkenes by titanium silicates[J]. J. Catal.,1994,149: 195-205.
    [144]H. LIU, G. Z. LU, Y. L. GUO, Y. Guo, et al. Effect of pretreatment on properties of TS-1/diatomite catalyst for hydro xylation of phenol by H2O2 in fixed-bed reactor[J]. Catal. Today,2004,93-95:353-357.
    [145]Y. Y. QI, C. B. YE, Z. ZHUANQ et al. Preparation and evaluation of titanium silicalite-1 utilizing pretreated titanium dioxide as a titanium source[J]. Micro. Meso. Mater.,2011,142:661-665.
    [146]L. BALDUCCI, R UNGARELLI, D. BIANCHI, et al. Activation method of titanium silicalite:US,6288004B1[P],2001-9-11.
    [147]L. BALDUCCI, D. BIANCHI, R. BORTOLO, et aL Direct oxidation of benzene to phenol with hydrogen peroxide over a modified titanium silicalite[J]. Angew. Chem. Int. Ed.,2003,42:937-4940.
    [148]D. BIANCHI, L. BALDUCCI, R BORTOLO, et al. Oxidation of benzene to phenol with hydrogen peroxide catalyzed by a modified titanium silicalite (TS-1B) [J]. Adv. Synth. Catal.,2007,349:979-986.
    [149]D. BIANCHI, R. D'ALOISIO, R. BORTOLO, et al. Oxidation of mono-and bicyclic aromatic compounds with hydrogen peroxide catalyzed by titanium silicalites TS-1 and TS-1B[J]. Appl. Catal. A:Gen.,2007,327:295-299.
    [150]Q. GUO, K. J. SUN, Z. C. FENQ et al. A thorough investigation of the active titanium species in TS-1 zeolite by in situ UV resonance raman spectroscopy[J]. Chem, Eur. I,2012,43:13854-13860.
    [151]F. Z. ZHANG, X. W. GUO, X. S. WANG, et al. The active sites in different TS-1 zeolites for propylene epoxidation studied by ultraviolet resonance Raman and ultraviolet visible absorption spectroscopies[J]. Catal. Lett.,2001,72:235-239.
    [152]邢其毅,等.基础有机化学[M].高等教育出版社,2005.
    [153]G BELLUSSI, A. CARATI, M. G. CLERICI, et al. Reactions of titanium silicalite with protic molecules and hydrogen peroxide[J]. J. Catal.,1992,133: 220-230.
    [154]M. G CLERICI, P. INGALLINA. Epoxidation of lower olefins with hydrogen peroxide and titanium silicalite[J]. J. Catal.,1993,140:71-83.
    [155]A. CORMA, P. ESTEVE, A. MARTINEZ. Solvent effects during the oxidation of olefins and alcohols with hydrogen peroxide on Ti-beta catalyst:the influence of the hydrophilicity-hydrophobicity of the zeolite[J]. J. Catal.,1996,161:11-19.
    [156]M. G CLERICI. The role of the solvent in TS-1 chemistry:active or passive? An early study revisited[J]. Top. Catal.,2001,15:257-263.
    [157]P. E. SINCLAIR, C.& A. CATLOW. Quantum chemical study of the mechanism of partial oxidation reactivity in titanosilicate catalysts:active site formation, oxygen transfer, and catalyst deactivation[J]. J. Phys. Chem. B,1999,103: 1084-1095.
    [158]F. BONINO, A. DAMIN, G RICCHIARDI, et al. Ti-peroxo species in the TS-1/H2O2/H2O system[J]. J. Phys. Chem. B,2004,108:3573-3583.
    [159]W. Y LIN, H. FREI, Photochemical and FT-IR probing of the active site of hydrogen peroxide in ti silicalite sieve[J]. J. Am. Chem. Soc.,2002,124:9292-9298.
    [160]S. BORDIGA, A. DAMIN, F. BONINO, et al. Single site catalyst for partial oxidation reaction:TS-1 case study[J]. Top. Organomet. Chem.,2005,16:37-68.
    [161]S. BORDIGA, A. DAMIN, F. BONINO, et al. Resonance Raman effects in TS.1:the structure of Ti(Ⅳ) species and reactivity towards H2O, NH3 and H2O2:an in situ study [J]. Phys. Chem. Chem. Phys.,2003,5:4390-4393.
    [162]S. BORDIGA, F. BONINO, A. DAMIN, et al. Reactivity of Ti(Ⅳ) species hosted in TS-1 towards H2O2-H2O solutions investigated by ab initio cluster and periodic approaches combined with experimental XANES and EXAFS data:a review and new highlights[J]. Phys. Chem. Chem. Phys.,2007,9:4854-4878.
    [163]S. BORDIGA, A. DAMIN, F. BONINO, et al. The structure of the peroxo species in the TS-1 catalyst as investigated by resonant Raman spectroscopy[J]. Angew. Chem. Int. Ed.,2002,41:4734-4737.
    [164]L. L. WANG, G. XIONG, J. SU, et al. In situ UV Raman spectroscopic study on the reaction intermediates for propylene epoxidation on TS-1[J]. J. Phys. Chem. C, 2012,116:9122-9131.
    [165]G. TOZZOLA, M. A. MANTEGAZZA, G. RANGHINO, et al. On the structure of the active site of Ti-silicalite in reactions with hydrogen peroxide:A vibrational and computational study[J]. J. Catal.,1998,179:64-71.
    [166]E. KARLSEN, K. SCHOFFEL. Titanium-silicalite catalyzed epoxidation of ethylene with hydrogen peroxide. A theoretical study[J]. Catal. Today,1996,32: 107-114.
    [167]W. PANYABURAPA, T. NANOK, J. LMTRAKUL. Epoxidation reaction of unsaturated hydrocarbons with H2O2 over defect TS-1 investigated by ONIOM method:formation of active sites and reaction mechanisms[J]. J. Phys. Chem. C,2007, 111:3433-3441.
    [168]H. MUNAKATA, Y. OUMI, A. MIYAMOTO. A DFT study on peroxo-complex in titanosilicate catalyst:hydrogen peroxide activation on titanosilicalite-1 catalyst and reaction mechanisms for catalytic olefin epoxidation and for hydroxylamine formation from ammo nia[J]. J. Phys. Chem. B,2001,105:3493-3501.
    [169]G. SANKAR, J. M. THOMAS, C. R. A. CATLOW, et al. The three-dimensional structure of the titanium-centered active site during steady-state catalytic epoxidation of alkenes[J]. J. Phys. Chem. B,2001,105:9028-9030.
    [170]C. Q. CHU, H. T. ZHAO, Y. Y. QI, et al. Density functional theory studies on hydroxylamine mechanism of cyclohexanone ammoximation on titanium silicalite-1 catalyst[J]. J Mol. Model,2013,19:2217-2224.
    [171]P. WU, T. TATSUMI. Preparation of B-free Ti-MWW through reversible structural conversion[J]. Chem. Commun,2002,1026-1027.
    [172]W. B. FAN, P. WU, S. NAMBA, et al. A titanosilicate that is structurally analogous to an MWW-Type lamellar precursor[J]. Angew. Chem. Int Ed.,2004,43: 236-240.
    [173]王振东.整体式结构分子筛的制备、表征及其催化性能研究[D],上海:华东师范大学,2012.
    [174]D. P. SERRANO, G CALLEJA, J. A. BOTAS, et al. Characterization of adsorptive and hydrophobic properties of silicalite-1, ZSM-5, TS-1 and Beta zeolites by TPD techniques [J]. Sep. Purif. Technol.,2007,54:1-9.
    [175]W. FAN, P. WU, T. TATSUMI. Unique solvent effect of microporous crystalline titanosilicates in the oxidation of 1-hexene and cyclohexene[J]. J. CataL,2008,256: 62-73.
    [176]Y. WANQ M. LIN, A. TUEL. Hollow TS-1 crystals formed via a dissolution-recrystallization process[J]. Micro. Meso. Mater.,2007,102:80-85.
    [177]Y. ZUO, X. WANG, X. GUO. Synthesis of Titanium Silicalite-1 with small crystal size by using mother liquid of Titanium Silicalite-1 as seed[J]. Ind. Eng. Chem. Res.,2011,50:8485-8491.
    [178]G LI, X. GUO, X. WANG, et al. Synthesis of titanium silicalites in different template systems and their catalytic performance[J]. Appl. Catal., A:Gen.,1999,185: 11-18.
    [179]A. VASILE, A. M. BUSUIOC-TOMOIAGA. A new route for the synthesis of titanium silicalite-1[J]. Mater. Res. Bull.,2012,47:35-41.
    [180]T. IWASAKI, M. ISAKA, H. NAKAMURA, et al. Synthesis of titanosilicate TS-1 crystals via mechanochemical route using low cost materials[J]. Micro. Meso. Mater.,2012,150:1-6.
    [181]A.TUEL. Crystallization of titanium silicalite-1(TS-1) from gels containing hexanediamine and tetrapropylammonium bromide[J]. Zeolites,1996,16:108-117.
    [182]李钢,郭新闻,王祥生,等.TPABr-TEAOH体系中TS-1的合成、表征及催化性能[J].催化学报,1998,19:371-374.
    [183]A. THANGARAJ, M. J. EAPEN, S. SIVASANKER, et al. Studies on the synthesis of titanium silicalite, TS-1[J]. Zeolites,1992,12:943-950.
    [184]J. Q. ZHUANQ D. MA, Z. M. YAN,et al. Effect of acidity in TS-1 zeolites on product distribution of the styrene oxidation reaction[J]. Appl. Catal. A:Gen.,2004, 258:1-6.
    [185]G RICCHIARDI, J. SAUER. Influence of Ti substitution on the 29Si NMR spectra of silicalite. A computational study[J]. Zeitschrift fur Physikalische Chemie, 1999,209:21-32.
    [186]M. BOUDART. in Handbook of Heterogeneous Catalysis[M]. ed. G Ertl, H. Knozinger and J. Weitkamp, Weinheim:Wiley-VCH,1997.
    [187]T. BLIGAARD, J. K. N(?)RSKOV, S. DAHL,et al. The Br(?)nsted-Evans-Polanyi relation and the volcano curve in heterogeneous catalysis[J]. J. Catal.,2004,224: 206-217.
    [188]N. U. ZHANPEISOV, M. ANPO. Hydrogen bonding versus coordination of adsorbate molecules on Ti-Silicalites:a density functional theory study[J]. J. Am. Chem. Soc.,2004,126:9439-9444.
    [189]Y. KUWAHARA, K. NISHIZAWA, T. NAKAJIMA, et al. Enhanced catalytic activity on titanosilicate molecular sieves controlled by cation-π interactions[J]. J. Am. Chem. Soc.,2011,133:12462-12465.
    [190]J. STARE, N. J. HENSON, J. ECKERT. Mechanistic aspects of propene epoxidationby hydro gen peroxide. Catalytic role of water molecules, external electric field, and zeolite framework of TS-1[J]. J. Chem. Inf. Model.,2009,49:833-846.
    [191]S. B. SHIN, D. CHAD WICK. Kinetics of heterogeneous catalytic epoxidation of propene with hydrogen peroxide over titanium silicalite (TS-1) [J]. Ind. Eng. Chem. Res.,2010,49:8125-8134.
    [192]G Q. WU, Y. Q. WANG, L. N. WANG, et al. Epoxidation of propylene with H2O2 catalyzed by supported TS-1 catalyst in a fixed-bed reactor:Experiments and kinetics[J]. Chem. Eng. J.,2013,215-216:306-314.
    [193]G F. THIELE, E. ROLAND. Propylene epoxidation with hydrogen peroxide and titanium silicalite catalyst:Activity, deactivation and regeneration of the catalyst[J]. J. Mol. Catal. A:Chem.,1997,117:351-356.
    [194]闫海生,王祥生,刘靖,等.丙烯环氧化反应中TS-1失活的研究[J].石油学报(石油加工),2002,18:46-51.
    [195]A. CORMA, G HERMENEGILDO. Lewis acids as catalysts in oxidation reactions:From homogeneous to heterogeneous systems[J]. Chem. Rev.,2002,102: 3837-3892.
    [196]Q. F. WANG, L. WANG, J. X. CHEN, et al. Deactivation and regeneration of titanium silicalite catalyst for epoxidation of propylene[J]. J. Mol. Catal. A:Chem., 2007,273:73-80.
    [197]刘学武.丙烯环氧化钛硅分子筛催化剂的失活、再生及反应过程的研究[D].大连:大连理工大学,2005.
    [198]A. TUEL, S. MOUSSA-KHOUZAMI, Y BEN TAARIT, et al. Hydroxylation of phenol over TS-1:surface and solvent effects[J]. J. Mol. Catal.,1991,68:45-52.
    [199]W. UWE. Influence of pore and crystal size of crystalline titanosilicates on phenol hydroxylation in different solvents[J]. J. Catal.,2001,203:201-212.
    [200]R. KLAEWKLA, S. KULPRATHIPANJA, P. RANGSUNVIGIT, et al. Kinetic modeling of phenol hydroxylation using titanium and tin silicalite-ls:Effect of tin incorporation [J]. Chem Eng. J.,2007,129:21-30.
    [201]刘银乾,李永祥,吴巍,等.环己酮氨肟化反应体系中TS-1分子筛失活原因的研究[J].石油炼制与化工,2002,33:41-44.
    [202]张向京,王燕,杨立斌,等.环己酮氨肟化反应中TS-1催化剂的积炭失活[J].催化学报,2006,27:427-432.
    [203]X. ZHANQ Y. WANG, F. XIN. Coke deposition and characterization on titanium silicalite-1 catalyst in cyclohexanone ammoximation[J]. Appl. Catal. A:Gen., 2006,307:222-230.
    [204]姜锋,傅送保,汤琴,等.环己酮氨肟化工艺中钛硅分子筛流失问题的研究[J].化工进展,2003,22:1116-1118.
    [205]S. ZHAO, W. XIE, J. X. YANG, et al. An investigation into cyclohexanone ammoximation over Ti-MWW in a continuous slurry reactor[J]. Appl. Catal. A:Gen., 2011,394:1-8.
    [206]A. CESANA, M.A. MANTEGAZZA, M. PASTORI. A study of the organic by-products in the cyclohexanone ammoximation[J]. J Mol. Catal. A:Chem.,1997, 117:367-373.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700