糖类及其复合物的定性定量分析新方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
糖基化是蛋白质转录后修饰最重要的几种形式之一其研究在生命科学中有重要意义。然而,糖组学的研究长期以来一直由于缺乏适当的分析方法,限制了其的发展,针对这一问题本文在寡聚糖的定性与定量分析方法的研究方面做了一些探索。本论文主要的研究内容如下:
     1.发展了基于在线全甲基化衍生-固相萃取的快速质谱检测方法。选用全甲基化衍生稳定糖链末端的唾液酸结构,并且便于检测糖链的连接顺序和糖苷键位置,并使用了固相衍生的方法加快反应速度同时减少副反应的发生。本文提出将碳纳米管作为全甲基化糖链的吸附剂,在强碱性的条件下实现了在线萃取,并且能够在不改变衍生条件的情况下与液相或者固相衍生反应联用。
     2.应用基于在线衍生的快速质谱检测方法对具有相同多肽序列的糖蛋白的糖链结构进行了检测。使用人免疫球蛋白G的N-糖链验证了本方法定性检测复杂糖链的可靠性,并定性检测了不同重组促血红蛋白生长素的N-糖链结构。结果表明,由于来自不同细胞系的两个促血红蛋白生长素具有不同的糖基化形式,N-糖链的结构有所不同。
     3.使用反应解吸附电喷雾离子化-多级质谱实现了尿样中类固醇化合物及其糖基化产物的直接快速检测。在离子化过程中,喷雾溶液中的羟胺与样品中的待分析物的酮羰基发生离子分子反应,反应产物被多级质谱检测并得以确认。类固醇的糖基化产物在聚四氟乙烯的表面可以不用任何水解处理而直接被检测出。反应解吸附电喷雾离子化大大提高了离子化效率,降低了样品的基体效应。
     4.研究了与毛细管电泳结合的糖类化合物的新型催化发光定量检测器。催化化学发光是由糖在多孔三氧化二铝表面的催化氧化反应产生的。对于缺乏紫外吸收的糖类化合物,比如蔗糖、α-乳糖、麦芽糖、棉仔糖、半乳糖、木糖和葡萄糖,本检测器能够很好地实现定量检测。本方法提供了一个不需要衍生而直接检测的方案,也不需要加入离子生色团,相比安培检测器能为毛细管电泳提供更灵活的分离条件。化学发光检测器具有较低的基线漂移、干扰小、线性范围宽且具有长使用寿命等特点。
Glycosylation is considered to be the one of the most common types of post-translational modifications of proteins. Glycosylated proteins are ubiquitous components of extracellular matrices and cellular surfaces where their oligosaccharide moieties are implicated in a wide range of cell-cell and cell-matrix recognition events. The development of the glycomics is far hinged since the lack of proper analytical methods. In the present dissertation, investigations of both quality and quantity analysis methods for glycomics were studied. The main contents of the present dissertation are as follows:
     1. A new approach for mass spectrometry detection method of glycan was developed based on on-line permethylation-SPE technique. Permethylation derivatization is preferred to stabilize the sialic acid residues and facilitate the determination of branching and interglycosidic linkages. Solid phase permethylation was carried out to fasten the derivatization procedure and to minimize the side reactions. For the first time carbon nanotubes were used as the absorbent for permethylated glycans at extremely harsh condition. This on-line SPE could be easily combined to either liquid or solid phase permethylation without changing permethylation reaction condition.
     2. A new strategy was investigated for the glycan analysis of proteins with the same peptide sequence based on the on-line permethylation coupling to mass spectrometry detection. N-glycans released from human Immune Globin G were used to evaluate the reliability of the present method. Then structures of N-glycans form different recombinant EPOs were identified. Different N-glycans were identified for the two recombinant EPOs tested, illustrating the different glycosylations of the two recombinant EPOs since they were from the different cell lines.
     3. Fast screening for anabolic steroids and glycosteroid in raw urine was achieved using reactive desorption electrospray ionization (reactive DESI) and tandem mass spectrometry. Spray solutions containing hydroxylamine allow heterogeneous reactions of hydroxylamine with the carbonyl group of the steroids during the ionization process. The ion/molecule reaction product and the oxime formed by its dehydration were observed using reactive DESI. The glycosteroid was ionized intact without hydrolysis from polytetrafluoroethylene. Reactive DESI provided significant improvements in ionization efficiency of these steroids in raw undiluted urine as compared to conventional DESI; Suppression effects due to the sample matrix were minimal and the urine matrix had no deleterious effect.
     4. An aerosol chemiluminescent (CL) detector coupled to CE for quantity analysis of saccharides analysis has been investigated. The CL emission was generated due to the catalyzing oxidization of saccharides on the surface of porous alumina. The saccharides such as sucrose,α-lactose, maltose, reffinose, galactose, xylose and glucose with only weak UV absorbance can be successfully detected with this CE detector. This detector offers advantage of direct detection of the analytes without involving in a derivatization procedure. In comparing with indirect UV detector, the addition of ionic chromophore into the electrophoresis buffer is therefore no longer needed. Aerosol CL detector is also a robust means over a relative wide range of pH, while high pH value was requested by using amperometric detection. The low baseline shift, low interference, relative wide linear range and long lifetime also make CE-aerosol chemiluminescent detector a potential means for routine analysis of saccharides.
引文
[1] 方福德. 分子生物学前沿技术: 北京医科大学, 中国协和医科大学联合出版社; 1998.
    [2] 方福德. 功能基因组学研究. 科技导报 2000(03):11-13.
    [3] 阮 庆 国 , 陆 春 叶 . 基 因 突 变 分 析 技 术 综 述 . 国 外 医 学 : 遗 传 学 分 册 1998;21(005):225-231.
    [4] 何大澄, 肖雪媛. 差异蛋白质组学及其应用. 北京师范大学学报: 自然科学版 2002;38(004):558-562.
    [5] Wilkins M, Sanchez J, Gooley A, et al. Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnol Genet Eng Rev 1996;13:19-50.
    [6] Wasinger V, Cordwell S, Cerpa-Poljak A, et al. Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium. Electrophoresis 1995;16(7):1090-1094.
    [7] Rademacher T, Parekh R, Dwek R. Glycobiology. Annual review of biochemistry 1988;57:785-838.
    [8] Molinari M. Glycoproteins form mixed disulphides with oxidoreductases during folding in living cells. Nature 1999;402:90-93.
    [9] Aluwihare L I, Repeta D J, Chen R F. A major biopolymeric component to dissolved organic carbon in surface sea water. Nature 1997;387(6629):166-169.
    [10] Discovery D. Entering the total-genomic era. Nature Genetics 1997;15:111-112.
    [11] Rudd P M, Guile G R, Kuster B, et al. Oligosaccharide sequencing technology. Nature 1997;388(6638):205-207.
    [12] Kaji H, Saito H, Yamauchi Y, et al. Lectin affinity capture, isotope-coded tagging and mass spectrometry to identify N-linked glycoproteins. Nature Biotechnology 2003;21(6):667-672.
    [13] Lucas R, Magez S, Deleys R, et al. Mapping the Lectin-Like Activity of Tumor-Necrosis-Factor. Science 1994;263(5148):814-817.
    [14] Dwek R A. Glycobiology - More Functions for Oligosaccharides. Science 1995;269(5228):1234-1235.
    [15] Roberge J Y, Beebe X, Danishefsky S J. A Strategy for a Convergent Synthesis of N-Linked Glycopeptides on a Solid Support. Science 1995;269(5221):202-204.
    [16] Wyss D F, Choi J S, Li J, et al. Conformation and Function of the N-Linked Glycan in the Adhesion Domain of Human Cd2. Science 1995;269(5228):1273-1278.
    [17] Lander E. The new genomics: global views of biology. Science 1996;274(5287):536-539.
    [18] Venkataraman G, Shriver Z, Raman R, et al. Sequencing complex polysaccharides. Science 1999;286(5439):537-542.
    [19] Dell A, Morris H R. Glycoprotein structure determination mass spectrometry. Science 2001;291(5512):2351-2356.
    [20] Feinberg H, Mitchell D A, Drickamer K, et al. Structural basis for selective recognition of oligosaccharides by DC-SIGN and DC-SIGNR. Science 2001;294(5549):2163-2166.
    [21] Helenius A, Aebi M. Intracellular functions of N-linked glycans. Science 2001;291(5512):2364-2369.
    [22] Kissin Y V. Chemical mechanisms of catalytic cracking over solid acidic catalysts: Alkanes and alkenes. Catalysis Reviews-Science and Engineering 2001;43(1-2):85-146.
    [23] Plante O J, Palmacci E R, Seeberger P H. Automated solid-phase synthesis of oligosaccharides. Science 2001;291(5508):1523-1527.
    [24] Rudd P M, Elliott T, Cresswell P, et al. Glycosylation and the immune system. Science 2001;291(5512):2370-2376.
    [25] Stevens J, Blixt O, Tumpey T M, et al. Structure and receptor specificity of the hemagglutinin from an H5N1 influenza virus. Science 2006;312(5772):404-410.
    [26] Gill S R, Pop M, DeBoy R T, et al. Metagenomic analysis of the human distal gut microbiome. Science 2006;312(5778):1355-1359.
    [27] Hoffmeister K M, Josefsson E C, Isaac N A, et al. Glycosylation restores survival of chilled blood platelets. Science 2003;301(5639):1531-1534.
    [28] 武金霞, 赵晓瑜. 糖蛋白的结构, 功能及分析方法. 生物技术通报 2004(001):31-34.
    [29] Stewart L, Klinman J. Dopamine Beta-Hydroxylase Of Adrenal Chromaffin Granules: Structure And Function. Annual Review of Biochemistry 1988;57(1):551-590.
    [30] 沈付生, SF R. 对肾上腺嗜铬颗粒膜上—潜在的脑啡肽前体加工酶的研究. 生理科学进展 1990;21(003):260-261.
    [31] Sharon N, Lis H. Glycoproteins: research booming on long-ignored ubiquitous compounds. Molecular and Cellular Biochemistry 1982;42(3):167-187.
    [32] 孙册, 莫汉庆. 糖蛋白与蛋白聚糖结构, 功能和代谢. 生物化学丛书, 代谢 (二) 北京: 科学出版社 1988:119-132.
    [33] 王克夷. 糖类结构研究的若干进展. 生物化学与生物物理进展 1991;18(006):405-408.
    [34] 陈刚, 白泉, 耿信笃. 伴刀豆球蛋白亲和色谱柱的制备及其在糖蛋白核糖核酸酶 B 结构分析中的应用. 色谱 2006;24(005):425-431.
    [35] 张 春 , 刘 艺 . 唾 液 酸 的 生 物 学 功 能 及 临 床 意 义 . 哈 尔 滨 医 科 大 学 学 报 1990;24(006):500-502.
    [36] 尹 利 辉 , 薛 俊 . 糖 蛋 白 , 寡 糖 和 糖 肽 的 毛 细 管 电 泳 分 析 . 分 析 化 学 1996;24(012):1464-1468.
    [37] Jung A, Johnson P, Eastman J, et al. Protein content and freezing avoidance properties of the subdermal extracellular matrix and serum of the Antarctic snailfish, Paraliparis devriesi. Fish Physiology and Biochemistry 1995;14(1):71-80.
    [38] Phillips M, Nudelman E, Gaeta F, et al. ELAM-1 mediates cell adhesion by recognition of a carbohydrate ligand, sialyl-Lex. Science 1990;250(4984):1130.
    [39] Suzuki Y, Ito T, Suzuki T, et al. Sialic Acid Species as a Determinant of the Host Range of Influenza A Viruses. Journal of Virology 2000;74(24):11825-11831.
    [40] Wasylnka J, Simmer a M, Moore M. Differences in sialic acid density in pathogenic and non-pathogenic Aspergillus species. Soc General Microbiol; 2001.
    [41] Lord M, Jolliffe N, Marsden C, et al. Ricin: Mechanisms of Cytotoxicity. Toxicological Reviews 2003;22(1):53-64.
    [42] Kohler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 1975;256(5517):495-497.
    [43] Freeze H. Modifications of lysosomal enzymes in Dictyostelium discoideum. Molecular and Cellular Biochemistry 1986;72(1):47-65.
    [44] 张树政. 糖生物学: 生命科学中的新前沿. 生命的化学 1999;19(003):103-107.
    [45] 任姝萍. 糖蛋白与疾病的研究进展. 合肥学院学报: 自然科学版 2004;14(004):19-22.
    [46] 黄光佛, 卿胜波. 多糖类生物医用材料—甲壳素和壳聚糖的研究及应用. 高分子通报 2001(003):43-49.
    [47] 张 松 , 徐 章 荫 . 多 糖 类 医 药 生 物 活 性 研 究 进 展 . 中 国 生 化 药 物 杂 志 1996;17(006):272-275.
    [48] 肖 振 圭 , 张 霆 . 糖 药 物 学 —21 世 纪 生 化 药 物 开 发 的 热 点 . 四 川 医 学 2001;22(005):488-490.
    [49] Goodarzi M, Turner G. Reproducible and sensitive determination of charged oligosaccharides from haptoglobin by PNGase F digestion and HPAEC/PAD analysis: glycan composition varies with disease. Glycoconjugate Journal 1998;15(5):469-475.
    [50] Tretter V, Altmann F, Marz L. Peptide-N4-(N-acetyl-beta-glucosaminyl) asparagine amidase F cannot release glycans with fucose attached alpha 1----3 to the asparagine-linked N-acetylglucosamine residue. FEBS Journal 1991;199(3):647-652.
    [51] Trimble R, Tarentino A. Identification of distinct endoglycosidase (endo) activities in Flavobacterium meningosepticum: endo F1, endo F2, and endo F3. Endo F1 and endo H hydrolyze only high mannose and hybrid glycans. Journal of Biological Chemistry 1991;266(3):1646-1651.
    [52] 韩榜成. 糖苷酶的检测方法及临床应用. 国外医学: 临床生物化学与检验学分册 1995;16(002):79-82.
    [53] Patel T, Bruce J, Merry A, et al. Use of hydrazine to release in intact and unreduced form both N-and O-linked oligosaccharides from glycoproteins. Biochemistry 1993;32(2):679-693.
    [54] 张 剑 波 , 田 庚 元 . 寡 糖 分 离 和 结 构 分 析 进 展 . 生 物 化 学 与 生 物 物 理 进 展 1998;25(002):114-119.
    [55] 李远川. 糖科学与糖工程的相互联系. 生命的化学 1998;18(001):43-46.
    [56] 王丹, 刘卫宁. 阿霉素肾病大鼠及急性血清病家兔血清唾液酸含量观察. 中国病理生理杂志 1997;13(004):404-407.
    [57] Swinney K, Pennington J, Bornhop D. Ion Analysis Using Capillary Electrophoresis with Refractive Index Detection. Microchemical Journal 1999;62(1):154-163.
    [58] Kuno A, Uchiyama N, Koseki-Kuno S, et al. Evanescent-field fluorescence-assisted lectin microarray: a new strategy for glycan profiling. Nature Methods 2005;2:851-856.
    [59] Baldwin R P. Electrochemical determination of carbohydrates: Enzyme electrodes and amperometric detection in liquid chromatography and capillary electrophoresis. Journal of Pharmaceutical and Biomedical Analysis 1999;19(1-2):69-81.
    [60] Soga T, Serwe M. Determination of carbohydrates in food samples by capillary electrophoresis with indirect UV detection. Food Chemistry 2000;69(3):339-344.
    [61] Wang Y, Tan J, Sutton-Smith M, et al. Modeling a human genetic disease involving a glycosylation defect in the mouse: Conservation of N-glycan function and insights into CDG-IIa pathogenesis. Glycobiology 2001;11(10):874-874.
    [62] Apweiler R, Hermjakob H, Sharon N. On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochimica Et Biophysica Acta-General Subjects 1999;1473(1):4-8.
    [63] Varki A. Biological Roles of Oligosaccharides - All of the Theories Are Correct. Glycobiology 1993;3(2):97-130.
    [64] Kubelka V, Altmann F, Marz L. The asparagine-linked carbohydrate of honeybee venom hyaluronidase. Glycoconjugate Journal 1995;12(1):77-83.
    [65] Altmann F, Schweiszer S, Weber C. Kinetic comparison of peptide: N-glycosidases F and A reveals several differences in substrate specificity. Glycoconjugate Journal 1995;12(1):84-93.
    [66] Butler M, Quelhas D, Critchley A, et al. Detailed glycan analysis of serum glycoproteins of patients with congenital disorders of glycosylation indicates the specific defective glycan processing step and provides an insight into pathogenesis. Glycobiology 2003;13(9):601-622.
    [67] Royle L, Mattu T, Hart E, et al. An analytical and structural database provides a strategy for sequencing O-glycans from microgram quantities of glycoproteins. Anal Biochem 2002;304(1):70-90.
    [68] Steel L. A proteomic approach for the discovery of early detection markers of hepatocellular carcinoma. Disease Markers 2001;17(3):179-189.
    [69] Claverol S, Burlet-Schiltz O, Girbal-Neuhauser E, et al. Mapping and Structural Dissection of Human 20 S Proteasome Using Proteomic Approaches*. Molecular & Cellular Proteomics 2002;1(8):567-578.
    [70] Gasteiger E, Gattiker A, Hoogland C, et al. ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Research 2003;31(13):3784-3788.
    [71] Hirabayashi J. Lectin-based structural glycomics: Glycoproteomics and glycan profiling. Glycoconjugate Journal 2004;21(1):35-40.
    [72] Chrispeels M, Raikhel N. Lectins, Lectin Genes, and Their Role in Plant Defense. The Plant Cell Online 1991;3(1):1-9.
    [73] Sheldon P, Keen J, Bowles D. Purification and characterization of N-glycanase, a concanavalin A binding protein from jackbean (Canavalia ensiformis). Biochem J 1998;330:13-20.
    [74] Fujihara J, Hieda Y, Xue Y, et al. Single-step Purification by Lectin Affinity and Deglycosylation Analysis of Recombinant Human and Porcine Deoxyribonucleases I Expressed in COS-7 Cells. Biotechnology Letters 2006;28(4):215-221.
    [75] Pilobello K, Krishnamoorthy L, Slawek D, et al. Development of a lectin microarray for the rapid analysis of protein glycopatterns. Chembiochem 2005;6(6):985-989.
    [76] Ebe Y, Kuno A, Uchiyama N, et al. Application of Lectin Microarray to Crude Samples: Differential Glycan Profiling of Lec Mutants. Journal of Biochemistry 2006;139(3):323.
    [77] Otto A, Fichtner I, Klose J. Analysis of mouse a-haptoglobin chain by lectin affinoblotting detection. Electrophoresis 2001;22:3038-3042.
    [78] Cummings R, Kornfeld S. Characterization of the structural determinants required for the high affinity interaction of asparagine-linked oligosaccharides with immobilized Phaseolus vulgaris leukoagglutinating and erythroagglutinating lectins. Journal of Biological Chemistry 1982;257(19):11230-11234.
    [79] Karcher U, Schroder H, Haslinger E, et al. Primary structure of the heterosaccharide of the surface glycoprotein of Methanothermus fervidus. Journal of Biological Chemistry 1993;268(36):26821-26826.
    [80] Young N, Brisson J, Kelly J, et al. Structure of the N-Linked Glycan Present on Multiple Glycoproteins in the Gram-negative Bacterium, Campylobacter jejuni. Journal of Biological Chemistry 2002;277(45):42530-42539.
    [81] Dorland L, van Halbeek H, Vleigenthart J, et al. Primary structure of the carbohydrate chain of soybean agglutinin. A reinvestigation by high resolution 1H NMR spectroscopy. Journal of Biological Chemistry 1981;256(15):7708-7711.
    [82] Harvey D J, Naven T J P, Kuster B, et al. Comparison of fragmentation modes for the structural determination of complex oligosaccharides ionized by matrix-assisted laser desorption/ionization mass spectrometry. Rapid Communications in Mass Spectrometry 1995;9(15):1556-1561.
    [83] Harvey D J, Bateman R H, Green M R. High-energy collision-induced fragmentation of complex oligosaccharides ionized by matrix-assisted laser desorption/ionization mass spectrometry. Journal of Mass Spectrometry 1997;32(2):167-187.
    [84] Weiskopf A S, Vouros P, Harvey D J. Characterization of oligosaccharide composition and structure by quadrupole ion trap mass spectrometry. Rapid Communications in Mass Spectrometry 1997;11(14):1493-1504.
    [85] Harvey D J. Ionization and fragmentation of N-linked glycans as silver adducts by electrospray mass spectrometry. Rapid Communications in Mass Spectrometry 2005;19(4):484-492.
    [86] Harvey D J, Rudd P M, Bateman R H, et al. Examination of Complex Oligosaccharides by Matrix-Assisted Laser-Desorption Ionization Mass-Spectrometry on Time-of-Flight and Magnetic-Sector Instruments. Organic Mass Spectrometry 1994;29(12):753-766.
    [87] Harvey D J. Matrix-assisted laser desorption/ionization mass spectrometry of carbohydrates. Mass Spectrometry Reviews 1999;18(6):349-450.
    [88] Ahn Y H, Yoo J S. Malononitrile as a new derivatizing reagent for high-sensitivity analysis of oligosaccharides by electrospray ionization mass spectrometry. Rapid Communications in Mass Spectrometry 1998;12(24):2011-2015.
    [89] Harvey D J. Collision-induced fragmentation of negative ions from N-linked glycans derivatized with 2-aminobenzoic acid. Journal of Mass Spectrometry 2005;40(5):642-653.
    [90] Harvey D J. Halogeno-substituted 2-aminobenzoic acid derivatives for negative ion fragmentation studies of N-linked carbohydrates. Rapid Communications in Mass Spectrometry 2005;19(3):397-400.
    [91] Harvey D J. Ionization and collision-induced fragmentation of N-linked and related carbohydrates using divalent canons. Journal of the American Society for Mass Spectrometry 2001;12(8):926-937.
    [92] Chen R, Eshleman J R, Brodsky R A, et al. Glycophosphatidylinositol-anchored protein deficiency as a marker of Mutator phenotypes in cancer. Cancer Research 2001;61(2):654-658.
    [93] Rudd P M, Wormald M R, Harvey D J, et al. Oligosaccharide analysis and molecular modeling of soluble forms of glycoproteins belonging to the Ly-6, scavenger receptor, and immunoglobulin superfamilies expressed in Chinese hamster ovary cells. Glycobiology 1999;9(5):443-458.
    [94] Purdie T, Irvine J C. The alkylation of sugars. Journal of the Chemical Society 1903;83:1021-1037.
    [95] Weiskopf A S, Vouros P, Harvey D J. Electrospray ionization-ion trap mass spectrometry for structural analysis of complex N-linked glycoprotein oligosaccharides. Analytical Chemistry 1998;70(20):4441-4447.
    [96] Muhlecker W, Gulati S, McQuillen D P, et al. An essential saccharide binding domain for the mAb 2C7 established for Neisseria gonorrhoeae LOS by ES-MS and MSn. Glycobiology 1999;9(2):157-171.
    [97] Reinhold V N, Sheeley D M. Detailed characterization of carbohydrate linkage and sequence in an ion trap mass spectrometer: Glycosphingolipids. Analytical Biochemistry 1998;259(1):28-33.
    [98] Sheeley D M, Reinhold V N. Structural characterization of carbohydrate sequence, linkage, and branching in a quadrupole ion trap mass spectrometer: Neutral oligosaccharides and N-linked glycans. Analytical Chemistry 1998;70(14):3053-3059.
    [99] Viseux N, deHoffmann E, Domon B. Structural analysis of permethylated oligosaccharides by electrospray tandem mass spectrometry. Analytical Chemistry 1997;69(16):3193-3198.
    [100] Ashline D, Singh S, Hanneman A, et al. Congruent strategies for carbohydrate sequencing. 1. Mining structural details by MSn. Analytical Chemistry 2005;77(19):6250-6262.
    [101] Schwartz J C, Senko M W, Syka J E P. A two-dimensional quadrupole ion trap mass spectrometer. Journal of the American Society for Mass Spectrometry 2002;13(6):659-669.
    [102] Peterman S M, Mulholland J J. A novel approach for identification and characterization of glycoproteins using a hybrid linear ion trap/FT-ICR mass spectrometer. Journal of the American Society for Mass Spectrometry 2006;17(2):168-179.
    [103] Ciucanu I, Kerek F. A Simple and Rapid Method for the Permethylation of Carbohydrates. Carbohydrate Research 1984;131(2):209-217.
    [104] Ciucanu I, Costello C E. Elimination of oxidative degradation during the per-O-methylation of carbohydrates. Journal of the American Chemical Society 2003;125(52):16213-16219.
    [105] Domon B, Costello C E. A Systematic Nomenclature for Carbohydrate Fragmentations in Fab-Ms Ms Spectra of Glycoconjugates. Glycoconjugate Journal 1988;5(4):397-409.
    [106] Kang P, Mechref Y, Klouckova I, et al. Solid-phase permethylation of glycans for mass spectrometric analysis. Rapid Communications in Mass Spectrometry 2005;19(23):3421-3428.
    [107] Winearls C, Oliver D, Pippard M, et al. Effect of human erythropoietin derived from recombinant DNA on the anaemia of patients maintained by chronic haemodialysis. Lancet 1986;2(8517):1175-1178.
    [108] Audran M, Gareau R, Matecki S, et al. Effects of erythropoietin administration in training athletes and possible indirect detection in doping control. Med Sci Sports Exerc 1999;31(5):639-645.
    [109] Sawka M, Convertino V, Eichner E, et al. Blood volume: importance and adaptations to exercise training, environmental stresses, and trauma/sickness. Med Sci Sports Exerc 2000;32(2):332-348.
    [110] Connes P, Caillaud C, Mercier J, et al. Injections of recombinant human erythropoietin increases lactate influx into erythrocytes. Journal of Applied Physiology 2004;97(1):326-332.
    [111] Lai P, Everett R, Wang F, et al. Structural characterization of human erythropoietin. Journal of Biological Chemistry 1986;261(7):3116-3121.
    [112] Davis J, Arakawa T, Strickland T, et al. Characterization of recombinant human erythropoietin produced in Chinese hamster ovary cells. Biochemistry 1987;26(9):2633-2638.
    [113] Storring P, Gaines Das R. The International Standard for Recombinant DNA-derived Erythropoietin: collaborative study of four recombinant DNA-derived erythropoietins and two highly purified human urinary erythropoietins. Journal of Endocrinology 1992;134(3):459-484.
    [114] Goto M, Akai K, Murakami A, et al. Production of Recombinant Human Erythropoietin in Mammalian Cells: Host–Cell Dependency of the Biological Activity of the Cloned Glycoprotein. Bio/Technology 1988;6(1):67-71.
    [115] Ekblom B, Berglund B. Effect of erythropoietin administration on mammal aerobic power. Scand J Med Sci Sports 1991;1:88-93.
    [116] Storring P, Tiplady R, Gaines Das R, et al. Lectin-binding assays for the isoforms of human erythropoietin: comparison of urinary and four recombinant erythropoietins. Journal of Endocrinology 1996;150(3):401-412.
    [117] 奚永志. 重组人红细胞生成素的临床应用. 中华血液学杂志 1993;14(005):272-274.
    [118] Souillard A, Audran M, Bressolle F, et al. Pharmacokinetics and pharmacodynamics of recombinant human erythropoietin in athletes. Blood sampling and doping control. British Journal of Clinical Pharmacology 1996;42(3):355-364.
    [119] Chikuma M, Masuda S, Kobayashi T, et al. Tissue-specific regulation of erythropoietin production in the murine kidney, brain, and uterus. American Journal of Physiology- Endocrinology And Metabolism 2000;279(6):1242-1248.
    [120] Conconi F. et al1 Detection of erythropoietin administration in sports1Blood samples in doping control-Second international symposium on drugs in sports. Hemmersbach P &Birkeland KI (eds1) 1993;133.
    [121] Gareau R, Brisson G, Chenard C, et al. Total fibrin and fibrinogen degradation products in urine: a possible probe to detect illicit users of the physical-performance enhancer erythropoietin? Horm Res 1995;44(4):189-192.
    [122] 林钧材. 血液生物化学(第一版). 北京; 1988.
    [123] Bressolle F, Audran M, Gareau R, et al. Comparison of a Direct and Indirect Population Pharmacodynamic Model: Application to Recombinant Human Erythropoietin in Athletes. Journal of Pharmacokinetics and Pharmacodynamics 1997;25(3):263-275.
    [124] Parisotto R, Gore C, Emslie K, et al. A novel method utilising markers of altered erythropoiesis for the detection of recombinant human erythropoietin abuse in athletes. Haematologica 2000;85(6):564-572.
    [125] Lasne F, de Ceaurriz J. Recombinant erythropoietin in urine. Nature 2000;405(6787):635.
    [126] Watson E, Yao F. Capillary electrophoretic separation of human recombinant erythropoietin (r-HuEPO) glycoforms. Anal Biochem 1993;210(2):389-393.
    [127] Abellan R, Ventura R, Remacha A. Intermittent hypoxia exposure in a hypobaric chamber and erythropoietin abuse interpretation. Journal of Sports Sciences 2007;1:10.
    [128] Lasne F, Martin L, de Ceaurriz J, et al. bGenetic DopingQ with erythropoietin cDNA in primate muscle is detectable. Molecular Therapy 2004;10(3):409.
    [129] Haupt H, Rovere G. Anabolic steroids: a review of the literature. American Journal of Sports Medicine 1984;12(6):469.
    [130] Maravelias C, Dona A, Stefanidou M, et al. Adverse effects of anabolic steroids in athletes. A constant threat. Toxicol Lett 2005;158(3):167-175.
    [131] Deventer K, Van Eenoo P, Delbeke F. Screening for amphetamine and amphetamine-type drugs in doping analysis by liquid chromatography/mass spectrometry. Rapid Commun Mass Spectrom 2006;20:877–882.
    [132] Segura J. Doping control in sports medicine. Ther Drug Monit 1996;18(4):471-476.
    [133] Gaillard Y, Vayssette F, Pépin G. Compared interest between hair analysis and urinalysis in doping controls Results for amphetamines, corticosteroids and anabolic steroids in racing cyclists. Forensic Science International 2000;107(1-3):361-379.
    [134] Hatton C, Catlin D, Starcevic B. Improved Method of Detection of Testosterone Abuse by Gas Chromatography/Combustion/Isotope Ratio Mass Spectrometry Analysis of Urinary Steroids. Journal of Mass Spectrometry 1996;31:169-176.
    [135] Prevalence H, Steroids A. Hormone Abuse in Adolescents and Adults: A Review of Current Knowledge. The Endocrinologist 2005;15(2):115-125.
    [136] Sjovall J, Axelson M. General and Selective Isolation Procedures for GC-MC Analysis of Steroids in Tissues and Body-Fluids. Journal of Steroid Biochemistry and Molecular Biology 1979;11(1):129-134.
    [137] Chung B C, Choo H Y P, Kim T W, et al. Analysis of Anabolic-Steroids Using Gc/Ms with Selected Ion Monitoring. Journal of Analytical Toxicology 1990;14(2):91-95.
    [138] Daeseleire E, Vandeputte R, Van Peteghem C. Validation of multi-residue methods for the detection of anabolic steroids by GC-MS in muscle tissues and urine samples from cattle. Analyst 1998;123(12):2595-2598.
    [139] Choi M H, Chung B C. GC-MS determination of steroids related to androgen biosynthesis in human hair with pentafluorophenyldimethylsilyl-trimethylsilyl derivatisation. Analyst 1999;124(9):1297-1300.
    [140] Munoz-Guerra J, Carreras D, Soriano C, et al. Use of ion trap gas chromatography tandem mass spectrometry for detection and confirmation of anabolic substances at trace levels in doping analysis. Journal of Chromatography B 1997;704(1-2):129-141.
    [141] Wolthers B G, Kraan G P B. Clinical applications of gas chromatography and gas chromatography-mass spectrometry of steroids. Journal of Chromatography A 1999;843(1-2):247-274.
    [142] Buiarelli F, Cartoni G P, Amendola L, et al. Screening and confirmation analysis of anabolic agents in human urine by gas chromatography hybrid mass spectrometry (high resolution time of flight). Analytica Chimica Acta 2001;447(1-2):75-88.
    [143] Liberato D J, Yergey A L, Esteban N, et al. Thermospray Hplc/Ms - a New Mass-Spectrometric Technique for the Profiling of Steroids. Journal of Steroid Biochemistry and Molecular Biology 1987;27(1-3):61-70.
    [144] Ferguson P L, Iden C R, McElroy A E, et al. Determination of steroid estrogens in wastewater by immunoaffinity extraction coupled with HPLC-Electrospray-MS. Analytical Chemistry 2001;73(16):3890-3895.
    [145] Yamamoto A, Kakutani N, Yamamoto K, et al. Steroid hormone profiles of urban and tidal rivers using LC/MS/MS equipped with electrospray ionization and atmospheric pressure photoionization sources. Environmental Science & Technology 2006;40(13):4132-4137.
    [146] Mazzarino M, Botre F. A fast liquid chromatographic/mass spectrometric screening method for the simultaneous detection of synthetic glucocorticoids, some stimulants, anti-olestrogen drugs and synthetic anabolic steroids. Rapid Communications in Mass Spectrometry 2006;20(22):3465-3476.
    [147] Leunissen W J J, Thijssen J H H. Quantitative-Analysis of Steroid Profiles from Urine by Capillary Gas-Chromatography .1. Accuracy and Reproducibility of Sample Preparation. Journal of Chromatography 1978;146(3):365-380.
    [148] Harrison L M, Martin D, Gotlin R W, et al. Effect of Extended Use of Single Anabolic-Steroids on Urinary Steroid-Excretion and Metabolism. Journal of Chromatography-Biomedical Applications 1989;489(1):121-126.
    [149] Kuuranne T, Kotiaho T, Pedersen-Bjergaard S, et al. Feasibility of a liquid-phase microextraction sample clean-up and liquid chromatographic/mass spectrometric screening method for selected anabolic steroid glucuronides in biological samples. Journal of Mass Spectrometry 2003;38(1):16-26.
    [150] Jansen E, Vandenbosch D, Stephany R W, et al. Quantitative-Analysis of Anabolics on Thin-Layer Chromatographic Plates Using Image-Analysis Techniques. Journal of Chromatography-Biomedical Applications 1989;489(1):205-212.
    [151] Elliott C T, Francis K S, Shortt H D, et al. Determination of the Concentrations of the Steroids Estradiol, Progesterone and Testosterone in Bovine Sera - Comparison of Commercial Dissociation Enhanced Lanthanide Fluorescence Immunoassay Kits with Conventional Radio and Enzyme Immunoassays. Analyst 1995;120(6):1827-1830.
    [152] Hungerford N L, Sortais B, Smart C G, et al. Analysis of anabolic steroids in the horse: Development of a generic ELISA for the screening of 17 alpha-alkyl anabolic steroid metabolites. Journal of Steroid Biochemistry and Molecular Biology 2005;96(3-4):317-334.
    [153] Kruger T L, Litton J F, Kondrat R W, et al. Mixture Analysis by Mass-Analyzed Ion Kinetic-Energy Spectrometry. Analytical Chemistry 1976;48(14):2113-2119.
    [154] McLafferty F W. Tandem Mass-Spectrometry (Ms-Ms) - Promising New Analytical Technique for Specific Component Determination in Complex-Mixtures. Accounts of Chemical Research 1980;13(2):33-39.
    [155] Busch K, Glish G, McLuckey S. Mass Spectrometry: VCH; 1988.
    [156] Takats Z, Wiseman J M, Gologan B, et al. Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science 2004;306(5695):471-473.
    [157] Chen H W, Talaty N N, Takats Z, et al. Desorption electrospray ionization mass spectrometry for high-throughput analysis of pharmaceutical samples in the ambient environment. Analytical Chemistry 2005;77(21):6915-6927.
    [158] Bereman M S, Nyadong L, Fernandez F M, et al. Direct high-resolution peptide and protein analysis by desorption electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Rapid Communications in Mass Spectrometry 2006;20(22):3409-3411.
    [159] Williams J P, Lock R, Patel V J, et al. Polarity switching accurate mass measurement of pharmaceutical samples using desorption electrospray ionization and a dual ion source interfaced to an orthogonal acceleration time-of-flight mass spectrometer. Analytical Chemistry 2006;78(21):7440-7445.
    [160] Takats Z, Cotte-Rodriguez I, Talaty N, et al. Direct, trace level detection of explosives on ambient surfaces by desorption electrospray ionization mass spectrometry. Chemical Communications 2005(15):1950-1952.
    [161] Van Berkel G J, Ford M J, Deibel M A. Thin-layer chromatography and mass spectrometry coupled using desorption electrospray ionization. Analytical Chemistry 2005;77(5):1207-1215.
    [162] Kauppila T J, Wiseman J M, Ketola R A, et al. Desorption electrospray ionization mass spectrometry for the analysis of pharmaceuticals and metabolites. Rapid Communications in Mass Spectrometry 2006;20(3):387-392.
    [163] Kauppila T J, Talaty N, Salo P K, et al. New surfaces for desorption electrospray ionization mass spectrometry: porous silicon and ultra-thin layer chromatography plates. Rapid Communications in Mass Spectrometry 2006;20(14):2143-2150.
    [164] Cotte-Rodriguez I, Takats Z, Talaty N, et al. Desorption electrospray ionization of explosives on surfaces: Sensitivity and selectivity enhancement by reactive desorption electrospray ionization. Analytical Chemistry 2005;77(21):6755-6764.
    [165] Talaty N, Takats Z, Cooks R G. Rapid in situ detection of alkaloids in plant tissue under ambient conditions using desorption electrospray ionization. Analyst 2005;130(12):1624-1633.
    [166] Chen H, Cotte-Rodriguez I, Cooks R G. cis-diol functional group recognition by reactive desorption electrospray ionization (DESI). Chemical Communications 2006(6):597-599.
    [167] Cotte-Rodriguez I, Chen H, Cooks R G. Rapid trace detection of triacetone triperoxide (TATP) by complexation reactions during desorption electrospray ionization. Chemical Communications 2006(9):953-955.
    [168] Nyadong L, Green M D, De Jesus V R, et al. Reactive desorption electrospray ionization linear ion trap mass spectrometry of latest-generation counterfeit antimalarials via noncovalent complex formation. Analytical Chemistry 2007;79(5):2150-2157.
    [169] Nefliu M, Cooks R G, Moore C. Enhanced desorption ionization using oxidizing electrosprays. Journal of the American Society for Mass Spectrometry 2006;17(8):1091-1095.
    [170] Sparrapan R, Eberlin L S, Haddad R, et al. Ambient Eberlin reactions via desorption electrospray ionization mass spectrometry. Journal of Mass Spectrometry 2006;41(9):1242-1246.
    [171] Takats Z, Wiseman J M, Cooks R G. Ambient mass spectrometry using desorption electrospray ionization (DESI): instrumentation, mechanisms and applications in forensics, chemistry, and biology. Journal of Mass Spectrometry 2005;40(10):1261-1275.
    [172] Montero C M, Dodero M C R, Sanchez D A G, et al. Analysis of low molecular weight carbohydrates in food and beverages: A review. Chromatographia 2004;59(1-2):15-30.
    [173] El Rassi Z. Recent developments in capillary electrophoresis and capillary electrochromatography of carbohydrate species. Electrophoresis 1999;20(15-16):3134-3144.
    [174] Hoffstetterkuhn S, Paulus A, Gassmann E, et al. Influence of Borate Complexation on the Electrophoretic Behavior of Carbohydrates in Capillary Electrophoresis. Analytical Chemistry 1991;63(15):1541-1547.
    [175] Kakehi K, Susami A, Taga A, et al. High-Performance Capillary Electrophoresis of O-Glycosidically Linked Sialic Acid-Containing Oligosaccharides in Glycoproteins as Their Alditol Derivatives with Low-Wavelength Uv Monitoring. Journal of Chromatography A 1994;680(1):209-215.
    [176] Klockow A, Paulus A, Figueiredo V, et al. Determination of Carbohydrates in Fruit Juices by Capillary Electrophoresis and High-Performance Liquid-Chromatography. Journal of Chromatography A 1994;680(1):187-200.
    [177] Zemann A, Nguyen D T, Bonn G. Fast separation of underivatized carbohydrates by coelectroosmotic capillary electrophoresis. Electrophoresis 1997;18(7):1142-1147.
    [178] Soga T, Heiger D N. Simultaneous determination of monosaccharides in glycoproteins by capillary electrophoresis. Analytical Biochemistry 1998;261(1):73-78.
    [179] Noe C R, Freissmuth J. Capillary Zone Electrophoresis of Aldose Enantiomers - Separation after Derivatization with S-(-)-1-Phenylethylamine. Journal of Chromatography A 1995;704(2):503-512.
    [180] Noe C R, Lachmann B, Mollenbeck S, et al. Determination of reducing sugars in selected beverages by capillary electrophoresis. Food Research and Technology 1999;208(2):148-152.
    [181] Rydlund A, Dahlman O. Efficient capillary zone electrophoretic separation of wood-derived neutral and acidic mono- and oligosaccharides. Journal of Chromatography A 1996;738(1):129-140.
    [182] Burggraf N, Krattiger B, de Mello A J, et al. Holographic refractive index detector for application in microchip-based separation systems. Analyst 1998;123(7):1443-1447.
    [183] Auriola S, Thibault P, Sadovskaya I, et al. Enhancement of sample loadings for the analysis of oligosaccharides isolated from Pseudomonas aeruginosa using transient isotachophoresis and capillary zone electrophoresis-electrospray-mass spectrometry. Electrophoresis 1998;19(15):2665-2676.
    [184] Klampfl C W, Buchberger W. Determination of carbohydrates by capillary electrophoresis with electrospray-mass spectrometric detection. Electrophoresis 2001;22(13):2737-2742.
    [185] Updike S J, Hicks G P. Enzyme Electrode. Nature 1967;214(5092):986.
    [186] Ye J, Baldwin R. Determination of carbohydrates, sugaracids and alditols by CE and electrochemical detection at a copper electrode . J Chromatogr, A 1994;687:141-148.
    [187] Fermier A M, Gostkowski M L, Colon L A. Rudimentary capillary-electrode alignment for capillary electrophoresis with electrochemical detection. Analytical Chemistry 1996;68(9):1661-1664.
    [188] Grossman P, Colburn J. Capillary Electrophoresis: Theory & Practice: Academic Press; 1992.
    [189] McCord P, Yau S L, Bard A J. Chemiluminescence of Anodized and Etched Silicon - Evidence for a Luminescent Siloxene-Like Layer on Porous Silicon. Science 1992;257(5066):68-69.
    [190] Breysse M, Claudel B, Faure L, et al. Chemiluminescence During Catalysis of Carbon-Monoxide Oxidation on a Thoria Surface. Journal of Catalysis 1976;45(2):137-144.
    [191] Zhu Y F, Shi J J, Zhang Z Y, et al. Development of a gas sensor utilizing chemiluminescence on nanosized titanium dioxide. Analytical Chemistry 2002;74(1):120-124.
    [192] Zhang Z Y, Zhang C, Zhang X R. Development of a chemiluminescence ethanol sensor based on nanosized ZrO2. Analyst 2002;127(6):792-796.
    [193] Cao X O, Zhang Z Y, Zhang X R. A novel gaseous acetaldehyde sensor utilizing cataluminescence on nanosized BaCO3. Sensors and Actuators B-Chemical 2004;99(1):30-35.
    [194] Zhang Z Y, Jiang H J, Xing Z, et al. A highly selective chemiluminescent H2S sensor. Sensors and Actuators B-Chemical 2004;102(1):155-161.
    [195] Zhang Z Y, Xu K, Baeyens W R G, et al. An energy-transfer cataluminescence reaction on nanosized catalysts and its application to chemical sensors. Analytica Chimica Acta 2005;535(1-2):145-152.
    [196] Zhang Z Y, Xu K, Xing Z, et al. A nanosized Y2O3-based catalytic chemiluminescent sensor for trimethylamine. Talanta 2005;65(4):913-917.
    [197] Shi J J, Li J J, Zhu Y F, et al. Nanosized SrCO3-based chemiluminescence sensor for ethanol. Analytica Chimica Acta 2002;466(1):69-78.
    [198] Shi J J, Yan R X, Zhu Y F, et al. Determination of NH3 gas by combination of nanosized LaCoO3 converter with chemiluminescence detector. Talanta 2003;61(2):157-164.
    [199] Lv Y, Zhang S C, Liu G H, et al. Development of a detector for liquid chromatography based on aerosol chemiluminescence on porous alumina. Analytical Chemistry 2005;77(5):1518-1525.
    [200] Charlesworth J M. Evaporative analyzer as a mass detector for liquid-chromatography. Analytical Chemistry 1978;50(11):1414-1420.
    [201] Mourey T H, Oppenheimer L E. Principles of operation of an evaporative light-scattering detector for liquid-chromatography. Analytical Chemistry 1984;56(13):2427-2434.
    [202] Lee Y H, Lin T I. Determination of carbohydrates by high-performance capillary electrophoresis with indirect absorbance detection. Journal of Chromatography B-Biomedical Applications 1996;681(1):87-97.
    [203] Zheng J, Jann M W, Hon Y Y, et al. Development of capillary zone electrophoresis-electrospray ionization-mass spectrometry for the determination of lamotrigine in human plasma. Electrophoresis 2004;25(13):2033-2043.
    [204] Huang G M, Ouyang J, Baeyens W R G, et al. High-performance liquid chromatographic assay of dichlorvos, isocarbophos and methyl parathion from plant leaves using chemiluminescence detection. Analytica Chimica Acta 2002;474(1-2):21-29.
    [205] Nukiyama S, Tanasawa Y. Experiments on the atomization of liquids in an airstream. E Hope, Transl, Defense Research Board Department of National Defense, Ottawa, Ontario, Canada 1950.
    [206] Gaudin K, Baillet A, Chaminade P. Adaptation of an evaporative light-scattering detector to micro and capillary liquid chromatography and response assessment. Journal of Chromatography A 2004;1051(1-2):43-51.
    [207] Lin Y H, Hwu W H, Ger M D, et al. A combined kinetic and mechanistic modelling of the catalytic degradation of polymers. Journal of Molecular Catalysis a-Chemical 2001;171(1-2):143-151.
    [208] Voorhees K J, Baugh S F, Stevenson D N. The thermal degradation of poly(ethylene glycol)/poly(vinyl alcohol) binder in alumina ceramics. Thermochimica Acta 1996;274:187-207.
    [209] Baumann T F, Gash A E, Chinn S C, et al. Synthesis of high-surface-area alumina aerogels without the use of alkoxide precursors. Chemistry of Materials 2005;17(2):395-401.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700