稻壳填料曝气生物滤池处理生活污水的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
曝气生物滤池是符合我国国情的简易高效低耗城市污水处理新工艺,近十几年来发展迅速,将成为解决我国所面临的严峻的水环境污染和水资源短缺问题的主要技术途径之一。然而,目前曝气生物滤池在诸如填料的作用,曝气方式、处理机理、反冲洗、运行参数和进水条件控制等方面的系统研究尚不够完善,存在一系列问题。本文采用人工模拟生活污水为处理对象,通过实验室模型研究了曝气生物滤池的挂膜启动、处理效果以及生物膜特征,并通过研究环境条件对曝气生物滤池处理性能的影响,获得了曝气生物滤池的最佳运行参数,同时重点对曝气生物滤池中所采用的填料——稻壳对污染物的去除效果及去除机理进行了较为深入的分析研究。通过实验结果分析,得出以下研究结论:
     (1)曝气生物滤池采用“浸泡填料、闷曝再连续进水培养”的挂膜启动方式,9天可以完成挂膜过程,CODcr、NH_3-N去除率分别稳定在85%、75%左右,反应器运行稳定。
     (2)长期运行实验结果表明,曝气生物滤池对CODcr、NH_3-N和TP等具有较好的去除效果,平均去除率分别达到88.4%、63.9%和45.7%。
     (3)曝气生物滤池在三种水力负荷条件下的反冲洗周期分别为30h、28h和22h。曝气生物滤池采用气洗+气水联合冲洗+水漂洗的反冲洗方式可以取得良好的冲洗效果,气水强度分别为6.5~7.5L/(m~2·S)和1~2L/(m~2·S)。
     (4)微生物镜检实验结果表明,曝气生物滤池内的生物种群有明显的空间分布规律,不同高度填料层形成不同的优势菌群。曝气生物滤池沿水流方向生物膜中的优势原生动物依次为鞭毛类、游泳型纤毛类、固着型纤毛类,显示出反应器明显的推流特征。
     (5)在曝气生物滤池的影响因素实验中,发现水力负荷的增加对反应器的CODcr去除率影响小,但对NH_3-N和TP的去除效果有负面影响。气水比为20∶1时,不仅可提高污水的有机物和氨氮的去除效果,电可达到较好的除磷效果。曝气工况对反应器的处理效能影响较大,曝气生物滤池若想维持对CODcr、NH_3-N和TP较高的去除率,采用曝气1h停曝1h的方式是一种合理的选择。随着有机负荷的增加,NH_3-N的去除呈逐渐减小的趋势,氨氮负荷在0.06~0.45kg NH_3-N/(m~3·d)之间变化时,反应器的硝化能力随氨氮负荷的增加而下降。对于本实验所采用的75cm填料高度上向流曝气生物滤池,降解CODcr的最佳填料层为0~45cm段,NH_3-N去除的最佳填料层为0~30cm段,TP在0~45cm段即可获得较高的去除率。
     (6)根据影响因素实验结果,确定曝气生物滤池以去除CODcr、NH_3-N和TP为目的的最佳运行参数为:流量2.7 L/h、水力负荷0.28m~3/m~2·h、气水比20∶1、曝气工况为曝气1h停止1h、有机负荷≤1.82 kg/(m~3·d)、氨氮负荷≤0.15kg/(m~3·d)、进水TP浓度≤1.7 mg/L。
     (7)对曝气生物滤池中污染物去除机理进行了探讨。重点对稻壳用作曝气生物滤池填料的可行性进行了分析,并通过实验加以验证,实验结果表明,稻壳填料曝气生物滤池处理生活污水是可行的。
The Biological Aerated Filter (BAF) is a simple, high-efficient; low-consumptive for municipal sewage treatment corresponds to the situation of china developed rapidly in last ten years will be one of the important technical approaches to solve the water pollution and shortage problem faced china. However, there still some problems that need further study in BAF with respect to media function, aeration mode, treatment mechanisms, operational factors, backwashing and influent control, factors、backwashing and influent control. A bench scale experimental study was carried out with synthetic domestic wastewater as the model water, focusing on the start-up of reactor, treating efficiency and biofilm characteristic. The optimization operational parameters are determined by studying the environmental condition to influence the removal efficiency of pollutants; but also a depth studying was carried out by focusing on the treating efficiency and treatment mechanisms of the rice hull which was using in the BAF as filter material. It can be drawn the following conclusion derived from the experiment results.
     (1) It take about 9 days to succeed in cultivating biofilm using of the method of continuous flow following with soaking rice hull and intermission cultivating, when the removal rates of CODcr and NH_3-N gets to 85% and 75% and the reactor run stable.
     (2) The experimental results showed that the removal rate of CODcr, NH_3-N and TP in BAF system comes up to 88.4%, 63.9% and 45.7% respectively.
     (3) Under different conditions of three hydraulic loading, the backwash interval of BAF was 30h, 28h and 22h respectively. The backwash regimes of gas combined with water has a good backwash effect. The backwash intensity of gas and water was 6.5~7.5L/(m~2·S) and 1~2L/(m~2·S) respectively.
     (4) The microscopy results show that as microbe species in BAF distributed spatiotemporally, dominant bacteria for different height of filter material was distinctive. Along the fluent direction the superiority protozoa in biomembrane are the flagellates, the free swimming ciliate, and the sessile ciliate in turn, demonstrating the obvious plug flow characteristic.
     (5) Through testing the factors on BAF performance, it is found that the removal efficiency of CODcr changed little with enhancement of hydraulic loading, which whereas had the negative effect on removal efficiency of NH_3-N and TP. When the ratio of air to water was 10:1, the removal efficiency of organic pollutants, NH_3-N and TP could both be improved. The operating mode of aeration has evident influence to the removal rate in BAF system. The reactor could maintain better removal efficiency of CODcr, NH_3-N and TP, if the operating mode keeping with aeration lasts 1 hour and anoxic lasts 1 hour. With the CODcr volume loading higher, the removal of NH_3-N has a gradual lower. When NH_3-N volume loading from 0.06 kg/ (m~3·d) to 0.45kg / (m~3·d), the nitration ability of reactor will be weakened gradually with the increase of NH_3-N volume loading. To the BAF in which 75cm height filter bed is used the optimal region of CODcr removal is 0~45cm, the optimal region of NH_3-N removal is 0~30cm, at 45cm height, the TP will be removed mostly.
     (6) According to the results of influencing factor experiment, the optimization operational parameters as follows: operation flow is 2.7 L/h, hydraulic loading is 0.28m~3/m~2·h, gas-water ratio is 20:1, the operating mode is aeration lasts 1 hour and anoxic lasts 1 hour, the CODcr volume loading is above 1.82 kg/(m~3·d), the NH_3-N volume loading is above 0.15 kg/(m~3·d), the concentration of TP is above 1.7 mg/L. On these conditions, the reactor had a better removal effect to CODcr, NH_3-N and TP.
     (7) The removal mechanisms of CODcr, NH_3-N and TP were discussed. Through the results of feasibility analysis and proving experiment with rice hull BAF, we can conclude that the rice hull BAF was a feasible reactor on treating domestic wastewater.
引文
[1]聂梅生.二十一世纪水环境污染治理发展趋势.《中国环境报》2003.6.24
    [2]曲格平.中国环境问题及对策.环境科学出版社,1990
    [3]国家环境保护总局.中国环境状况公报,2006
    [4]王金南等.中国水污染防治体制与政策.北京:中国环境科学出版社,2003
    [5]徐亚明,蒋彬.曝气生物滤池的原理及工艺.工业水处理,2002.22(6):1~5
    [6]郑俊,吴洁汀编著.曝气生物滤池污水处理新技术及工程实例.北京:化学工业出版社,2002
    [7]马军,邱立平.曝气生物滤池及其研究进展.环境工程,2002.20(3):7~11
    [8]张忠波,陈吕军,胡纪萃.新型曝气生物滤池-Biostyr.给水排水,2000.26(6):15~18
    [9]沈耀良.曝气生物滤池工艺及运行控制.水处理技术,2005.7(31):7~9
    [10]Metcalf& Eddy, Inc. Wastewater engineering-treatment and reuse. McGraw-Hill Companies,Inc, 2003
    [11]ERogalla, A.Lamouche, etal. High Rate Aerated Biofilters for plant Upgrading. Water Science & Technology.1994.29(12):207~216
    [12]J.J.Chen, D.McCarty, D.Slack, etal. Full Scale Studies of a Simplified Aerated Filter (BAF) for Organic and a Nitrogen Removal. Water Science & Technology. 2000.41(4-5):1~4
    [13]齐兵强,王占生.曝气生物滤池在污水处理中的应用.给水排水,2000.26(10):4~8
    [14]王劲松,胡勇有.曝气生物滤池填料的研究进展.工业用水与废水,2002.33(5):7~9
    [15]刘斐文,王萍.现代水处理方法与材料.北京:中国环境科学出版社,2003.9
    [16]Moore R, Quarmby J, Stephenson T. The effects of media size on the performance of biological aerated filters. Water Research, 2001.35(10):2514~2522
    [17]Allan T Mann, Lepoldo Mendoza-Espinosa, Tom Stephenson. Performance of floating and sunken media biological aerated filters under unsteady state conditions. Water Science and Technology, 1999.33(4):1108~1113
    [18]Won-Seok Chang, Seok-Won Hong, Joonkyn Park. Effect of zeolite media for the treatment of textile wastewater in a biological aerated filter. Process Biochemistry, 2002.(37):693~698
    [19]朱乐辉,朱衷榜.水处理滤料——球形轻质陶粒的研制.环境保护,2000.(1):35~39
    [20]周彩楼,尚琦,尹洪江.净水厂沉淀池淤泥超轻陶粒的研究.热浏性树脂,1999.(4):83~
    [21]方芳.催化填料研制及其变速生物滤池处理城市污水性能研究:[博士学位论文].重庆:重庆大学城市建设与环境与工程学院,2002
    [22]刘旭阳,杜茂安,范振强,等.污水处理曝气生物滤池填料性能研究.哈尔滨工业大学学报.2006.38(11):1835~1839
    [23]张杰,曹相生,孟雪征.曝气生物滤池的研究进展.中国给水排水,2002.18(8):26~29
    [24]邹伟国,孙群,王国华.新型BIOSMEDI滤池的开发研究.中国给水排水,2001.17(1):1~4
    [25]孙力平,侯红娟.改进的BAF 工艺用于工业废水处理.中国给水排水,2000.16(8):55~56
    [26]何强,段秀举.曝气生物滤池处理城市污水试验及效能研究.资源环境科学.2006.20(2):178~181
    [27]徐建斌.一体化生物滤池处理城市污水试验研究:[硕士学位论文].重庆:重庆大学城市建设与环境工程学院,2005
    [28]张红晶,龙腾锐,何强.侧向流曝气生物滤池的同步硝化反硝化研究.中国给水排水.2006.22(9):34~37
    [29]G.R.Dillion, etal. A pilot-scall evaluation of the bio-carbon process for the treatment of settled sewage and for tertiary nitrification of secondary effluent. Water Science & Technology, 1992.22(1-2):305~316
    [30]F.Fdz-Polanco, E.Mendez, etal. Spatial distribution of heterotrophs and nitrifiers in a submerged biofilter for nitrification. Water Research, 2000.34(16):4081~4089
    [31]K.R.Gilmore, K.J.Husovitz etal. Influence of organic and ammonia loading on nitrified activity and nitrification performance for a two stage biological aerated filter system. Water Science & Technology, 1999.39(7):227~234
    [32]Anette Aesy, etal. Denitrification in a packed bed biofilm reactor (biofor) experiments with Different carbon sources. Water Research, 1998.32(5): 1463~1470
    [33]R.Pujol, H.Lemmel, M.Gousailles. A Keypoint of Nitrification in an Upflow Biofiltration Reactor. Water Science & Technology, 1998.38(3):43~49
    [34]R.Pujol. Process improvement for upflow submerged biofilters. Water 21, 2000.4:25~29
    [35]Wijeyekoon.S, Mino.T, Satoh H. Fixed bed biological aerated filtration for secondary effluent polishing-effect of filtration rate on nitrifying biological activity distribution. Water Science and Technology, 2000.41 (1):187~195
    [36]M. Tschui, M.Boller, etal. Tertiary nitrification in aerated pilot biofilers. Water Science & Technology, 1993.29(10-11):53~60
    [37]T.D.Kent, S.C.Williams, etal. Ammoniacal nitrogen removal in biological aerated filters: The effect of media size.J.CIWEM, 2000.(14):409~414
    [38]O.Francisco, H.Ernesto. Optimizatiom of bed material height in a submerged biological aerated filter. Journal of Environmental Engineering, 2001.127(11): 974~978
    [39]朱永义.稻谷加上与综合利用.北京:中国轻工业出版社,1999
    [40]周显青.稻谷精深加工技术.北京:化学工业出版社,2006
    [41]姚惠源.稻米深加工.北京:化学工业出版社,2004
    [42]国家环境保护总局,水和废水监测分析方法,中国环境科学出版社
    [43]Characklis W.G, Biofilm Processes, In: Characklis W.C. and Marshall C.G (Ed) Biofilm, John John Wiley and Sons Ins., 5~89, 1990
    [44]邱立平.曝气生物滤池处理生活污水的运行特性及生态学研究:[博士学位论文].哈尔滨:哈尔滨工业大学市政环境工程学院,2006
    [45]傅金祥,许海良,赵玉华,等.曝气生物滤池在污水回用中的挂膜启动试验研究工业水处理,2007.27(3):38~40
    [46]李圭白,刘俊新,郑庭林.滤池气水反冲洗机理探讨.哈尔滨建筑工程学院学报,1992.25(2):56~61
    [47]张速新.曝气生物滤池在污水回用中的研究:[硕士学位论文].北京工业大学,2003
    [48]严煦世,范瑾初.给水工程.北京:中国建筑工业出版社,1995
    [49]黄晓东,王占生.微污染水源水净化新技术.环境污染与防治,1998.No.3
    [50]王铁军.曝气生物滤池深度处理城市污水的初步研究:[硕士学位论文].吉林大学,2005
    [51]张金娜,丁琳,李凯峰.曝气生物滤池脱氮效能及机理的研究.环境科学与管理,2006.31(3):99~101
    [52]P Chudoba and FZ Pujel. Pilot Plant. Wat Sci Tech, A Three-Stage Biofiltration Process: Performances of a Pilot Plant. Wat Sci Tech,1998.38(8-9):257~265
    [53]F Se and Y' Reacautt. Hydrodunamic Behavior of a Full-Scall Biofilter and fits Possible Influence on Performances. Wat Sci Tech,1998.38(8-9):249~256
    [54]R.Pujol, M.Hamon, X.Kandel. Biofilters: Flexible, Reliable Biological Reactors. Water Science & Technology, 1994.29(10-11):33~38
    [55]崔燕萍,田文华.双层曝气生物滤池充氧性能及流态特征.中国给水排水,2004.30(8):41~44
    [56]王立立,刘焕彬,胡勇有,等.填料高度对曝气生物滤池工作性能的影响.中国沼气,2002.20(4):11~16
    [57]徐亚同,生物膜系统的微生物特征和运行管理.上海环境科学,1997.16(3):20~23
    [58]B.Jefferson, A.L.Laine, Advanced Biological Unit Processes for Domestic Water Recycling
    [59]S.Hills, A.Smith, Water Recycling at the Millennium Dome
    [60]Ekama GA, Biological Nitrogen Removal, Theory, Design and Operation of Nutrient Activated Sludge Processes, chapter 6

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700