泥沙颗粒生长生物膜后基本物理性质的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在河流、湖泊等湿地环境的所有固体表面都有以生物膜形式存在的微生物,由于近年来许多河流和湖泊水体的营养程度过剩,泥沙颗粒表面吸附的大量营养物质为微生物在其表面的吸附成膜提供了有利的条件。一方面,微生物生长及生物膜的形成会改变水体环境中营养物质的迁移转化规律,影响水质模型参数;另一方面,泥沙颗粒表面生长生物膜后,其几何特征及力学特性等亦会随之发生变化。虽然在水、土壤和生物环境中,生物膜的重要性已经逐渐得到认识,但是以往的研究多侧重于其在环境方面的作用,对水体环境中泥沙颗粒基本物理性质的影响研究尚少,而这正是泥沙运动力学所关注的重要方面。
     论文的研究重点为泥沙颗粒生物膜生长后基本物理性质发生的变化。研究工作建立在泥沙表面生物膜生长培养实验的基础之上,并通过高精度的观测仪器取得所需数据,进而对泥沙颗粒生长生物膜后其单颗粒的几何特征、群体特性的容重及流变等物理性质的变化进行分析和研究。
     对于单颗粒泥沙生物膜生长后几何特征的改变主要从投影轮廓和表面微形貌两方面开展研究,在大量环境扫描电子显微镜图片统计的基础上,采用傅立叶和小波分析方法构建了单颗粒泥沙生物膜生长后的投影轮廓模型,采用一阶和二阶算子分析了长膜泥沙的表面微形貌,进而构建了生物膜生长后的“数学泥沙”。研究表明:泥沙颗粒生长生物膜后其粗糙程度减小。
     对于生物膜影响泥沙群体特性的容重研究,分别针对生物絮凝泥沙的干容重和湿容重进行分析。在激光扫描共聚焦显微镜观察生物絮凝泥沙生长过程的基础上,利用图像处理的方法对其结构特性进行分析,采用Logistic生长曲线方程描述生物膜随时间生长变化的规律,给出生物絮凝泥沙干容重的计算公式,并根据泥沙长膜后粒径的变化对其湿容重进行修正,为泥沙输移计算打下基础。
     论文采用MCR300高级扩展流变仪研究原状沙和长膜沙流变性质的差异,探讨细颗粒泥沙流变性质受生物膜影响的规律,研究表明:细颗粒泥沙受生物膜生长的影响,流变性质发生变化,呈现出具有触变性塑性体的特点,这与高含沙水流的流变特性有差异,并建立了长膜泥沙的流变方程及各流变参量随时间的变化式。
Microorganism exists in the form of biofilm on all solid surface in the wetland environment such as rivers, lakes, and so on. In recent years, because of the nutrient surpluses of many rivers and lakes, the adsorption of large quantities of nutrient materials on sediment particles’surface provides more favorable conditions for the bacterial sorption and biofilm growth. On the one hand, bacterial growth and biofilm formation would change the transfer laws of nutrient materials in aquatic environment and influence parematers of water quality model. On the other hand, the geometrical features and mechanical properties of sediment particles would also change because of the biofilm growth. Although the importance of biofilm in water, soil and biotic environment has gradually been recognized, the previous research usually focuses on its environmental effect, and little is about the influence on the basic physical properties of sediment particles in aquatic environment, which is the important aspect of sediment transport mechanics.
     This dissertation would focus on the basic physical properties’changes of sediment particles after biofilm vegetating. The research work is based on the culture experiment of biofilm vegetating on sediment particles’surface. The required data are obtained through high-precision apparatus, and then the changes of biofilm sediment properties are studied and analyzed, including particles’geometrical features, bulk properties of density, physical properties of rheology, and so on.
     The geometrical features’changes of sediment particles after biofilm vegetating are studied from two aspects of projection profile and micro-morphology. Based on the statistics of abundant ESEM pictures, the methods of Fourier analysis and Wavelet analysis are used to build the project profile model of sediment particles after biofilm vegetating, the first-order operator and second-order operator are applied to analyze the surface micro-morphology of biofilm sediment, and further the“mathematical sediment”is built. The research shows that sediment particles become smoother after biofilm vegetating.
     The research on bulk properties of density is directed respectively through the dry bulk density and wet bulk density of bioflocculation sediment. Based on the observation of growth process of bioflocculation sediment using the confocal laser scanning microscopy, some image processing methods are used to analyze the structural properties, and the Logistic growth curve equation is applied to describe the growth and variation of biofilm over time. A dry bulk density formula of bioflocculation sediment is proposed and the wet bulk density is modified according to the change of grain size, laying a foundation for the calculation of sediment transport.
     MCR300 advanced extension rheometer is used to study the difference of rheological properties between original sediment and biofilm sediment, and the influence on rheological properties of fine-grained sediment from biofilm is investigated. The research shows that the rheological properties of fine-grained sediment change greatly due to biofilm growth, assuming the properties of plastic fluid with thixotropy, which is different from that of hyper-concentration flow. Also the rheological equation of biofilm sediment and expressions of rheological parameters over time are proposed.
引文
[1] White D C, Arrage A A, Nivens D E, et al. Biofilm ecology: on-line methods bring new insights into mic and microbial biofouling. Biofouling, 1996, 10(1-3):3~16.
    [2] Zuo Rongjun. Biofilms: strategies for metal corrosion inhibition employing microorganisms. Applied Microbiology and Biotechnology, 2007, 76(6):1245-1253.
    [3] Syron Eoin, Casey Eoin. Membrane-aerated biofilms for high rate biotreatment: performance appraisal, engineering principles, scale-up, and development requirements. Environmental Science and Technology, 2008, 42(6):1833-1844.
    [4] Schaumann Gabriele E, Braun Burga, Doerte Kirchner, et al. Influence of biofilms on the water repellency of urban soil samples. Hydrological Processes, 2007, 21(17):2276-2284.
    [5] Schorer M, Eicele M. Accumulation of inorganic and organic pollutants by biofilm in the aquatic environment. Water, Air and Soil Pollution, 1997, 99:651- 659.
    [6] Percival SL, Edyvean R., Wales DS, et al. Biofilm development on stainless steel in mains water. Water Research, 1998a, 32(1):243-253.
    [7] Percival SL, Edyvean RGJ, Wales DS, et al. Biofilm, mains water and stainless steel. Water Research, 1998b, 32(7):2187–2201.
    [8] Tijhuis L, Van Loosdrecht MCM, Heijnen JJ. Formation and growth on heterotrophic aerobic biofilm on small suspended particles in airlift reactors. Biotechnol Bioeng, 1994, 44 (5):595-608.
    [9] Tarares CRG, Santanna GL, Capdeville B. The effect of air superficial velocity on biofilm accumulation in a three-phase fluidized-bed bioreactor. Water Research, 1995, 29 (10):2293-2298.
    [10] Yang S, Lewandowski Z. Measurement of local transfer coefficient in biofilms. Biotechnol Bioeng, 1995, 48 (6):737-744.
    [11]李鱼,董德明,刘亮,等.自然水体生物膜及其在水环境中的作用.环境科学动态, 2004, 4:16-19.
    [12] Headley, John V, Gandrass, et al. Rates of sorption and partitioning of contaminants in river biofilm. Environmental Science and Technology, 1998, 32(24):3968-3973.
    [13] Peys K, Diels L, Leysen R, et al. Development of a membrane biofilm reactor for the degradation of chlorinated aromatics. Water Science and Technology, 1997, 36(1):205–214.
    [14] Ohashi A, Harada H. A novel concept for evaluation of biofilm adhesion strength by applying tensile force and shear force. Water Science and Technology, 1996, 34(5-6):201-211.
    [15] Walker M J. The language of biotechnology. Washington D C: American Chemical Society, 1995.
    [16] Karamanev DG, Samson R. High-rate biodegradation of pentachlorophenol by biofilm developed in the immobilized soil bioreactor. Environmental Science and Technology, 1998, 32(7):994– 999.
    [17]王文军,王文华,张学林,等.水环境中生物膜对污染物环境化学行为的影响.环境科学进展,1999, 7(6):58-65.
    [18] Stewart PS, Franklin MJ. Physiological heterogeneity in biofilms. Nature Reviews Microbiology, 2008, 6(3):199-210.
    [19] Kadurugamuwa JL, Francis KP, et al. Bioluminescent imaging of bacterial biofilm infections in vivo. Methods in Molecular Biology, 2007, 431:225-240.
    [20] Quintelas C, Fernandes B, Castro J, et al. Biosorption of Cr(VI) by a bacillus coagulans biofilm supported on granular activated carbon(GAC). Chemical Engineering Journal, 2008, 136(2-3):195-203.
    [21] Stobie N, Duffy B, McCormack DE, et al. Prevention of staphylococcus epidermidis biofilm formation using a low-temperature processed silver-doped phenyltriethoxysilane sol-gel coating. Biomaterials, 2008, 29(8):963-969.
    [22] Oh SW, Chen PC, Kang DH. Biofilm formation by enterobacter sakazakii grown in artificial broth and infant milk formula on plastic surface. Journal of Rapid Methods and Automation in Microbiology, 2007, 15(4):311-319.
    [23] Morton SC, Zhang Y, Edwards MA. Implications of nutrient release from iron metal for microbial regrowth in water distribution systems. Water Research, 2005, 39(13): 2883-2892.
    [24] Lehtola MJ, Miettinen IT, Keinanen MM, et al. Microbiology, chemistry and biofilm development in a pilot drinking water distribution system with copper and plastic pipes. Water Research, 2004, 38(17):376-3779.
    [25] Kirisits MJ, Margolis JJ, Purevdorj-Gage BL, et al. Influence of the hydrodynamic environment on quorum sensing in pseudomonas aeruginosa biofilms. Journal of Bacteriology, 2007, 189:8357-8360.
    [26] Massol-Deya AA, Whallon J, Hickey RF, et al. Channel structures in aerobic biofilms of fixed-film reactors treating contaminated groundwater. Applied and Environmental Microbiology, 1995, 61(3):769-777.
    [27]王文军,王文华,黄亚冰,等.生物膜的研究进展.环境科学进展, 1998, 7(5):43-51.
    [28] Wimpenny J. Ecological determinants of biofilm formation. Biofouling, 1996, 10(1-3):43-63.
    [29] Carlson G, Silverstein J. Effect of molecular size and charge on biofilm sorption of organic matter. Water Research, 1998, 32(5):1580-1592.
    [30] Spath R, Flemming HC, Wuertz S. Sorption properties of biofilm. Water Science and Technology, 1998, 37(4-5):207-210.
    [31] Jorand F, .Boue-Bigne F, Block JC, et al. Hydrophobic/hydrophilic properties of activated sludge exopolymeric substances. Water Science and Technology, 1998, 37(4-5):307-315.
    [32] Finlayson JC, Droppo IG, Droppo IG, et al.The relationship between the structure of activated sludge flocs and the sorption of hydrophobic pollutants. Water Science and Technology, 1998, 37(4-5):353-357.
    [33] Bhosle NB, Sawant SS, Anita Garg, et al. Chemical characterization of exopolysaccharides from the marine fouling diatom amphora coffeaeformis. Biofouling, 1996, 10(4):301-307.
    [34] Taylor GT, Zheng D, Lee M, et al. Influence of surface properties on accumulation of conditioning films and narine bacterial on substrata exposed to oligotrophic waters. Biofouling, 1997, 11(1):31-57.
    [35]温沁雪,施汉昌,陈志强.生物膜微环境和传质现象研究进展.环境污染治理技术与设备, 2006, 7(6):1-5.
    [36]管运涛,赵婉婉,蒋展鹏,等.给水系统附生生物膜发育的生物量和种群结构.清华大学学报, 2007, 47(6):818-821.
    [37] Marshall KC. Bacterial adhesion in natural environments. Microbial Adhesion to Surface. New York:Aoademic Press, 1980.
    [38]王文生,魏德洲,郑龙熙.微生物在矿物表面吸附的意义及研究方法.国外金属矿选矿, 1998, 3:40.
    [39] Mark CM, Van Loosdrecht, et al. The role of bacterial cell wall hydrophobicity in adhesion. Applied and Environmenal Microbiology, 1987.
    [40] Darry R, Absolom, et al. Surface themodynamics of bacterial adhesion. Applied and Environmental Microbiology, 1983.
    [41] Young JC, Dahab MF. Effect of media design on the performance of fixed-bed anaerobic reactors. Water Science and Technology, 1983, 15(8-9):369-383.
    [42]张金莲,吴振斌.水环境中生物膜的研究进展.环境科学与技术, 2007, 30(11):102-107.
    [43] Hunt AP, Parry JD. The effect of substratum roughness and river flow rate on the development of a freshwater biofilm cvommunity. Biofouling, 1998, 12(4):287-303.
    [44] Rao TS, Rani PG, Venugopalan VP. Biofilm formation in a freshwater environment under photic and aphotic conditions. Biofouling, 1997, 11(4):265-282.
    [45]董德明,李鱼,花修艺,等.自然水体中生物膜的主要化学组分与水体中相关化学物质的关系.高等学校化学学报, 2002, 23(8):1507-1509.
    [46] P索马桑达兰.生物聚合物在细菌固着和矿物选别中的作用.国外金属矿选矿, 2005.
    [47] Fuchs S, Haritopoulou T, Wilhelmi M. Biofilms in freshwater ecosystems and their use as a pollutant monitor. Water Science and Technology, 1996, 34(7-8):137-140.
    [48] Chongrak Polprasert, Park HS. Effluent denitrification with anaerobic filters. Water Research, 1986, 58(8):1015-1021.
    [49] James C Young, Byung S Yang. Design considerations for fullscale anaerobic filters. Water Pollution Control Federation, 1989, 61(9):1576-1587.
    [50]钱易,王凤芹.常温下厌氧滤池处理生活污水的试验研究.给水排水, 1994, 20(1):24-27.
    [51] Kissel JC, McCarty PL, Street RL. Numerical simulation of mixed-culture biofilm. Journal of Environmental Engineering, 1984, 110(2):393-411.
    [52] Picioreanu C, Van LoosdrechtM CM, Heijnen JJ. Discrete-differential modelling of biofilm structure. Water Science and Technology, 1999, 39 (7) :115-122.
    [53] Wanner O, Gujer W. A multispecies biofilm model. Biotechnology and Bioengineering, 1986, 28(3):314-328.
    [54] Fan LS, Leyva-Ramos, Wisecarver R, et al. Diffusion of phenol through a biofilm grown on activated carbon particles in a draft-tube three-phase fluidized-bed bioreactor. Biotechnol Bioeng, 1990, 35 (3):279-286.
    [55] Hermanowicz SW. A model of two-dimensional biofilm morphology. Water Science and Technology, 1998, 37(4-5):219-222.
    [56] Peter Fox, Markam T Suidam, John TB. A comparison of media types in acetate fed expanded-bed anaerobic reators. Water Research, 1990, 62(7):827-853.
    [57] Harendranath CS, Anuja K, Anju Singh, et al. Immobilization in fixed film reactors: an ultrastructural approach. Water Science and Technology, 1996, 33(8):7-15.
    [58] Sizgerist H, Gujer W. Mass transfer mechanisms in a heterotrophic biofilm. Water Research,1985, 19 (12):1969-1985.
    [59] Heijnen JJ, Van Loosdrecht MCM, Mulder A, et al. Formation of biofilms in a biofilm air-lift suspension reactor. Water Science and Technology, 1992, 26 (5):647-654.
    [60] Sy-Dar Wang, Daniel IC Wang. Pore dimension effects in the cell loading of a porous carrier. Biotechnol Bioengng, 1989,33(2):915-917.
    [61]方芳.催化填料研制及其变速生物滤池处理城市污水性能研究.重庆:重庆大学, 2002.
    [62]朱铁群,李文亮,李丹丹.黄河泥沙对水中细菌吸附作用研究.华北水利水电学院学报, 2006, 27(3):89-91.
    [63] tanghuaKindzierski WB, Gray MR, Fedorak PM, et al. Activated carbon and synthetic resins as support material for methanogenic pheno-degrading consortia-comparison of surface characteristics and initial colonization. Water Environmental Research, 1992, (64):786-775.
    [64] Rittman BE, Manem JA. Development and experiment evaluation of steady-state multispecies biofilm model. Biotechnol Bioeng, 1992, 39 (9):914-922.
    [65] Paul L, Bishop, Tong Yu. A microelectrode study of redox potential change in biofilms. Water Science and Technology, 1999, 39(7):179-185.
    [66] Motoyuki S. Role of adsorption in water environment processes. Water Science and Technology, 1997, 35(7):1-11.
    [67]唐婳,刘国生,谢志雄.细菌生物膜的结构及形成机制研究进展.氨基酸和生物资源, 2006, 28(3):30-33.
    [68] De Beer D, Stoodley P, Roe F, et al. Effects of biofilm structures on Oxygen distribution and mass transfer. Biotechnol Bioeng, 1994, 43 (11):131-1138.
    [69] Noguera DR, Pizarro G, Stahl DA, et al. Simulation of multi-species biofilm development in three dimensions. Water Science and Technology, 1999, 39(7):123-130.
    [70] Laspidou CS, Rittmann BE. Modeling the development of biofilm denstity including active bacteria, inter biomass, and cxtracellular polymeric substances. Water Research, 2004, 38(14-15):3349-3361.
    [71] Gjaltema A, Arts PAM, Van Loosdrecht MCM. Heterogeneity of biofilms in rotating annular reactors: occurrence, structure, and consequences. Biotechnol Bioeng, 1994, 44 (2):194-204.
    [72] Harald Horn, Dietmar C. Hempel Modeling mass transfer and substrate utilization the boundary layer of biofilm systems. Water Science and Technology, 1998, 37 (4-5):139-147.
    [73] Hermanowicz SW. Two-dimensional simulation of biofilm development: effects of external environmental conditions. Water Science and Technology, 1999, 39(7):107-114.
    [74] Hermanowicz SW. A simple 2D biofilm model yields a variety of morphological features. Mathematical Biosciences, 2001, 169(1):1-14.
    [75] Okabe S, Oozawa Y, Hitrata K, et al. Relationship between population dynamics of nitrifiers in biofilms and rector performance at various C: N ratios. Water Research, 1996, 30(7):1563-1572.
    [76] Van LoosdrechtM CM, Eikelboom D, Gjaltema A, et al. Biofilm structures. Water Science and Technology, 1995, 32(8):35-43.
    [77] Laspidou CS, Rittmann BE. Modeling the development of biofilm density including active bacteria, inert biomass, and extracellular polymeric substances. Water Research, 2004, 38(14-15):3349-3361.
    [78] Laspidou CS, Rittmann BE. Evaluating trends in biofilm density using the UMCCA model. Water Research, 2004, 38(14-15):3362-3372.
    [79]杨平,潘永亮,何力.废水生物处理中生物膜的形成及动力学模型研究进展.环境科学研究, 2000, 13(5):50-53.
    [80]余国忠,黄昆,周红升,等.一种异养生物膜活细胞生物量的空间变化.环境科学学报, 2005, 25(8):1046-1051.
    [81] Goldstein JL, Newbury DE, et al. Scanning electron microscopy and X-ray microanalysis. 2nd ed, New York: Plenum Press, 1992.
    [82] Johnson JE, Griffith EM, Danilatos GD, et al. Microscopy research and technique. Taylor and France Press, 1993.
    [83]周伟伟,傅金祥,由昆,等.膜生物反应器中胞外聚合物合成的影响因素.沈阳建筑大学学报, 2007, 23(3):493-495.
    [84]郑蕾,田禹,孙德智. PH值对活性污泥胞外聚合物分子结构和表面特征影响研究.2007, 28(7):1507-1511.
    [85]王文军,张学林,王文华.天然水体中生物膜及悬浮颗粒物的元素含量研究.应用生态学报, 2002,13(8):1001-1006.
    [86]王文军,王文华,张学林,等.生物膜及其各种组分对42氯酚化合物的吸附特征.环境科学, 2001, 22(2):19-24.
    [87] Laspidou CS, Rittmann BE. Evaluating trends in biofilm density including active bacteria, inert biomass, and extracellular polymeric substances. Water Research, 2004, 38(14-15):3349-3361.
    [88] Noguera DR, Okabe Satoshi, Picioreanu C. Biofilm modeling: present status and future directions. Water Science and Technology, 1999, 39(7): 273-278.
    [89] Grady Jr CPL, Daigger GT, Lim HC. Biological Wastewater Treatment: Revised and Expanded. 2nd ed. New York: Marcal Dekker, Inc, 1999.
    [90]格雷迪.废水生物处理:改编和扩充.第二版.张锡辉,刘勇弟译.北京:化学工业出版社, 2000.
    [91]刘雨,赵庆良,郑兴灿.生物膜法污水处理技术.北京:中国建筑工业出版社, 2000.
    [92]刘雨,王岐东.生物膜增长动力学模型.北京轻工业学院学报, 1997, 15(2):28-32.
    [93] Colasanti R. Cellular automata models of microbial colonies. Binary, 1992, 4:191-193.
    [94] Wimpenny JWT, Colasanti R. A unifyinf hypothesis for the structure of microbial biofilms based on cellular automaton models. FEMS Microbiology Ecology, 1997, 22(1):1-16.
    [95] Picioreanu C, van Loosdrecht MCM, Heijnen JJ. Discrete-differential modeling of biofilm structure. Water Science and Technology, 1999, 39(7):115-122.
    [96] Rittmann BE, Pettis M, Reeves HW, et al. How biofilm clusters affect substrate flux and ecological selection. Water Science and Technology, 1999, 39(7):99-105.
    [97] Pizarro G, Griffeath D. Nogueta DR. Quantitative cellular automatic for biofilm. Journal of Environment Engineering, 2001, 127(9):782-789.
    [98] Wanner O, Gujer W. Competition in biofilm. Water Science and Technology, 1984, 17(2-3):27-44.
    [99] Rittmann BE, Manem JA. Development and experimental evaluation of a steady-state, multispecies biofilm model. Biotechnology and Bioengineering, 1992, 39(9):914-922.
    [100] Rittmann BE, Stiwell D, Ohashi A. The transient-state, multiple-species biofilm model for biofiltration processed. Water Research, 2002, 36(9):2342-2356.
    [101]陈黎明,柴立和.生物膜动力学的研究现状与展望.力学进展, 2005, 35(3):411-416.
    [102]王兴奎,邵学军,李丹勋.河流动力学基础.北京中国水利水电出版社, 2002.
    [103] Wentworth C K. A laboratory and field study of cobble abrasion. The Journal of Geology, 1919, 40:507-521.
    [104] Wadell H. Volume, shape, and roundness of rock particles. J. Geol., 1932, 40:443-451.
    [105] Sneed E D and Folk R L. Pebbles in the Lower Colorado River, Texas: a study in particle morphogenesis. J. Geol., 1958, 66:114-150.
    [106] Wang Ying, DJW Piper, G Vilks. Surface textures of turbid sand grains. Laurentian Fan and Sohn Abyssal Plain, Sedimentology, 1982, Vol. 29(5):727-736.
    [107]方红卫,陈明洪,陈志和.环境泥沙的表面特性与模型.北京:科学出版社, 2008.
    [108] Powers M C. A new roundness scale for sedimentary particles. J. Sed. Petrol., 1953, 23: 117-119.
    [109] Krumbein W C. Measurement and geological signifi-cance of shape and roundness of sedimentary particles. J. Sed. Petrol., 1941, 11:64-72.
    [110] Riley N A. Projection sphericity. J. Sed. Petrol., 1941, 11:94-97.
    [111] Blott S, Pye K. Particle shape: a review and new methods of characterization and classification. Sedimentology, 2007, 55(1):31-63.
    [112] Aschenbrenner B C. A new method of expressing particle sphericity. J. Sed. Petrol., 1956, 26:15-31.
    [113] Corey A T. Influence of Shape on Fall Velocity of Sand Grains [MSc Thesis]. Colorado A&M College. 1949.
    [114] Pfeifer P, Avnir D. Chemistry in noninteger dimensions between two and threeⅠ: fractal theory of heterogeneous surface. Journal Chemistry Physics, 1983, 79:3558-3565.
    [115] Pfeifer P, Avnir D. Chemistry in noninteger dimensions between two and threeⅡ: fractal surface of adsorbents Journal Chemistry Physics, 1983, 79:3566-3571.
    [116]朱文魁,张双全,唐志红,等.气体吸附法研究活性炭表面分形维数.炭素, 2004, 2:12-15.
    [117] Avnir D. The fractal approach to heterogeneous chemistry: Surface, colloids, polymers. New York: Wily, 1989.
    [118] M K Ismail, P Pfeifer. Fractal Analysis and Surface Roughness of Nonporous Carbon Fibers and Carbon Blacks. Langmuir, 1994, 10:1532-1538.
    [119] Fumiaki Kan?, Ikuo Abe and Hiroshi Kamaya, et al. Fractal model for adsorption on activated carbon surfaces: Langmuir and Freundlich adsorption. Surface Sciece, 2000, 467:131-138.
    [120]张济忠.分形.北京:清华大学出版社, 1995.
    [121]谢和平.分形几何:数学基础与应用.重庆:重庆大学出版社, 1991.
    [122] Avnir D, Farin D, Pfeifer P. Molecular fractal surface. Nature, 1984, 308:261-263.
    [123] Neimark A V. Calculating surface fractal dimensions of adsorbents. Adsorption Science and Technology, 1990, 7(4):210-219.
    [124] Yin Y B. Adsorption isotherm on fractally porous materials. Langmuir, 1991, 7:216-217.
    [125] Neimark A V, Unger K K. Method of discrimination of surface fractality. Journal of Colloid and Interface Science, 1993, 158:412-419.
    [126] Neimark A V. Determination of the surface fractal dimensionality from the results of an adsorption experiment. Russian Journal of Physical Chemistry, 1990, 64:2593-2605.
    [127]傅雪海,秦勇,薛秀谦.煤储层孔、裂隙系统分形研究.中国矿业大学学报(自然科学版), 2001, 30(3):225-228.
    [128] Chakraborti R K, Atkinson J F, Van Benschoten J E. Characterization of alum floc by image analysis. Environmental Science and Technology, 2000, 34(18):3969-3976.
    [129]晁晓波,赵文谦,邱大洪.表面分形原理在研究泥沙吸附乳化油特性中的应用.水利学报, 1997, 9:1-5.
    [130] Dirk H B. An evaluation of fractal dimensions to quantify changes in the morphology of fluvial suspended sediment particles during baseflow conditions. Hydrological process, 1997, 11:415-426.
    [131] Dirk H B, Stone M. Fractal dimensions of suspended solids in streams: comparison of sampling and analysis techniques. Hydrological process, 1999, 13:239-254.
    [132] Dirk H B, Stone M, Levesque M J. Fractal dimensions of individual flocs and floc populations in streams. Hydrological process, 2000, 14:653-667.
    [133] Stone M, Krishnappan B G. Fractal dimensions of cohesive sediment during settling in steady state flow with different initial sediment concentrations. Can. J. Civ. Eng., 2005, 32:658-664.
    [134]洪国军,杨铁笙.黏性细颗粒泥沙絮凝及沉降的三维模拟.水利学报, 2006, 37(2):172-177.
    [135]李富根,熊祥忠,赵明,等.黏性泥沙絮凝体结构观测与分形维数估算.人民黄河, 2006, 28(2):31-33.
    [136]杨铁笙,李富根,梁朝皇.粘性细颗粒泥沙静水絮凝沉降生长的计算机模拟.泥沙研究, 2005(4):14-20.
    [137] Hundal H S, Rohani S and Wood H C, et al. Particle Shape Characterization Using Image Analysis and Neural Networks. Powder Technology, 1997, 91:217-227.
    [138]中国水利学会泥沙专业委员会.泥沙手册.北京:中国环境科学出版社, 1992.
    [139] Vanoni VA. Sedimentation Engineering. ASCE, NYUSA, 1975.
    [140] Koelzer VA, Lara JM, Hembree Ch. Density of sediments deposited in reservoirs. Report No. 9 of A Study of Methods Used in Measurement and Analysis of Sediment Loads in Streams, St. Paul United States Engineering District, St. Paul, Minn, 1953.
    [141] Lane EW. Progress report on studies on the design of stable channels by the Bureau of Reclamation, Proc. Amer Soc Civil Engrs., Vol. 79, Separate no. 280, 1953.
    [142]韩其为,王玉成,向熙珑.淤积物的初期干容重.泥沙研究, 1981, 1:1-13.
    [143]韩文亮.细颗粒浆体的应力松弛模型.泥沙研究, 1991, 3:87-92.
    [144]张德茹,苏晓波,王力,等.洛惠渠高含沙水流的特性分析.泥沙研究, 2000,2:44-48.
    [145]陈铁林,陈生水,周成,等.粘土的流变特性分析.岩土工程学报, 2001,23(3):279-283.
    [146]钱宁,万兆惠.高含沙水流运动研究述评.全国泥沙基本理论研究学术讨论会论文集(第二卷) , 1992, 110-111.
    [147]杨铁笙,熊祥忠,詹秀玲,等.粘性细颗粒泥沙絮凝研究概述.水利水运工程学报, 2003, 2:65-77.
    [148]张志忠,王允菊,徐志刚.长江口细颗粒泥沙絮凝若干特性探讨.第二次河流泥沙国际学术讨论会组织委员会.第二次河流泥沙国际学术讨论会论文集.北京:水利水电出版社, 1983:274-284.
    [149]张志忠.长江口细颗粒泥沙基本特性研究.泥沙研究, 1996, 1:67-73.
    [150]关许为,陈英祖.长江口泥沙絮凝静水沉降动力学模式的试验研究.海洋工程, 1995, 1:46-50.
    [151]钱宁.高含沙水流运动.北京:清华大学出版社, 1989.
    [152] Migniot C,丁联臻译.不同的极细沙(淤泥质)物理性质的研究及其在水动力作用下的性质. La Houille Blanche, No.7, 1966.北京:北京电力设计院, 1977.
    [153]黄建维.泥沙在静水中沉降特性的试验研究.泥沙研究, 1981, 2:30-39.
    [154]张德茹,梁志勇.不均匀细颗粒泥沙粒径对絮凝的影响试验研究.水利水运科学研究, 1994, (1 ,2):11-17.
    [155] Kranenburg C. Effects of floc strength on viscosity and deposition of cohesive suspensions. Continental Shelf Research, 1999, 19: 1665-1680.
    [156] Kranenburg C. The fractal structures of cohesive sediment aggregates. Estuarine, Coastal and Shelf Science, 1994, 39:451-460.
    [157]张幸农.水流紊动对泥沙絮凝的影响.全国泥沙基本理论研究学术讨论会论文集, 1992, 233-240.
    [158]杨美卿,钱宁.紊动对细泥沙浆液絮凝结构的影响.水利学报, 1986, 8:21-30.
    [159]武道吉,谭风训,王江清.紊流絮凝技术研究.水处理技术, 1999, 253:171-173.
    [160]高亚军,刘长辉,郑巧红.细颗粒煤粉的密实过程及其对起动流速的影响.河海大学学报, 1999, 27(7):54-59.
    [161]夏震寰,宋根培.离散颗粒和絮凝体相结合的沉降特性.第二次河流泥沙国际学术讨论会论文集.北京:水利水电出版社, 1983, 253-261.
    [162]林以安,李炎,唐仁友.长江口絮凝聚沉特征与颗粒表面理化因素作用-I,悬浮颗粒絮凝沉降特征.泥沙研究, 1997, 1:42-47.
    [163]林以安,李炎,唐仁友.长江口絮凝聚沉特征与颗粒表面理化因素作用-II ,颗粒表面性质对聚沉的作用.泥沙研究, 1997, 4:76-83.
    [164] Bartoli F , Phillipy R, Doirisse M, et al. Structure and self-similarity in silty and sandy soils: the fractal approach. Journal of Soil Science, 1991, 42:167-185.
    [165] Edith Perrier, Nigel Bird, Michel Rieu. Generalizing the fractal model of soil structure: The pore - solid fractal approach. Geoderma, 1999, 88:137-164.
    [166]杨美卿.细泥沙絮凝的微观结构.泥沙研究, 1986, 3:73-78.
    [167] Ma KS, Pierre AC. Clay sediment-structure formation in aqueous kaolinite suspensions. Clays and clay minerals, 1999, 47(4):522-526.
    [168]常青,傅金镒,郦兆龙.絮凝原理.兰州:大学出版社, 1992.
    [169]王果庭.胶体稳定性.北京:科学出版社, 1990.
    [170]陈洪松,邵明安.细颗粒泥沙絮凝-分散在水土保持中的应用.灌溉排水, 2000, 4:13-15.
    [171]陈洪松,邵明安,李占斌. NaCl对细颗粒泥沙静水絮凝沉降影响初探.土壤学报, 2001, 1:131-134.
    [172]陈洪松,邵明安. CaCl2对细颗粒泥沙静水絮凝沉降的影响.水土保持学报, 2000, 2:46-49.
    [173]金德泽,吴慧文,师福东.泥沙絮凝问题.东北水利水电, 1998, 11:25-37.
    [174] Adamson A W. Physical Chemistry of Surface. New York:Wiley, 1976.
    [175]蒋国俊,张志忠.长江口阳离子浓度与细颗粒泥沙絮凝沉积.海洋学报, 1995, 1:76-82.
    [176]王保栋.河口细颗粒泥沙的絮凝作用.黄渤海海洋, 1994, 1:71-76.
    [177]关许为,陈英祖,杜心慧.长江口絮凝机理的试验研究.水利学报, 1996, 6:70-80.
    [178] Sabine UG, Thomas J, Westrich B, et al. Microbial stabilization of riverine sediments by extracellular polymeric substances. Geobiology, 2008, 6(13):57-69.
    [179] E. Vignaga, W.T. Sloan, H. Haynes, et al. Entrainment of biostabilized non-cohesive sediments: modelling biofilm adhesion as an elastic force. 33rd IAHR Congress: Water Engineering for a Sustainable Environment, 2008:51-58.
    [180] Brouwer JFC, Bjelic S, Deckere EM, et al. Interplay between biology and sedimentology in a mudflat (Biezelingse Ham, Westerschelde, The Netherlands). Continental Shelf Research, 2000, 20:1159-1177.
    [181]干蜀毅,陈长琦,朱武,等.环境扫描电子显微镜工作原理及实现.真空电子技术研究与设计, 2003, 6:29-32.
    [182]汤雪明,戴书文.生物样品的环境扫描电镜观察.电子显微学报, 2001, 20(3):217-223.
    [183]洪健,徐正.环境扫描电镜在生物学上的应用.杭州电子工业学院学报, 2000, 20(3):48-52.
    [184]清华大学精密仪器与机械学院摩擦学国家重点实验室. http://sklt.tsinghua.edu.cn/index.php?option=comcontent&task=view&id=153&Itemid=77.
    [185] SL 42-92河流泥沙颗粒分析规程.
    [186]陈明洪.泥沙颗粒吸附磷的规律及微观形貌变化的研究[博士学位论文].北京:清华大学水利水电工程系, 2008.
    [187]陈志和.泥沙吸附重金属离子后表面形貌变化及结构特征研究[博士学位论文].北京:清华大学水利水电工程系, 2008.
    [188]周群英,高廷耀.环境工程微生物学.北京:高等教育出版社, 2000.
    [189]吴志超,黄友谊,陈和谦,等.沸石颗粒在污泥絮体中的形态及其对污泥泥水分离的影响.环境污染与防治, 2005, 27(3):177-180.
    [190]方芳,龙腾锐,郭劲松,等.多孔填料表面物理特性对生物膜附着的影响.工业用水与废水, 2004, 35(6):1-4.
    [191]龙腾锐,方芳,郭劲松,等.水处理多孔填料的分形特性和分数维.中国给水排水, 1999, 15(12):10-13.
    [192] Kawase M, Nomura T, Majima T. An anaerobic fixed bed reactor with a porous ceramic carrier. Water Science and Technology, 1989, 21(4/5):77-86.
    [193] Cardoba PR, Sineriz F. Characteristics of packings for anaerobic filters. Environmental Technology Letters, 1990, 11(1):213-218.
    [194] Breitenbucher K, Siegel M, Kbuofer A, et al. Open-pore sintered glass as a high-efficienvy support medium in bioreactors: new results and long term experiences achieved in high-rate anaerobic digestion. Water Science and Technology, 1990, 21(1-2):25-32.
    [195] Messing RA, Oppermann RA. Pore dimensions for accumulating biomass: I microbes that reproduce by fission or by budding. Bioptechnol Bioengng, 1997, 21 (1):49-58.
    [196] Livingston AG. Biodegradation of 3, 4-Dichloroaniline in a fluidized bed bioreactor and a steady-state biofilm kinetic mode. Biotechnol Bioeng, 1991, 38 (3):260-272.
    [197]方芳,龙腾锐,郭劲松,等.多孔填料表面物理特性评价指标的定量化研究.水处理技术, 2005, 31(8):14-17.
    [198]王圣武,马兆昆.生物膜污水处理技术和生物膜载体.江苏化工, 2004, 32(4):36-38..
    [199]郑方,章毓晋.数字信号与图像处理.北京:清华大学出版社, 2006.
    [200] Weaver J. Applications of discrete and continuous Fourier analysis. New York: John Wiley and Sons Inc., 1983.
    [201] E Lestre Pete. Fourier descriptors and their applications in biology. Cambridge:Cambridge University Press, 1997.
    [202] Sven Loncaric. A survey of shape analysis techniques. Pattern Recognition, 1998, 31(8):983-1001.
    [203]应义斌.水果形状的傅立叶描述子研究.生物数学学报, 2001, 16(2):234-240.
    [204]赵广涛, Zhou Wei, E William,等.付里叶形状分析方法及其在地质学中的应用.中国海洋大学学报, 2004, 34(3):429-436.
    [205]王正勇.小波分析在图像处理中的应用.中国教育信息化, 2007, 8:64-65.
    [206]夏敏,刘宏申.基于小波描述子和神经网络的形状识别.计算机技术与发展, 2007, 17(3):106-108.
    [207] Gene C-H Chuang, C-C Jay Kuo. Wavelet descriptor of planar curves: theory and applications. IEEE Trans. Image Process, 1996, 5(1):56-70.
    [208]杨翔英,章毓晋.小波轮廓描述符及在图像查询中的应用.计算机学报, 1999, 22 (7):752-757.
    [209]曲桂红张大力阎平凡.数字空间轮廓的小波描述子.电子与信息学报, 2002, 24(6):794-799.
    [210]米克斯,奥莱伊尼恰克.小波基础及应用教程.杨志华,杨力华译.北京:机械工业出版社, 2006.
    [211]朱同林,彭嘉雄.轮廓形状匹配的形状函数小波特征方法.自动化学报, 2001, 27(6):855-859.
    [212]俞汉清.表面粗糙度标准及应用.北京:中国计量出版社, 1997.
    [213] Al-rousan T, Masad E, Tutumluer E, et al. Evaluation of image analysis techniques for quantifying aggregate shape characteristics. Construction and Building Materials, 2007, 21:978-990.
    [214]章萧,董艳雪,赵文娟,等.数字图像处理技术.北京:冶金工业出版社, 2005.
    [215]周启鸣,刘学军.数字地形分析.北京:科学出版社, 2006.
    [216]毋河海,龚健雅.地理信息系统(GIS)空间数据结构与处理技术.北京:测绘出版社, 1997.
    [217] Phillips GM, Taylor J.数值分析的理论及其应用.熊西文等,译.上海:上海科学技术出版社, 1972.
    [218]梅向明,黄敬之.微分几何.北京:高等教育出版社, 1988.
    [219]汤国安,刘学军,闾国年.数字高程模型及地学分析的原理和方法.北京:科学出版社, 2005.
    [220]蔡菲,蔡珣,史同广,等.一种基于形状特征的图像检索方法.计算机应用与软件, 2005, 22(12):98-99.
    [221]胡江萍.应用傅立叶分析方法描述混凝土集料形状.建材技术与应用, 2006(6):1-4.
    [222]范春年,陈建坤,傅德胜.一种二维极坐标傅立叶描述子在图像检索中的应用.计算机工程与应用, 2004, 24:77-79.
    [223]王逸飞,陈雁秋.用于二维形状描述圆周分解法.计算机科学, 2006, 33(11):228-232.
    [224]段立娟.形状特征的编码描述研究综述.计算机科学, 2007, 34(8):215-218.
    [225]高华,王雅琴.基于计算机视觉的农产品形状分级研究.计算机工程与应用, 2004, 14:227-228.
    [226]魏升,刘南生,刘明友.基于图像二维小波多尺度分解傅立叶变换轮廓术.光学与光电技术, 2007, 15(4):32-35.
    [227] Ernest A N, Bonner JS, Aulenrieth RL. Determination of particle collision efficiencies for flocculent transport models. Journal of Environmental Engineering, 1995, 121(4):320-329.
    [228] Rosen.Surfactants and Interfacial Phenomena. New York: Academic Press, 1978.
    [229]刘启贞,李九发,陆维昌,等.河口细颗粒泥沙有机絮凝的研究综述及机理评述.海洋通报, 2006, 25(2):74-80.
    [230]佟瑞利,赵娜娜,刘成蹊,等.无机、有机高分子絮凝剂絮凝机理及进展.河北化工,2007, 30(3):3-6.
    [231]邓述波,胡筱敏,罗茜.微生物絮凝剂的研究和应用.国外金属矿选矿, 1998, 1:15-27.
    [232] Smith et al. Applied and Environmental Microbiology. 1992, 53(11):3709-3714.
    [233]邢丽贞,孔进,陈文兵.微生物絮凝剂及其在废水处理中的应用.工业水处理, 2003, 23(4):10-13.
    [234]唐建华,何青,王元叶,等.长江口浑浊带絮凝体特性.泥沙研究, 2008, 2:27-33.
    [235] Lee DG, Bonner JS, Gallon LS, et al. Modeling coagulation kinetics incorporating fractal theories: comparison with observed data. Water Research, 2002, 36:1056-10661.
    [236] Corpart JM, Cardau F. Formulation and polymerization of microemulsion containing a mixture of cationic and anionic monomers. Colloid & Polymer Science, 1993, 271(11):10-25.
    [237]李九发,戴志军,刘启贞,等.长江河口絮凝泥沙颗粒粒径与浮泥形成现场观测.泥沙研究, 2008, 3:26-32.
    [238]李冬梅,李志生,谭万春,等.高分子絮凝剂下泥沙絮体结构的分形特性.泥沙研究, 2006, 5:40-44.
    [239]周永洽.塘沽新港淤泥矿物组成的研究.水利水电科学研究院河渠研究所, 1959.
    [240]姚运先.环境监测技术.北京:化学工业出版社, 2008.
    [241]环球经贸网. http://china.nowec.com/supply/detail/8619714.html.
    [242]陈景祥,孙凤军,刘松青,等.激光扫描共聚焦显微镜观察细菌生物膜形成的方法学研究.现代生物医学进展, 2007, 7(5):653-655.
    [243]郗昕,姜泗长,方耀云.激光扫描共聚焦显微镜的原理与生物学应用.中国体视学与图像分析, 1996, 1(3,4):74-79.
    [244] Haugland RP. Handbook of fluorescent probes and research chemicals. 6th edition, U SA:Molecular Probes Inc., 1996.
    [245]王荣昌,文湘华,钱易.激光扫描共聚焦显微镜用于生物膜研究.中国给水排水, 2003, 19(12):23-25.
    [246]清华大学生物科学与技术系生物物理与结构生物学研究实验室. http://www.mse.tsinghua.edu.cn/newmse/research/instrditail.php?ID=58.
    [247]李呼伦.标记技术的应用.哈尔滨医科大学神经生物学教研室.
    [248]杨震.污泥微细结构与内部传递特性[博士学位论文].北京:清华大学热能工程系, 2007.
    [249] Blinn JF. Ntsc: Nice technology, super color. IEEE Computer Graphics and Applications, 1993, 3(2):17-23.
    [250] Sahoo PK, Soltani S, Wong AKC, et al. A survey of thresholding techniques. Comput Vis Graph Image Process, 1988, 41(2):233-260.
    [251] Pal NR, Pal SK. A review on image segmentation techniques. Pattern Recogn, 1993, 26(9):1277-1294.
    [252] Chu CP. Effect of conditioning and digestion on sludge floc structure:[Ph. D dissertation]. Taiwan University:Department of Chemical Engineering, 2003.
    [253] Otsu N. A threshold selection method from gray-level histogram. IEEE Trans Syst Man Cybern, 1979, 9(1):62-66.
    [254]韩其为.水库淤积.北京:科学出版社, 2003.
    [255]费祥俊.浆体颗粒与粒状物料输送水力学.北京:清华大学出版社, 1994.
    [256]费祥俊.黄河中下游含沙水流粘度的计算模型.泥沙研究, 1991, 6:1-13.
    [257] Hoehn RC, Ray AD. Effects of thickness on bacterial film. Journal-Water Pollution Control Federation, 1971, 45:2302-2320.
    [258] Huang JC, Liu YC. Relationship between oxygen flux and biofilm performance. Water Science and Technology, 1993, 7:153-158.
    [259]李春喜,邵云,姜丽娜.生物统计学.北京:科学出版社, 2008.
    [260]赵庆良,刘淑彦,王琨.复合式生物膜反应器中生物膜量、厚度及活性.哈尔滨建筑大学学报, 1999, 6:39-43.
    [261] Chua CP, Lee DJ, Tayb JH. Gravitational sedimentation of flocculated waste activated sludge. Water Research, 2007, 37(1):155-163.
    [262] Babatope B, Williams PR, Williams DJA. Cohesive sediment characterization by combined sedimentation and rheological measurements. Journal of Hydraulic Engineering, 2008, 134(9):1333-1336.
    [263] Sosio Rosanna, Crosta GB, Frattini P. Field observations, rheological testing and numerical modelling of a debris-flow event. Earth Surface Processes and Landforms, 2007, 32(2):290-306.
    [264] Major JJ, Pierson TC. Rheological analysis of fine-grained natural debris-flow material. Hydraulics/Hydrology of Arid Lands, 1990:225-231.
    [265] Schatzmann M, Fischer P, Bezzola GR. Rheological behavior of fine and large particle suspensions. Journal of Hydraulic Engineering, 2003, 129(10):796-803.
    [266]钱宁,万兆惠. Rheological behavior of fine and large particle.北京:科学出版社, 1983.
    [267]罗塘湖.含蜡原油流变特性及其管道输送.北京:石油工业出版社, 1991.
    [268]高桂丽,李大勇,石德全.液体粘度测定方法及装置的研究现状和发展趋势简述.现代涂料与涂装, 2006, 4(2):39-42.
    [269]清华大学材料科学与工程研究院中心实验室. http://www.mse.tsinghua.edu.cn/newmse/research/instrditail.php?ID=78.
    [270] Liu Y, Capdeville B. Specific activity of nutrifying biofilm in water nitrification process. Water Research, 1996, 30(7):1645-1650.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700