催化填料研制及其变速生物滤池处理城市污水性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物滤池是废水处理生物膜法的重要工艺之一,其关键技术是微生物附着生长的填料,核心内容是运行性能。论文围绕研制具有刺激微生物生长及利于微生物附着的生物催化填料,以及以生物催化填料为载体的生产性缺氧变速生物滤池处理城市污水的性能进行了试验研究,得到以下结论:
     (1)通过填料烧制正交试验及微生物挂膜对比试验,获得了生物催化填料的生产性最佳配比和烧制工艺,成功地研制出一种新型多孔生物催化填料,与普通陶粒和高炉渣相比,其表面粗糙度高、表面微孔有效孔容大、挂膜时间短且挂膜率高,因此更适合微生物附着和增殖,是一种理想的废水生物处理填料。
     (2)对生物膜法微生物附着填料的物理特性评价指标进行了分析,指出填料表面孔结构分布是影响多孔填料表面微生物附着特性最主要的物理参数,提出以表面微孔有效孔容及其相应的微孔均值孔径和表面分数维值组成的指标体系表征填料的物理特性,为评价多孔填料的优劣提供了新思路。
     (3)论文首次应用分形理论及分数维概念定量表征了多孔填料表面粗糙度,实现了多孔填料表面粗糙度的描述从定性发展为定量,从表观概述发展为微观分析。论文以本研究中采用的填料为例,计算出了其分数维值分别为:生物催化填料2.70~2.78,普通陶粒2.75,高炉渣2.53。
     均值孔径是本论文以统计学理论为基础提出的一个描述多孔填料微孔结构分布的新参数,它有效克服了中值孔径和平均孔径难以突出孔径分布特征以及孔径曲线使用不便的不足。
     (4)本研究对生物滤池结构进行改进,在国内外首创变速流动的滤池构造,较大幅度地延长了生物滤池的冲洗周期,在一定程度上减轻了滤池易堵塞的问题。在生产性规模装置上的运行试验表明:只要每2~4周排泥一次,则滤池填料层的冲洗周期为2~4个月。
     (5)以生物催化填料为载体的生产性缺氧变速生物滤池在22~28℃条件下50d左右完成启动过程;在17~27℃条件下处理城市污水,水量为485~737m~3/d,滤池HRT为7.7~5.0h(填料层HRT为3.9~2.6h)时,出水COD小于120mg/L,SS小于30mg/L,部分BOD_5略大于30mg/L(概率约为40%)。滤池对P有一定的去除效果,但出水NH_3-N浓度略有升高。滤池运行期间pH值始终保持中性。滤池填料层HRT、填料层厚度、水温等对滤池性能有重要影响。论文推导了填料层有机物的降解动力学模型为:S_出=(S_1-S_n)/П(1+K_(2i)X_it_i)+S_n,并根据试验数据得出相应的K_2值和S_n值。
    
     重庆大学博士学位论文
     (6)对缺氧变速生物滤池微生物学特性的研究表明:滤池填料层内微生物主要
    以生物膜形式存在,填料层内微生物量与相应的脱氢酶活性有良好的相关性。滤池
    中有机物的降解主要遵循厌氧降解途径,厌氧降解过程各类微生物生理类群之间呈
    现良好的代谢平衡:硫酸盐还原菌没有对产甲烷菌形成抑制。
     本研究为以催化填料缺氧变速生物滤池为主体技术的城市污水处理新工艺的工
    程应用提供了依据,具有较大的实用价值。
Biofilter is an important biofilm process for wastewater treatment, its critical technology being media attached with microbe and its core issue performance of biofilter. In addition to a concentrated study of a new microbe-catalyzed media which can not only stimulate microbial growth but also promote biomass attachment, this dissertation carries out a full-scale experiment of performance of anoxic variable rate biofilter with this microbe-catalyzed media in municipal wastewater treatment. The conclusion is as follows:
    (1) Through orthogonal sintering experiments of media and contrasting experiments for biomass attachment, the optimal component proportion of the microbe-catalyzed media and the optimal sintering process are obtained by the studies on the productive exploitation. Compared with ceramic granule and blast furnace slag, microbe-catalyzed media has a coarser surface, a bigger available pore volume, a quicker and better biofilm growth, and is ideal for wastewater treatment.
    (2) Based on analysis of the indexes evaluating physical properties of microbe attached media used for biofilm process, it is pointed out that the surface micro-pore distribution is the main physical index to describe the physical properties of porous media surface, and the index system composed of available pore volume and corresponding expected value of pore diameter and coarse degree of the media surface is given at the same time. This is a new approach to evaluating porous media.
    (3) For the first time surface coarse degree of porous media is defined quantitatively through fractal theory and fractional dimension. As a result, means of studying surface coarse degree of porous media is advanced from qualitative description to quantitative computation, and from apparent summary to deep micro-analysis. The fractional dimension value is calculated of micro-catalyzed media, ceramic granule and blast furnace slag as 2.70~2.78, 2.75 and 2.53 respectively in the study.
    Expected value of pore diameter as put forward in this dissertation is a new parameter based on statistics theory, which, unlike the concepts of median pore diameter and mean diameter, can effectively characterize the diameter distribution features without the inconveniences of the pore diameter curve.
    (4) Variable rate structure of biofilter is created for the first time, which greatly lessens the bio-filter's need for washing and relieve clogging of biofilter. Results of full-scale device experiments show that: if sludge is discharged once time every 2~4
    
    
    weeks, washing duration of media layer would be 2-4 months.
    (5) It takes about 50d for full-scale anoxic variable rate biofilter with microbe-catalyzed media to finish start-up at 22~28C. When influent flow varies between 485~737m3/d and HRT of biofilter between 7.7~5.0h (HRT of media layer between 3.9~2.6h), effluent COD is below 120 mg/L, SS is below 30 mg/L, and some of effluent BODs is slightly above 30 mg/L (the probability is about 40%) at normal temperature of 17~27C. Influent P is removed to some degree, while effluent NHa-N increases a little. During the operation the pH is kept around 7.0. HRT, depth of media layer and water temperature have great influence on the biofilter performance. The dynamic model of the organic substances degradation in media layer is induced as
    follows: S = (S1 - Sn) / n(1 + K2iXiti) + Sn, and according to experiment data involved
    K.2 and Sn were given.
    (6) Microbes in media layer mostly exist as biofilm, and there is high correlation between the attached biomass and the relevant TTC dehydrogenase activity. The degradation of organic matter mainly accords with anaerobic approach, and the different species of microbes maintain a balanced metabolism. Sulfate reduction bacteria do not suppress methane production bacteria.
    The study shows great value of application as it provides support for the utilization of anoxic variable rate biofilter with microbe-catalyzed media in municipal wastewater treatment.
引文
[1] 许保玖,龙腾锐.当代给水与废水处理原理.北京.高等教育出版社.2000.
    [2] Bryant M. P. et al. Methanobacillus omelianskii, a symbiotic association of two species bacteria. Arch. Microbiol. 1967. 20-31.
    [3] Bryant M. P. Microbial methane production-theoretical aspects. J. Animal Science. 1979. Vol.48. No.1. 193-201.
    [4] Zeikus J. G. Microbial populations in digesters. Anaerobic Digestion. Applied Science Publisher. 1979. 66-89.
    [5] Gujer W. and Zehnder A. J. B. Conversion processes in anaerobic digestion. Wat. Sci. Tech. 1983. Vol.15. 127-167.
    [6] Pavlostathis S. G and Giraldo-Gomez E. Kinetics of anaerobic treatment. Wat. Sci. Tech. 1991. Vol.24. No.8.35-59.
    [7] McCarty P. L. One hundred years of anaerobic treatment. Anaerobic Digestion 1981. Proc. Of the Second Int. Symp. on Anaerobic Digestion. 1981.3-22.
    [8] 申立贤编著.高浓度有机废水厌氧处理技术.北京.中国环境技术出版社.1991.
    [9] Schroepfer G. L. The anaerobic process as applied to packing house waste. Sewage and Ind. Wastes. 1955. Vol.27. No.4. 460-486.
    [10] Iza. J., Colleran E. and Paris J. M. et al. international workshop on anaerobic treatment technology for municipal and industrial wastewaters: summary paper. Wat. Sci. Tech. 1991. Vol.24. No.8.1-16.
    [11] 王凯军,贾立敏.升流式厌氧污泥床(UASB)反应器的设备化研究.给水排水.2001.Vol.27.No.4.85-90.
    [12] Mergaert K., Vanderhaegen B. and Verstraete W. Applicability and trends of anaerobic pre-treatment of municipal wastewater. Wat. Res. 1992. Vol.26. No.8. 1025-1033.
    [13] 胡启春.国外厌氧处理城镇生活污水的应用现状和发展趋势.中国沼气.1998.Vol.16.No.2.11-15.
    [14] Mogens Henze and Poul Harremoes. Anaerobic treatment of wastewater in fixed film reactorsa literature review. Wat. Sci. Tech. 1983. Vol.15. Copenhagen. 1-101.
    [15] William J. Jewell. Anaerobic sewage treatment. Environ. Sci. Technol. 1987. Vol.21. No. 1.14-21.
    [16] Joo-Hwa Tay., S. Jeyaseelan Kuan-yeow Show. Performance of anaerobic packed-bed system with different media characteristics. Wat. Sci. Tech. 1996. Vol.34. No.5-6. 453-459.
    
    
    [17] Rockey J. S. and Forster C. F. The use of an anaerobic expanded bed reactor for the treatment of domestic sewage. Envir. Technol. Lett. 1982. Vol.3. 487-496.
    [18] Switzenbau M. S., Sheehan K. S. and Hickey R.F.Anaerobic treatment of primary effluent. Env. Technol. Lett. 1984. Vol.5.189-200.
    [19] Sanz and F. Fdz-Polanco. Low temperature treatment of municipal sewage in anaerobic fluidized bed reactors. Wat. Res. 1990. Vol.24. 463-469.
    [20] Marango A.J.L. and Campos J. R. Treatment of wastewater with a low concentration of organics using an anaerobic fluidized bed reactor. Wat. Sci. Tech. 1992. Vol.25. No.7. 179-191.
    [21] Lettinga G., Roersma R. and Grin P. Anaerobic treatment of raw domestic sewage at ambient temperatures using a granular bed UASB reactor. Biotechnol. Bioengng. 1983. Vol.25. 1701-1723.
    [22] Barbosa R. A.and G. L. Sant Anna Jr. Treatment of raw domestic sewage in an UASB reactor. Wat. Res. 1989. Vol.23. No. 12. 1483-1490.
    [23] 周琪,袁嗣兵,竺建荣等. 升流式厌氧污泥床处理生活污水.中国给水排水.1992.Vol.8.No.4.45-47.
    [24] Noyola A., Capdeville B. and Roques H. Anaerobic treatment of domestic sewage with a rotating-stationary fixed-film reactor. Wat. Res. 1988. Vol.22. No. 12. 1585-1592.
    [25] Santino Di Berardino et al. Domestic sewage treatment by anaerobic hybrid filter. Proc.8th International Conference On Anaerobic Digestion. Sendai Japan. May. 1997. 117-120.
    [26] Alette A. M. Langenhoff and David C. Stuckey. Treatment of dilute wastewater using an anaerobic baffled reactor: Effect of low temperature. Wat. Res. 2000. Vol.34. No. 15.3867-3875.
    [27] Udeme J. Ndon and Richard R. Dague. Effect of temperature and hydraulic retention time on anaerobic sequencing batch reactor treament of low-strength wastewater. Water research. 1997. Vol.31. No.10. 2455-2466.
    [28] 王凯军,Last A.R.M.Van der.,G.Lettinga.水解与颗粒污泥膨胀床串联工艺处理城市污水.中国给水排水.1999.Vol.15.No.8.19-23.
    [29] Chernicharo C. A. L. and Machado R. M. G Feasibility of UASB/AF system for domestic sewage treatment in developing countries. Wat. Sci.Tech. 1998. Vol.38. No.8-9. 325-332.
    [30] Peter Van Der Steen. Asher Brenner. Joost Van Buuren and Gideon Oron. Post-treatment of UASB reactor effluent in an integrated duckweed and stabilization pond system. Wat. Res. 1999. Vol.33. No.3.615-620.
    [31] Chernicharo C. A. L. and Nascimento M. C. P. Feasibility of a pilot-scale UASB/trickling filter system for domestic sewage treatment. Wat. Sci. Tech. 2001. Vol.44. No.4.221-228.
    
    
    [32] 龙腾锐,张国庆等.混凝法强化缺氧变速生物滤池出水的试验研究.给水排水.2001.Vol.27.No.7.41-44.
    [33] James C. and Perry L. McCarty. The anaerobic filter for waste treatment. J. Wat. Pollut. Control. Fed. 1969. Vol.41. No.5. R160-R173.
    [34] Tin Sang Kwong and Herbert H. P. Fang. Anaerobic degradation of cornstarch in wastewater in upflow reactors. Environ. Eng. 1996. No. 9. 9-17.
    [35] James C. Young and Harley W. Young. Full-scale treatment of chemical process wastes using anaerobic filters. J. Wat. Pollut. Control. Fed. 1991. Vol.63. No.2. 153-159.
    [36] 隋军,王宝贞等.厌氧反应器工作特性的研究.中国环境科学.1987.Vol.7.No.2.9-13.
    [37] Janosz Rajczyk M. Fermentation of food industry wastewater. Wat. Res. 1993. Vol.27. No.7. 1257-1262.
    [38] Ramon Mendez, Juan M. Lema et al. Treatment of seafood-processing wastewaters in mesophilic and thermophilic anaerobic filters. Wat. Env. Res. 1995. Vol.67. No. 1.33-45.
    [39] Richter G. R. and Mackie J. A. Waste treatment system removes 75-80% COD. Food Process. 1972. Vol. 12. 212.
    [40] James C. Young, Byung S. Yang. Design considerations for full-scale anaerobic filters. J. Wat. Pollut. Control. Fed. 1989. Vol.61. No.9. 1576-1587.
    [41] J.K. Jhung and Choi E. A comparative of UASB and anaerobic fixed film reactors with development of sludge granulation. Wat. Res. 1995. Vol.29. No.1. 271-277.
    [42] 李亚新,李莉,冯志毅等.塑料孔板波纹填料厌氧生物滤池处理印染废水试验研究.中国给水排水.1995.Vol.11.No.5.16-19.
    [43] Parkin G. F., Speece R. E. and Yang C. H. J. et al. Response of methane fermentation systems to industrial toxicants. J. Wat. Pollut. Control. Fed.. 1983. Vol.55. No. 1.44-53.
    [44] Dhandapani Thirumurthi. Effects of mixing velocity on anaerobic fixed film reactors. Wat. Res. 1988. Vol.22. No.4. 517-523.
    [45] David E. Howerton, James C. Young. Two-stage cyclic operation of anaerobic filters. J. Wat. Pollut. Control. Fed. 1987. Vol.59. No.8. 788-794.
    [46] Sandra K. Kaiser, Richard R. Dague and William L Harris. Initial studies on the temperature-phased anaerobic biofilter process. Wat. Env. Res. 1995. Vol.67. No.7. 1095-1103.
    [47] Shanableh A., Beysinghe D. A. and Hijazi A. Effect of cycle duration on phosphorous and nitrogen transformations in biofilters. Wat. Res. 1997. Vol.31. No. 1. 149-153.
    [48] Shanableh A. and Hijazi A. Treatment of simulated aquaculture water using biofilters subjectedd to aeration/non-aeration cycles. Wat. Sci. Tech. 1998. Vol.38. No.8-9. 223-231.
    [49] 龙腾锐,何强,陈士年.变速厌氧滤池处理城市污水研究.中国给水排水.1995.Vol.11.No.2.4-8.
    
    
    [50] 龙腾锐,陈中博,郝以琼等.利用活性污泥-缺氧变速生物滤池系统进行城市污水深度处理的试验研究.给水排水.1997.Vol.23.No.2.13-17.
    [51] Kobayashi H. A., Stenstrom M. K. et al. Treatment of low strength domestic wastewater using the anaerobic filter. Wat. Res. 1983. Vol. 17. No.8. 903-909.
    [52] 钱易,王凤芹.常温下厌氧滤池处理生活污水的试验研究.给水排水.1994.No.1.24-27.
    [53] Coulter J. B., Soneda S. and Ettinger M. B. Anaerobic contact process for sewage disposal. Sewage Ind. Wastes. 1957. Vol.29. No.4. 468-477.
    [54] 李云.上向流变速缺氧生物滤床处理城市污水试验研究.硕士学位论文.重庆.重庆大学.1996.
    [55] James C. Young and Mohamed F. Dahab. Effect of media design on the performance of fixed-bed anaerobic reactors. War. Sci. Tech. 1983. Vol. 15. 369-383.
    [56] Joo-Hwa Tay, Kuan-Yeow Show et al. Effects of media Characteristics on performance of upfiow anaerobic packed-bed reactors. Env. Eng. 1996. June. 469-476.
    [57] Chow-Feng Chiang, Richard R. Dague. Effects of reactor configuration and biomass activity on the performance of upflow static media anaerobic reactors. Wat. Env. Res. 1992. Vol.64. No.2. 141-149.
    [58] Ki-Ho Song, James C. Young. Media design factors for fixed-bed filters J. Wat. Pollut. Control. Fed. 1986. Vol.58. No.2. 115-121.
    [59] Van den Berg L. and Kennedy K. L. Support materials for stationary fixed films reactors for high-rate methanogenic fermentations. Biotechnol. Lett. 1981. Vol.3. 305-308.
    [60] Anderson G K., Kasapgil B. and Ince O. Comparison of porous and non-porous media in upflow anaerobic filters when treating dairy wastewater. War. Res. 1994. Vol.28. No.7. 1619-1624.
    [61] Fox P., Suidan M. T. and Bandy K. T. A Comparison of Media Types in Acetate Fed Expanded-bed Anaedobic Reactors. War. Res. 1990. Vol.24. No.7. 827-835.
    [62] Emily J. T M. Leen and Vitor A. P. Dos Santos et al. Characteristics of and selection criteria for support materials for cell immobilization in wastewater treatment. Wat. Res. 1996. Vol. 30. No. 12. 2985-2996.
    [63] 吴季松.为可持续发展提供水资源保障.科技日报.绿色周刊.1999.3.20.
    [64] 张杰.水资源、水环境与城市污水再生回用.给水排水.1998.Vol.24.No.8.1.
    [65] 吴季松.用可持续利用的资源观认识水资源问题.中国水利报,2000.4.21.
    [66] 聂梅生,李圭白,傅涛等.论水工业及其学科的产生与发展.给水排水.1997.Vol.23.No.4.57-59.
    
    
    [67] 国家环境保护局.1999年中国环境状况公报.
    [68] 国家环境保护局.2000年中国环境状况公报.
    [69] 杨向平.城市污水处理的技术特点与工程建设体验.聂梅生主编.中国水工业科技与产业.83-87.北京.中国建筑出版社.2000.
    [70] 涂兆林.我国城市污水处理现状与发展对策.市政技术.1997.No.2.
    [71] 龙腾锐,郭劲松,何强.一种废水处理新型填料的研究.第三届海峡两岸环境保护学术研讨会论文集.北京清华大学.北京.中国环境科学出版社.1995.48-55.
    [72] 何强,郭劲松,龙腾锐等.废水处理新型填料发泡剂的研究.给水排水.1996.Vol.22.No.7.15-18.
    [73] 严继民,张启元,高敬琮著.吸附与凝聚—固体的表面与孔.第二版.北京.科学出版社.1986.
    [74] Kawase M., Nomura T. and Majima T. An anaerobic fixed bed reactor with a porous ceramic carrier. Wat. Sci. Tech. 1989. Vol.21. No.4/5.77-86.
    [75] Breitenbucher K., Siegl M. A. Knupfer and M.Radke. Open-pore sintered glass as a high-efficiency support medium in bioreactors: new results and long-term experiences achieved in high-rate anaerobic digestion. Wat. Sci. Tech. 1990. Vol.22. No.1/2. 25-32.
    [76] Cordoba P. R. and Sineriz F. Characteristics of packings for anaerobic filters. Environ. Tech. Lett. 1990. No.1. 213-218.
    [77] 甘斯柞,傅体华编.应用物理化学第三分册—催化作用及其反应动力学.北京.高等教育出版社.1992.
    [78] Messing R. A. and Oppermann R.A. Pore dimensions for accumulating biomass: Ⅰ. Microbes that reproduce by fission or by budding. Biotechnol. Bioengng. 1979. Vol.21.49-58.
    [79] Sy-Dar. Wang and Daniel I. C. Wang. Pore dimension effects in the cell loading of a porous carrier. Biotechnol. Bioengng. 1989. Vol.33. 915-917.
    [80] Carl J. Yee, Yen Hsu and Yen K. Shieh. Effects of microcarrier pore characteristics on methanogenic fluidized bed performance. Wat. Res. 1992. Vol.26. No.8. 1119-1125.
    [81] Masao Kuroda, Megumj Yuzawa, Yutaka Sakakibara et al. Methanogenic Bacteria Adhered to Solid Supports. Wat. Res. 1988. Vol.22. No.5. 653-656.
    [82] Harendranath C. S., Anuja K. and Anju Singh et al. Immobilization in fixed film reactors: an ultrastructural approach. Wat. Sci. Tech. 1996. Vol.33. No.8.7-15.
    [83] 刘雨,赵庆良,郑兴灿编著.生物膜法污水处理技术.北京.中国建筑工业出版社.2000.
    [84] Lazarova V. and Manem J. Biofilm characterization and activity analysis in water and wastewater treatment. Wat. Res. 1995. Vol.29. No. 10.2227-2245.
    [85] Lazarova V., Pierzo V. and Fontviell D. et al. Integrated approach for biofilm, characterization and biomass activity. Wat. Sci. Tech. 1994. Vol.29. 345-354.
    
    
    [86] Kennedy K.J., Gorus S.S. et al. Media Effects on Performance of Anaerobic Bybrid Reactors. War. Res. 1992. Vol.23. No.11. 1397-1405.
    [87] Mandelbrot B. B. The fractal geomrtry of nature. New York: Freeman. 1982.
    [88] Mandelbrot B. B. Les objects fractals: form. hazard et dimension. Paris: Flammarion. 1975.
    [89] 张济忠.分形.北京.清华大学出版社.1995.
    [90] Avnir D., Farin D. and Pfeifer. A discussion of some aspects of surface fractality and of its determination. New J. Chem. 1992. Vol. 16. No.4. 439-449.
    [91] Friesen W. I. and Mikula R. J. Fractal dimensions of coal particles. J. Colloid Interface Sci. 1987. Vol. 120. No.1. 263-271.
    [92] Wong Po-zen, Howard J. and Lin J. S. Surface roughening and the fractal nature of rocks. Phys. Rev. Lett. 1986. Vol.57. 637-640.
    [93] Baoquan Zhang and Shaofen Li. Determination of the surface fractal dimension for porous media by mercury porosimetry. Ind. Eng. Chem. Res. 1995. Vol.34. 1383-1386.
    [94] 张宝泉,李邵芬,廖晖.在多孔介质内气体扩散的分析表征.化工学报.1994.Vol.45.No.3.272278.
    [95] Rootare H. M. and Prenzlow C. F. Surface areas from mercury porosimeter measurement. J. Phys. Chem. 1967. Vol.77. No.8. 2733-2736.
    [96] 奥德日哈 迪希著 (捷).刘桢译.陶瓷的烧成.北京.中国建筑工业出版社.1989.
    [97] 桥本谦一,滨野健也著.陈世兴译.陶瓷基础.北京.轻工业出版社.1986.
    [98] 汪荣鑫著.数理统计.西安.西安交通大学出版社.1986.
    [99] Madalena Alves M., Alcina Pereira M. et al. A new device to select microcarriers for biomass immobilization: application to an anaerobic consortium. Wat. Env. Res. 1999. Vol. 71. No.2. 209-217.
    [100] 龙腾锐.成一知,郭劲松等.酶促生物填料低温缺氧挂膜试验研究.给水排水.1999.Vol.25.No.9.13-16.
    [101] 国家环保局等编.水和废水监测分析方法.北京.中国环境科学出版社.1989.
    [102] 中科院成都生物研究所.沼气发酵常规分析.北京.北京科学技术出版社.1984.
    [103] 俞汉青等.生物膜反应器挂膜方法的试验研究.中国给水排水.1992.Vol.8.No.3.13-17.
    [104] 龙腾锐,何强,林刚.活性污泥中丝状菌与絮体结构的关系研究.中国给水排水.2000.Vol.16.No.2.5-8.
    [105] 龙腾锐,张勤,郭劲松等.酶促填料与某些多孔填料挂膜特性对比试验研究.给水排水.2000。Vol.26.No.3.22-25.
    [106] Gorris. L. G. et al. Biotech. Bioeng. 1989. Vol.33. No.6. 687-693.
    
    
    [107] 杨平,潘永亮,何力.废水生物处理中生物膜的形成及动力学模型研究进展.环境科学研究.2000.Vol.13.No.5.50-53.
    [108] Madilyn Fletcher and James Howard Pringle. The effect of surface free energy and medium surface tension on bacterial attachment to solid surfaces. J. Colloid Interface Sci. 1985. Vol. 104. No.1.5-14.
    [109] Rouxhet P. G. and Mozes N. Physical chemistry of the interface between attached micro-organisms and their support. Wat. Sci. Tech. 1990. Vol.22. No.1/2. 1-16.
    [110] Chang H. T. and Rittmann B. E. Comparative study of biofilm shear loss on different adsorptive media. J. Wat. Pollut. Control. Fed. 1988. Vol.60. 362-368.
    [111] Murray W. D.and Van Den Breg L. Effect of support material on the development of microbial fixed films converting acetic acid to methane. J. Appl. Bact. 1981. Vol.51. 257-265.
    [112] Yoda M., Shin S. W., Watanabe A. et al. Anaerobic fluidized bed treatment with a stead-state biofilm. Wat. Sci. Tech. 1987. Vol. 19. 287-298.
    [113] Van Den Berg L. and Lentz C. P. Effect of film area-to-volume ratio, film support, height and direction of flow on performance of methanogenic fixed-film reactors. In proceedings of the seminar/workshop. Anaerobic filter: An energy plus for wastewater treatment. U. S. Department of Energy. 1-13.
    [114] Kent T. D., Fitzpatrick C. S. B. and Williams S. C. Testing of biological aerated filter (BAF) media. Wat. Sci. Tech. 1996. Vol.34. No.3-4. 363-370.
    [115] Young J. C. and Dahab M. F. Effect of media design on the performance of fixed-bed anaerobic reactors. Wat. Sci. Tech. 1983. Vol. 15. 369-383.
    [116] Polprasert Chongrak and Park H. S. Effluent denitrification with anaerobic filters. Wat. Res. 1986. Vol.20. No.8. 1015-1021.
    [117] 混凝土拌和用水标准 JGJ63-89.
    [118] Hickey R. F., Wu W.-M. and Veiga M. C. et al. Start-up, operation, monitoring and control of high-rate anaerobic system. Wat. Sci. Tech. 1991. Vol.24. No.8. 207-255.
    [119] Switzenbaum M. S. Obstacles in the implementation of the anaerobic treatment technology. Bioresource Technology. 1995. Vol.53.255-262.
    [120] Brito A. G, Rodrigues A. C. and Melo L. F.Granulation during the start-up of a UASB reactor used in the treatment of low strength wastewaters. Biotechnol. Letters. 1997. Vol. 19. No.4. 363-367.
    [121] Jayantha K. S. and Ramanujam T. K. Start-up criteria for an upflow anaerobic sludge blabket(UASB) reactor. Bioprocess Engineering. 1995. Vol. 13. No.6. 307-310.
    [122] 周律,钱易.厌氧反应器的设计、启动和运行控制方法.污染防治技术.1997.Vol.10.No.1.40-43.
    
    
    [123] 周律.厌氧生物反应器的启动及其影响因素.工业水处理.1996.Vol.16.No.5.1-3.
    [124] Punal A., Trevisan M. and rozzi A. et al. Influence of C:N ratio on the start-up of upflow anaerobic filter reactors. Wat. Res. 2000. Vol.34. No.9. 2614-2619.
    [125] 叶芬霞,徐向阳等.载体好氧预挂膜对厌氧附着膜膨胀床反应器的影响.中国环境科学.1995.Vol.15.No.1.5-9.
    [126] 顾国维编著.水污染治理技术研究.上海.同济大学出版社.1997.
    [127] Weimin Wu, Jicui Hu and Xiasheng Gu et al. Cultivation of anaerobic granular sludge in UASB reactors with aerobic activated sludge as seed. Water. Res. 1987. Vol.27. 789-799.
    [128] 国家环境保护局编著.低浓度污水厌氧-水解处理工艺.北京.中国环境科学出版社.1991.
    [129] 贺延龄编著.废水的厌氧生物处理.北京.中国轻工业出版社.1998.
    [130] Murgel G. M., Lion L. W. and Acheson C. et al. Experimental apparatus for selection of adherent microorganisms under stringent growth conditiond. Appl. Environ. Microbiol. 1991. Vol.57. 1987-1996.
    [131] Rittmann B. E., Crawford L. A. and Tuck C. K. et al. In situ determination of kinetic parameters for biofilms: isolation and characterization of oligotrophic biofilms. Biotechnol. Bioengng. 1986. Vol.28. 1753-1760.
    [132] 周琪.升流式厌氧污泥层反应器处理生活污水工艺与机理的研究.博士学位论文.北京.清华大学.1993.
    [133] Lynn C. Smith, D. J. Elliot. Mixing in upflow anaerobic filters and its influence on performance and scale-up. Wat. Res. 1996. Vol.30. No. 12.3061-3073.
    [134] 严伟,张秀涛.污水厌氧处理的进展与展望.严煦世主编.水和废水技术研究.中国建筑工业出版社.1992.300-317.
    [135] 钱易,米祥友主编.现代废水处理新技术.北京.中国科学技术出版社.1993.
    [136] 左剑恶,胡纪萃和陆正禹等.厌氧消化过程中酸碱平衡及pH控制的研究.中国沼气.1998.Vol.16.No.1.3-7.
    [137] C.P. Leslie Grady, Jr and Herry C. Lim. Biological Wastewater Treatment: Second Edition. Revised and Expanded. New York: Marcel Dekker. Inc. 1999,
    [138] 郑兴灿,李亚新编著.污水除磷脱氮技术.北京.中国建筑工业出版社.1998.
    [139] R.E.斯皮斯著.李亚新译.工业废水的厌氧生物技术.北京.中国建筑工业出版社.2001.
    [140] 左剑恶,胡纪萃.含硫酸盐有机废水的厌氧生物处理.环境科学.1991.Vol.12.No.3.67-71.
    [141] Choi E. and Rim J. M. Competition and inhibition of sulfate reducers and methane producers in anaerobic treatment. Wat. Sci. Tech. 1991. Vol.23. 1259-1264.
    [142] Uberoi V. and Bhattacharva S. K. Interactions among sulfate reducers, acetogens and methanogens in anaerobic propionate system. Water Environ. Res. 1995. Vol. 67. No. 3. 330-339.
    
    
    [143] Mizuno O., Li Y. Y. and Noike T. Effects of sulfate concentration and sludge retention time on the interaction between methane production and reduction for butyrate. Wat. Sci. Tech. 1994. Vol.30. No.8.45-54.
    [144] 顾夏声编著.废水生物处理模式.北京.清华大学出版社.1993.
    [145] 周春生,李永秋,俞毓馨等.陶粒柱反应器生物膜特性的研究.中国环境科学.1995.Vol.15.No.5.351-355.
    [146] 赵宇华,钱泽澍.厌氧滤器处理屠宰废水的微生物生态学研究.中国沼气.1987.Vol.5.No.2.6-14.
    [147] 赵宇华,闵航等.上流式厌氧滤器微生物学特性的研究.微生物学报.1998.Vol.38.No.2.126-130.
    [148] Bihan Y. Le and Lessard P. Influence of operational variables on enzymatic tests applied to monitor the microbial biomass activity of a biofilter. Wat. Sci. Tech. 1998. Vol.37. 199-202.
    [149] Rajeev Goel, Takashi Mino, Hiroyasu Satoh et al. Enzyme activities under anaerobic and aerobic conditions in activated sludge sequencing batch reactor. Wat. Res. 1998. Vol.32. 2081-2088.
    [150] 许晓路,申秀英.活性污泥活性参数指标的选评.环境科学.1993.Vol.14.No.2.58-62.
    [151] Awong J et al. ATP, oxygen uptake rate and INT-dehydrogenase activity of activated sludge. Wat.Res. 1985. Vol.19. No.7.917-921.
    [152] Dutton R.J., Bitton G and Koopman B. Malachite green-INT(MINT) method for determining active bacteria in sewage. Appl. Environ. Microbiol. 1983. Vol.46. 1263-1267.
    [153] Chung Y-C and Neethling J. B. Microbial activity measurements for anaerobic sludge digestion. J. Wat. Pollut. Control. Fed.. 1989. Vol.61. No.3. 343-349.
    [154] Chang-won Kim, Ben Koopman and Gabriel Bitton. INT-dehydrogenase activity test for assessing chlorine and hydrogen peroxide inhibition of filamentous pure cultures and activated sludge. War. Res. 1994. Vol.28. No.5. 1117-1121.
    [155] Blenkinsopp S. and Lock M. A. The measurement of electron transport system activity in river biofilms. Wat. Res. 1990. Vol.24. 441-445.
    [156] 周春生,尹军.TTC-脱氢酶活性检测方法的研究.环境科学学报.1996.Vol.16.No.4.400-405.
    [157] 朱南文,闵航和陈美慈等.TTC-脱氢酶测定方法的探讨.中国沼气.1996.Vol.14.No.2.3-5.
    [158] Morgan J. W., Evison L. M. and Forster. Changes to the microbial ecology in anaerobic digesters treating ice cream wastewater during start-up. Wat. Res. 1991. Vol.25. No.6. 639-653.
    
    
    [159] 钱泽澍.闽航编著.沼气发酵微生物学.浙江.浙江科学技术出版社.1986.
    [160] 俞毓馨等编.环境工程微生物检验手册.北京.中国环境科学出版社.1990.
    [161] Beliaefe B. and Mary J. Y. The most probable number estimate and its confidence limits. Wat. Res. 1993. Vol.27. No.5. 799-805.
    [162] 农业部厌氧微生物重点开放实验室编著.产甲烷细菌及研究方法.四川.成都科技大学出版社.1999.
    [163] 胡纪萃,吴唯民,顾夏声.好氧活性污泥作为厌氧反应器接种污泥的可行性研究.中国环境科学.1988.Vol.8.No.2.62-65.
    [164] Motoyuki Yoda, Mikio Kitagawa et al. Long term competition between sulfate-reducing and methane-producing bacteria for acetate in anaerobic biofilm. Wat. Res. 1987. Vol.21. No. 12. 1547-1556.
    [165] Isa Z. et al. Sulphate reduction relative to methane production in high-rate anaerobic digestion. J.Appl. Environ. Microbiol. 1986. Vol.51. No.3. 572-587.
    [166] 冀滨弘,章非娟,穆军等.厌氧处理硫酸盐有机废水的微生物学.中国给水排水.2000.Vol.17.No.3.70-73.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700