组合高级氧化工艺预处理高浓度有机废液的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
化工、制药、电镀等企业都会产生大量废槽液、废溶剂等高浓度有机废液,这部分废液CODCr高、B/C值低、成分复杂、有毒有害。按环保要求这部分废液应交有专业资质的单位处置,多采用焚烧法处理,费用很高。不少企业为节省费用稀释后掺入普通废水中处理,而造成污水处理站超标排放或污染事故。这部分废液的处置已成为一个环保难题。
     本课题针对高浓度有机废液的特点,设计了铁炭微电解/超声波—Fenton试剂氧化法—絮凝沉淀组合高级氧化预处理工艺,降低浓度、减小毒性,提高B/C比,将高浓度有机废液转变为普通废水再进行常规处理,达标排放。
     铁炭微电解/超声波优化反应条件为:废液初始pH值为4.4,固液体积比为1:4,铁炭体积比为2:1,反应次数为2次,每次反应时间为60 min,超声波频率为45KHz;Fenton试剂反应优化条件为:pH=4,30%H_2O_2投加体积为废液体积的4%,反应时间为60 min;絮凝沉淀优化反应条件为:废液初始pH值为7,PAC和PAM的加入量分别为300 mg/L和5 mg/L。
     采用该工艺处理后,模拟废液CODCr、TOC和对硝基苯酚的总去除率可以达到90.0%,79.7%,85.2%,B/C比可由处理前的0.052提高至0.346,可生化性得到较好改善。对取自宁波化工区某制药厂的两种实际废液进行了处理,CODCr分别从163000 mg/L和15000 mg/L降低至48100 mg/L和1000 mg/L,去除率分别达到70.5%和93.3%。由紫外光谱分析可知,废液中大分子难降解物质有效降解为小分子。
     本文提出的高级氧化组合工艺对高浓度有机废液的预处理方法,处理费用比焚烧法低,技术可行,经济有效,具有较好的推广应用价值。
Chemical, pharmaceutical, electroplating and other enterprises produce a lot of high concentration organic wastewater, such as waste bath, waste solvents . They are characteristic of high CODCr, low B/C, complicated components, toxic and deleterious. According to the requirements of environmental protection department, the wastewater should be treated with incineration method by professional department, but the process costs too much. In order to save the cost many enterprises discharged the wastewater after diluted ,which would bring excess emissions or pollution accidents. So how to treat the high concentration organic wastewater has been a difficult environmental puzzle.
     According to the characteristics of the high concentration organic wastewater , we designed advanced oxidation combined processes: ferric-carbon micro electrolysis/ultrasonic-Fenton reagent- flocculation. This pretreatment processes can debase concentration, reduce toxicity, improve B/C, change hazardous wastewater into ordinary wastewater which can be drainaged standard after conventional treatment.
     The optimal conditions of the Micro-electrolysis/ultrasonic process were:pH was 4.4, the volume ratio of solid to liquid was 1:4, the volume ratio of iron to carbon was 2:1, reaction number was 2, each reaction time was 60 min , aerate, the frequency of ultrasonic was 45 KHz. The optimal conditions of Fenton reagent process were: pH was 4,the volume ratio of H_2O_2 to wastewater was 4%,reaction time was 60min. The coagulation sedimentation process optimal conditions were: pH was 7, dosage of PAC and PAM were 500mg/L and 5mg/L respectively.
     The total removal rate of CODCr, TOC and p-nitrophenol reached 89.8%, 79.7% and 85.2% respectively when the combined processes pretreated simulation wastewater . The value of B/C increased from 0.052 to 0.346. The combined processes pretreated two kinds of practical wastewater , CODCr decreased from 163000 mg/L、15000 mg/L to 48100、1000 mg/L respectively, the removal rate reached to 70.5% and 93.3% . Ultraviolet spectrum had showed that a part of refractory materials are effectively degraded into small molecules.
     The advanced oxidation combined processes pretreating high concentration organic wastewater cost only 10% of incineration method. They are economic、effective and feasible in technology, So the combined processes have good application value.
引文
[1]王晓兵,胡国强.溶剂萃取法对甲酸废水的处理研究[J].辽宁石油化工大学学报2009,29(3):15-18.
    [2]卿春霞,张建民,宗刚,等.溶剂萃取法处理含柠檬酸镍废水的研究[J].纺织高校基础科学学报.2006,19(2):163-165.
    [3]王鸿飞,周伟赣,令狐文生.活性炭吸附法处理对苯二甲酸废水研究[J].河北化工,2009,32(4):74-76.
    [4]沈春银,刘天华,黄宵宏,等.树脂吸附法处理硝基氯苯生产废水研究[J].离子交换与吸附,1993,9(6):510-514.
    [5]李仲民,童张法.超滤法处理糖蜜酒精废液的研究[J].广西大学学报(自然科学版),2001,26(3):171-174.
    [6]Akbari A.,Desclaux S., Rouch J. C.,et al. New UV-photografted nanofiltration membranes for the treatment of colored textile dye effluents. Journal of Membrane Science, 2006, 286:342–350.
    [7]郑必胜,张智平.磁分离技术处理食品发酵工业废.食品与发酵工业,1999,25(1):74-77.
    [8]栗勇田,赵倩,唱军,等.湿式氧化法预处理四氢呋喃生产废水[J].化工环保, 2010,30(2):121-124.
    [9] Duprez D. ,Delanoe F. ,Barbier J. ,et al.Catalytic oxidation of organic compounds in aqueous media. Catal Today,1996,29(1~4):317-322.
    [10] Eftaxias A.,Font J.,Fortuny A.,et al.Kinetic modeling of catalytic wei air oxidation of phenol by simulated annealing. Appled Catalysis B-environmental,2001,33(2):175-190.
    [11] Le Normand F. ,Hilare L. ,Kili K. ,et al.Oxidation state of cerium in cerium-based catalysts investigated by spectroscopic probes. The Journal of Chemical Physics,1988,2561-2568.
    [12]方宗堂,王宏,葛玮,等.多相催化湿式氧化法处理高浓度难降解有机废水的研究[J].化工环保,2005.25(1):8-11.
    [13]张伟红,王晓鹏,潘齐,等.催化湿式氧化法处理对硝基苯酚废水[J].山东化工,2008,37(3):24-25
    [14]钱仁渊,钱俊峰,云志.湿式氧化技术处理化工废水的研究[J].水资源保护,2007,23(1):84-86.
    [15]张永利.催化湿式氧化法处理印染废水的研究[J].环境工程学报,2009,3(6)1011-1014.
    [16]陈孟林,吴颖瑞,何星存,等.超临界水氧化法处理糖蜜酒精废液的研究[J ].现代化工,2006,增:135-138.
    [17]廖传华,褚旅云,方向,等.高浓度难降解合成香料废水治理新技术———超临界水氧化法[J ].香料香精化妆品,2009,8(4):33-36.
    [18] Ivette P. ,.Suslick S. The chemical effects of ultrasound[J]. Scientific American,1989,145(1):80-86.
    [19] Liakou S., Kornaros M., Lyberatos G.. Pretreatment of azo dyes using ozone[J]. Water Science & Technology ,1997,36( 2~3):155~163.
    [20]卢宁川,府灵敏.臭氧处理印染废水的方法研究[J].江苏环境科技,2002,15( 2):1~2.
    [21]危想平,肖鹏.活性炭—臭氧处理印染废水实验研究[ J].印染,2004,20:5~7.
    [22] Muthukumar M., Sargunamani D. , Selvakumar N., et al. Optimisation of ozone treatment for colour and COD removal of acid dye effluent using central composite design experiment. Dyes and Pigments,2004,63:127–134
    [23]刘春芳.臭氧高级氧化技术在废水处理中的研究进展[J].石化技术与应用, 2002,20(4):278-280.
    [24]胡四平,邓红霞.光催化氧化法处理含酚废水研究[J ].浙江化工,2007,38(5):5-7
    [25]张秀芳,董晓丽,马春,等.氮掺杂的二氧化钛可见光光催化降解亚甲基蓝[J].大连工业大学学报,2010,2(1),36-38.
    [26]刘红梅,刘自力,刘振武,等.超声制纳米TiO2及光催化降解活性深蓝的研究[J].辽宁化工.2010(5):457-460.
    [27]张晓敏,宗汉兴,汪德爟,等.光催化氧化降解活性艳红X-3B模拟染料废水试验[J].水资源保护,2006,22(4):68-70.
    [28]吴海宁.UASB-SBR工艺处理园区高浓度废水[J].广东化工.2010(6):213.
    [29]罗建中,齐水冰,等.SBR法处理抗生素片剂制药废水[J].上海环境科学,2001,20 (8):393-394.
    [30]于得爽,凌云.A/O2法在炼油污水处理中的应用[J] .油气田环境保护,1999,9 (1):22 - 25.
    [31]薛西改,郝雯,宋丽芝,等.生物絮凝剂在废水处理中的应用[J],河北工业科技.2010,27(1),60-62.
    [32]朱晓江,尹双凤,桑军强.微生物絮凝剂的研究和应用[J].中国给水排水,2001, 17(6):19– 22.
    [33]李强,张玉臻,陈明,等.吸附型生物絮凝剂ZL5-2的制备及在水处理上的应用[J ],工业水处理,2005,25(9):43-45.
    [34]王伟,刘俊杰,张桂风.焚烧法处理高浓度有机、含盐废水的研究分析[J].黑龙江环境通报, 2008, 32(3): 70-71.
    [35]胡加茂,余志龙.焚烧法处理高浓度有机废水[J].工业用水与废水, 2006,36(3):81-82.
    [36]张永梅,孙洁,吴茂.焚烧法处理高浓度有机农药生产废水[J].给水排水, 2008,34(1):59-61.
    [37]詹艳,熊忠,林衍,等.铁炭内电解法对苎麻废水的预处理研究[J].工业水处理,2003,23(1):28-3 1
    [38]孟刚,郑泽根,周小兵等.铁炭微电解.亚铁还原氧化法处理花箐废水的研究[J].感光科学与光化学,2002,20(4):303.312
    [39]汤心虎,甘复兴,乔淑玉.铁屑腐蚀电池在工业废水治理中的应用[J].工业水处理, 1998, 18(6): 4-6.
    [40]熊英键,何伟光.一种新型水处理技术-絮凝床渍现状及展望[J].工业水处理, 1996, 16(3): 4-7.
    [41]曹曼.铁屑固定床及其在废水处理中的应用[J].上海环境学, 1994, 13(2): 9-43.
    [42]周培国,傅大放.微电解工艺研究进展[J].环境污染治理技术与设备,2001,2(4): 18-24.
    [43]杨风林,全燮,高桂英,等.铁屑过滤法处理染料废水的研究[J].化工环保, 1988, 8(6): 330-333.
    [44] Huang C.P., Wang HW., Chin P.C..Nitrate reduction by metallic iron[J].Water Research,1 998,32(8):2257—2264
    [45]祁梦兰,张晶,刘华成.铁屑电化学反应-絮凝沉淀-砂滤组合工艺处理镜片染色废水[J].化工环保, 1994, 14(1): 20-23, 51.
    [46]郝瑞霞,程水源,黄群贤.铁屑过滤法预处理可生化性差的印染废水[J].化工环保, 1999, 19(3): 135-139.
    [47]张天胜,孙又山,陈欣,等.铁屑内电解法处理含酚废水[J].环境保护,1997,(8): 17-20.
    [48]蒋金勋,等.金属腐蚀学[M].北京:国防工业出版社,1986.
    [49]张亚静,应金英,陈晓锋.铁碳内电解法处理印染废水[J].环境污染与防治, 2000,22(5):33-36.
    [50]姜兴华,刘勇健,金亮基.铁炭微电解-Fenton试剂联合氧化深度处理印染废水的研究[J].应用化工,2007,37(9):1074-1077.
    [51]熊英键,何伟光.一种新型水处理技术-絮凝床渍现状及展望[J].工业水处理, 1996,16(3): 4-7.
    [52]王永广,杨剑锋.微电解技术在工业废水处理中的研究与应用[J].环境污染治理技术与设备,2002,3(4):70-73.
    [53]林金画.印染废水治理技术[J].环境工程,2001,19(3):22-23.
    [54]罗旌生,曾抗美,左晶莹,等.铁碳微电解法处理染料生产废水[J].水处理技术, 2005,31(11):67-70..
    [55]王慧娟,黄亮.铁炭内电解法处理染料废水的试验[J].广州环境科学,2007, 22(2):13-16.
    [56] Cheng H.F., Xu W.P., Liu J.L., et al. Pretreatment of wastewater from triazine manufacturing by coagulation, electrolysis and internal microelectrolysis[J]. Journal of Hazardous Materials, 2007, 146: 385-392.
    [57] Jin Y., Zhang Y., Li W. Experimental study on micro-electrolysis technology for pharmaceutical wastewater treatment [J]. J. Journal of Zhejiang University-Science A. 2002, 3(4): 401-404.
    [58]陈雷,陆雪梅,马维峥,等.碱解-微电解工艺对吡虫啉农药生产废水预处理的研究[J].工业水处理,2006,26(11):56-59.
    [59]杨家村.铁碳微电解-生化法处理医药废水[J].环境卫生工程,2006,14(3):56-57.
    [60]欧丹,吕建伟.铁炭微电解处理合成制药废水研.[J].给水排水,2009,35,316-318.
    [61]郭小华,葛红光,李江,等.铁屑内电解法处理含铬电镀废水研究[J].化学工程师, 2006,20(1): 39-40.
    [62]韩延辉.铁屑内电解法处理含铬电镀综合废水分析[J].环境保护科学,1999, 26(4):20-22.
    [63]陈勇,李义久,唐文伟.铁碳微电解法预处理富马酸有机废水的研究[J].工业用水与废水,2003,34(6):52-54.
    [64]高彦林,张雁秋,薛方亮.铁碳微电解法处理某化工厂废水的研究[J].江苏环境科技,2006,19(5):11-13.
    [65]黄瑾,胡翔,李毅,等.铁碳微电解法处理高盐度有机废水[J].化工环保,2007, 27(3):250-252.
    [66]唐光临,徐楚韶,董凌燕,等.铁屑法预处理焦化废水[J].重庆大学学报(自然科学版), 2001,24(5): 85-87.
    [67]洪卫,冯晓静,蒋文强.造纸中段废水深度处理的研究[J].中国造纸,2006,25(2): 65-66.
    [68]沈宾.新型滚筒内电解法絮凝床[J].中国给水排水, 2002, 6(18): 40-41.
    [69]傅雁.卧式微电解催化氧化反应器[P].中国: CN2513982Y, 2002, 10, 2.
    [70]孙在柏,姜星垂,段小东,等.用于内电解工艺的多孔催化填料的制备方法[P].中国: CN1569656A, 2005, 1, 16.
    [71]朱剑芬.一种改进的内电解床铁填料[P].中国: CN2532071Y, 2003,1, 22.
    [72] Wu J.M., Huang H.S., Livengood C.D. Ultrasonic destruction of chlorinated compounds inaqueous solution [J]. Environmental Progress, 1992, 11:195-201.
    [73] Hirai K., Nagata Y., Maeda D. Decomposition of chlorofluorocarbons and hydro fluorocarbons in water by ultrasonic irradiation[J]. Ultrasonic Sonochemistry, 1996, (3): 205-207.
    [74] Price G., Mattias P. The use of high power ultrasound for the destruction of aromatic compounds in aqueous solution[J]. Tannl chemical E, 1994, 72(1): 27-31
    [75] Namkung K.C., Burgess A.E., Bremner D.H., et al. Advanced fenton processing of aqueous phenol solutions: A continuous system study including sonication effects[J]. Ultrasonics Sonochemistry, 2008, 15(3): 171-176.
    [76]谢娟,屈撑囤,张琴.水中硝基苯的超声降解处理研究[J].西安石油大学学报(自然科学版).2009,24(3),76-79
    [77]陈伟,范瑾初,陈玲,等.超声—过氧化氢技术降解水中4—氯酚[J].中国给水排水,2000,16 (2):124 .
    [78]胡文容,钱梦马录,高廷耀.超声强化臭氧氧化偶氮染料的脱色效能[J].中国给水排水,1999,15(11):124.
    [79]陶长元,刘作华,李晓红,等.超声波促进Fenton法脱色甲基橙的研究[J].环境科学, 2005,26 ( 5): 111-113.
    [80] Christian P.,Yi J.,Marie-Francolse L.Ultrasound &Enviroment:SonochemicalDestruction of Chloroaromatic Derivatives [J]. Environmental Science & Technology,1998,32(9):1316-1318.
    [81] Vittorio R.,Elena S.,Claudia L.B., et al. Sonophotocytalytic degradation of 2-chlorophenol in water:Kinetic and energetic comparison witothertechniques[J].Ultrasonics Sonochemistry,2001,8 (3):251-258.
    [82] Linda K.W., Frank H.L., Michael R. Hoffmann Aromatic Comound Degradation in Water Using Combination of Sonolysis and Ozonolysis[J]. Environmental Science & Technology, 1998,32 (18) :2727-2733.
    [83] Hui M.H., Frank H.L., Michael R.H. Kinetics and Mechanism of the Enhanced Reductive Degradation ofNi2 trobenzene by Elemental Iron in the Presence of Ultra2 sound [J ]. Environmental Science & Technology, 2000, 34 ( 9 ) : 1758-1763 .
    [84] Fenton H. H. Oxidation of Tartaric Acid Presence of Iron [J]. Journal of Chemical Society,1894, (65): 899-905.
    [85] Eisenhauer H.R. Oxidation of phenolic waste[J].Water Pollution Control Federation,1964,(9).
    [86] Montserrat P., Francesc T., Jose A.G.,et al. Removal of organic contaminants in paper pulp treatment effluents under Fenton and photo - Fenton condition[J].Applied Catalysis B:Environmental,2002,36(01):63-74.
    [87] Kremer M.L .Complex Visas Free Radical Mechanism for the Catalytic Decomposition of H2O2 by Fe2+[J]. International Journal of Chemical Kinetics,1985,17:1299-1314.
    [88] Wink.D.A, Nimbus.R.W, Deserters.M.F, et al. A Kinetic of Investigation of Intermediates Formed during the Fenton Reagent Mediated Degradation of N-nitrosodimethyl Amine:Evidence for an Oxidative Pathway not Involving Hydroxyl Radical[J]. Chemical Reviews Toxicol, 199l, (4): 510-512.
    [89] Norman R.O.C, Storey P.M. Oxidative fragmentation of phenylacetic acid and related compounds induced by some oxygen-containing radicals[J]. Journal of Chemical Society B,1970:1099-1106.
    [90] Walling C., Kato S.I.. The Oxidation of Alcohols by Fenton’s Reagent: the Effect of Copper ion[J]. Journal of Chemical Society, 1971, 93: 4275-4281.
    [91] Jefcoate C. R. E, Lindssy S. J. R, Norman R. O. C. Hydroxylation partIV. Oxidation of some benzenoid compounds by Fenton's reagent and the ultraviolet iradiation of hydrogen peroxide [J]. Journal of Chemical Society B, 1969: 1013-1018.
    [92]巩志坚,靳瑛.利用芬顿试剂处理焦化废水[J].工业水处理,1997,17(6):
    [93] Walling C., Kato S.I.,The Oxidation of Alcohols by Fenton’s Reagent: the Effect of Copper ion[J]. Journal of Chemical Society, 1971, 93:4275-4281.
    [94] Kang N., Lee D. S., Yoon J. Kinetic modeling of Fenton oxidation of phenol and monochorophenols[J]. Chemosphere,2002,47:915-924.
    [95]朱亦仁,鲁玲,李爱梅,等.Fe2+/ H2O2法处理草浆纸厂废水的影响因素研究[J].环境污染治理技术与设备,2006,7(7):91- 95.
    [96]李东伟,高先萍,蓝天. UV-Fenton试剂处理焦化废水的研究[J].水处理技术, 2008, 34(10):42-45.
    [97] Zhao C.,Zhao D.Degradation of nitrobenzene in wastewater by ultrasound/Fenton’s reagent[J]. ACS Div. Environmental Chemical,2001,41(2):485-569.
    [98]张玲玲,李亚峰,孙明等.Fenton氧化法处理废水的机理及应用[J].辽宁化工,2004,33(12):734—737.
    [99]李金莲,金永峰,钱慧娟等.Fenton试剂在水处理中的应用研究Ⅲ,化工科技市场,2006,29(6):28-33.
    [100]张德莉,黄应平,罗光富等.Fenton及Photo. Fenton反应研究进展[J].环境化学,2006,25(2):121—127.
    [101]万俊锋,李光明.Fenton试剂在污水处理上的发展与展望[J].江苏环境科技,2005,1 8(3):36—39
    [102]张键,王子波,朱宜平等.Fenton试剂一微电解预处理硝基苯类废水试验[J].扬州大学学报(自然科学版),2006,9(2):74-78.
    [103]朱振兴,颜涌捷,亓伟,等.铁炭微电解-Fenton试剂预处理纤维素发酵废水[J].工业用水与废水,2009,40(2).
    [104]顾炳林,钟梅英,陈慧娣,等.铁炭微电解-Fenton组合工艺处理炸药废水[J].水处理技术, 2009, 35(9): 101-105.
    [105]龚跃鹏,徐鑫煤,王峰,等.微电解-Fenton氧化组合预处理苯胺废水的研究[J].工业水处理,2008,28(9):51-54.
    [106]吴慧芳,孔火良,王世和,等.微电解与Fenton试剂预处理农药废水的试验研究[J].环境污染治理技术与设备,2003,4(02):18-21.
    [107]张晓叶,孔峰,闫永胜.铁炭微电解-Fenton氧化法预处理喹吖啶酮颜料中间体废水[J].工业用水与废水,2007,38(5):63-65.
    [108]赵德明,史惠祥. Fe-C微电解法+H2O2组合工艺处理对氯硝基苯废水[J].城市环境与城市生态,2002,15(1):32-34.
    [109]王永广,俞元阳.微电解-Fenton法处理2-3酸生产废水的研究[J].水资源保护, 2004,(1):18-21.
    [110]李峰.微电解-Fenton试剂处理垃圾渗滤液研究,中山大学硕士学位论文,2007.
    [111] Marcio B.R., Flávio T. S.,Teresa C.B. Paiva Combined zero-valent iron and fenton processes for the treatment of Brazilian TNT industry wastewater [J]. Journal of Hazardous Materials, 2009,165(1-3):1224-1228.
    [112]尹军,蒋宝军,吴晓燕等.混凝与Fenton联用处理垃圾渗滤液的效能及成本[J].环境工程学报.2010,4(5),988-992.
    [113]谭万春,稂友明,王云波等.混凝- Fenton试剂对印染废水的处理[J].2010,7(1);87-92.
    [114]水和废水监测分析方法(Ⅲ)[M].国家环保局《水和废水监测分析方法》编委会.北京:中国环境科学出版社, 1998: 354-356.
    [115] HJ-2009.中华人民共和国环境保护标准水质总有机碳的测定[S].
    [116]熊英键,何伟光.一种新型水处理技术——絮凝床法现状及展望].工业水处理,1996(3):4-7
    [117]段柏华,钟宏.内电解法处理含酚废水[J].环境与开发,1999,14 (4):19-20.
    [118]李再兴,杨景亮,邓晓丽,等.铁炭内电解预处理阿维菌素废水[J].化工环保, 2002,22(6):347-349.
    [119]李欣,祁佩时.铁炭Fenton/SBR法处理硝基苯制药废水[J]..中国给水排水, 2006,22(19):12-15.
    [120]白波,陈志红,王莉平.超声波/铁-炭微电解耦合处理直接大红4BE染料废水[J].应用化工,2007,36(2):130-133.
    [121]蒋建华,许春建,周明.超声降解水体中有机污染物的研究进展[J].化工进展, 2001,19(2):11-14.
    [122]冯若,李化茂.声化学及其应用[M].合肥:安徽科学技术出版社,1992.
    [123] James C.A. Ultrasonic propagation through aqueous kaolin suspensions during degassing[J]. Ultrasonics,1999,37(4):299-302.
    [124] Leite R. H., Congnrt P., Wilhelm A.M., et al. Anodic oxidation of 2, 4-dihydroxybenzoic acid for wastewater treatment: Study of ultrasound activation[J]. Chemical Engineering Science,2002,57(5):767-778.
    [125]胡文勇,郑正,郑寿荣,等.超声波/零价铁降解对硝基苯胺的试验研究[J], 2005,6(3):28-32.
    [126]高大维,高文宏,雷德柱,等.线性超声波辐照对啤酒酵母细胞生长的影响[J].华南理工大学学报(自然科学版),1999,27(12):34-37.
    [127] CUMG.Role of frequency in the ultrasonic activation of chemical reaction[J].Ultrasonics,1992,30(4):267-270
    [128]周珊,吴晓晖,黄卫红,等.工业水处理,2002,22 (10):26~28.
    [129]张光明,周吉全,张锡辉,等.超声波处理难降解有机物影响参数研究.环境污染治理技术与设备,2005, 6(5) :42~45
    [130]Chamarro E., Marco A. , Esplugas S. Use of fenton reagent to improve organic chemical biodegradability[J]. Water Research,2001,35(4):1047-1051.
    [131] Zhang H., Zhang D., Zhou J. Y. Removal of COD from landfill leachate by electro-Fenton method[J]. Journal of Hazardous Materials,2006, 135(1-3):106-111.
    [132]蒋宝南,薛开泉,张萍萍.染料废水脱色处理的研究[J].环境科学与技术,2007,30(6):81-82.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700