生物磁性载体的研制及其在废水处理中的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物膜法是一种高效的废水生物处理工艺,生物载体则是该工艺的核心部分,其性能直接影响和制约着生物膜法工艺的处理效果。本研究以强化生物脱氮和污泥减量化为主要目标,选取天然多孔矿物——浮石、网络状塑料外壳、磁铁为原料,试验开发出一种新型生物磁性载体,并将该载体应用于生物膜反应器进行废水处理试验研究。
     首先考察了浮石的物理性能,使用扫描电子显微镜观察浮石的微观结构,并进行了浮石吸附试验和挂膜试验研究,在此基础上开发出磁性载体。然后采用磁性载体生物膜反应器和非磁性载体生物膜反应器进行平行试验,考察了载体的挂膜性能,进行了模拟废水处理试验以探讨工艺的最优运行参数,在此基础上,对实际生活污水和焦化废水进行了处理试验,最后探讨了磁性载体生物膜反应器中污染物的降解机理。论文主要研究结果如下:
     (1)天然浮石具有粗糙表面和多孔结构,平均孔径在15μm左右,孔隙率为69.5~71.8%,吸水率为58~61%,适合于微生物的附着,孔壁厚1-2μm,强度较高。
     (2)挂膜试验结果表明:生物磁性载体的挂膜性能明显占优,可在5d内完成挂膜,而非磁性载体则须8d,且磁性载体对COD_(Cr)、NH_4~+-N的去除率比非磁性载体分别高出5%和20%左右。
     (3)以模拟废水为处理对象,探讨了DO、HRT、载体磁场强度等对生物膜反应器处理效果的影响。结果表明:载体中心磁场强度为200Gs、DO=2.0~3.5mg/L、HRT=8h的条件下,系统运行效果最优,出水COD_(Cr)、NH_4~+-N稳定在30mg/L和5mg/L左右,去除率分别达90%和80%;出水总氮在20mg/L左右,去除率在50%以上;出水总磷约为4mg/L,去除率仅为20%。磁性载体反应器内60d的污泥量为163.25g,明显低于平行试验的非磁性载体反应器内的231.76g,说明磁场的存在有利于污泥减量化。
     (4)在DO=2.0~3.5mg/L、HRT=5h的条件下,校园生活污水经磁性载体生物膜反应器处理后,出水COD_(Cr)稳定在20mg/L左右,NH_4~+-N在5mg/L以下,两者的去除率均在90%左右;出水总氮在15mg/L左右,去除率在50%以上。在DO>2.0mg/L、HRT=12h的条件下,焦化废水经处理后,出水COD_(Cr)在100mg/L左右,去除率约为80%,但对NH_4~+-N的处理效果不是很理想。
     (5)对磁性载体生物膜反应器运行结果和微生物学特性的研究表明,载体内的弱磁场能刺激微生物活性,明显有利于硝化作用和污泥减量化。
The biofilm process is a highly efficient technology in the wastewater treatment. Biocarrier is the key factor for this method, and its performance directly influences and restricts the efficiency of the process. In the experiment, a magnetic biocarrier was first developed in order to improve the result of biological nitrogen removal and sludge reduction for wastewater treatment, which was made up of pumice-a kind of natural porous mineral, magnet and retiform plastic ball. Then the biofilm reactor with the magnetic biocarrier was used to treat the wastewater.
     In order to develop the magnetic biocarrier, the physical performance of pumice was firstly studied, its microstructure was observed by SEM, and the adsorption experiment and the biofilm formation performance experiment were performed. Then the parallel test of biofilm reactor with magnetic biocarrier and the one with nonmagnetic biocarrier was employed to study the biofilm formation performance of magnetic biocarrier. The reactors were also used to treat the simulated wastewater in order to find out the optimal operating parameters. And then the domestic sewage and coking wastewater were treated by biofilm reactor with magnetic biocarrier. Finally, the degradation mechanism of pollutant in the reactor was studied. The main conclusions were gained as follows:
     (1) The natural pumice has rough surface, porous structure with average pore diameter of 15μm, porosity of 69.5~71.8%, water absorption of 58~61% and thicker pore walls of 1~2μm, which offers a nicer living condition for microbe.
     (2) Compared to the biofilm reactor with nonmagnetic biocarrier, the biofilm formation performance of the magnetic biocarrier was better, and the period of biofilm formation reduced from 8 days to 5 days, the removal rates of COD_(Cr) and NH_4~+-N by the biofilm reactor with magnetic biocarrier were increased by 5% and 20% respectively.
     (3) The two biofilm reactors were employed to treat simulated wastewater by changing the operating parameters—DO, HRT, and magnetic field intensity. The treated effect is best under the conditions of the central magnetic field intensity of biocarrier 200Gs, DO 2.0~3.5mg/L and HRT 8h. The concentration of COD_(Cr), NH_4~+-N, TN and TP of effluent were about 30mg/L, 5mg/L and 20mg/L, and the removal rates were 90%, 80%, 50% and 20% respectively after the treatment. Compared to the biofilm reactor with nonmagnetic carrier, the activated sludge in the biofilm reactor with magnetic carrier was reduced from 231.76g to 163.25g, which showed that magnetic field could improve the efficiency of sludge reduction.
     (4) Under the condition of DO 2.0~3.5mg/L, HRT 5h, the removal rates of COD, NH_4~+-N and TN were 90%, 90% and 50% respectively, with COD content of 10.25mg/L, NH_4~+-N content of under 5mg/L, TN content of 15mg/L in the effluent of domestic sewage. The coking wastewater was treated under the condition of DO 2.0~3.5mg/L and HRT 5h, the removal rates of COD was 80% with the content of about 100mg/L, but the removal rates of NH_4~+-N was very low.
     (5) The experimental result showed that the low magnetic field could stimulate the microbe activity, and it is helpful to nitrification and sludge reduction in wastewater treatment.
引文
[1]Nicolella C, Garica I C, Zhang S E Control of membrane-attached biofilms in extractive membrane bioreaetors[J]. Water Science Technology, 2001(41): 227.
    [2]Bungartz H J, Kuehn M, Mehl M. Fluid flow and transport in defined biofilm: experiments and numerical simulation on a mieroscale[J]. Water Science Technology, 2001(41): 331.
    [3]Morgenroth E, Eberl H. Van loosdrecht evaluating 3-D and 1-D mathematical models for mass transport in heterogeneous biofilm[J]. Water Science Technology, 2001(41): 347.
    [4]Wasehe S, Horn H, Hempel D C. Mass transfer phenomena in biofilm system[J]. Water Science Technology, 2001(41):357.
    [5]刘雨,赵庆良,郑兴灿.生物膜法污水处理技术[M].北京:中国建筑工业出版社,2000:149-154.
    [6]夏平安,崔树荣,胡志忠.高氨氮、高含硫废水处理新工艺的研究[J].给水排水,2002,28(3):43-45.
    [7]鲍建国.微孔膜生物反应器处理含油废水[J].中国给水排水,2002,18(2):74-76.
    [8]Pujol R, Hamon M, Kandel X. Biofilters flexible reliable biological reactor[J]. Water Science Technology, 1994, 29(11): 33-38.
    [9]Chen J I, Carty D M, Slack D. Full scale studies of a simplified aerated filter(BAF) for organic and a nitrogen removal[J]. Water Science Technology, 2000,41(4): 1-4.
    [10]Wilderer P A. Sequencing batch biofilm reactor technology in harnessing biotechnology for the 21 st century[J]. American chemical society. 1992: 475-479.
    [11]李伟光.序批式生物膜反应器处理屠宰场废水[J].中国给水排水,2000,16(10):59-60.
    [12]张凡,程江,杨卓如.废水处理用生物填料的研究进展[J].环境污染治理技术与设备,2004,5(4):8-11.
    [13]孙娜,林波,李风琴.水处理填料的研究进展[J].江西化工,2005,4(1):8-10.
    [14]艾恒雨,汪群慧,谢维民.接触氧化工艺中生物填料的发展及应用[J].给水排水,2005,31(2):88-92.
    [15]郑元景.生物膜法处理污水[M].中国建筑工业出版社.1983:46-52.
    [16]蒋战洪.污水处理用填料的种类、性能和发展趋势[J].环境污染与防治,1994,16(4):13-16.
    [17]杨景亮.纤维填料在上流式厌氧污泥床过滤器中的作用及特点[J].中国沼气.1995,1(13):7-11.
    [18]周池谷.盾式填料的开发与研究[J].环境污染与防治,1991,13(3):42-43.
    [19]李怀正.YDT型弹性立体填料的试验性能研究[J].上海给水排水,1991,3(1):10-13.
    [20]郑雪梅.氯碱工业和PVC工业废水处理中填料的选择[J].氯碱工业,2000.4(1).52-53.
    [21]张辉明,文一波.SNP悬浮型生物填料设计及使用方法[J].化工环保,1995,15(1):180-183.
    [22]刘晋旭,刘振鸿.复合式生物处理系统的研究与应用[J].工业水处理,2003,23(1):8-11.
    [23]Lessel T.H. First practical experiences with submerged rope-type biofilm reactor for upgrading and nitrification[J]. Water Science Technology, 1991,23:825-834.
    [24]Lessel T.H. Upgrading and nitrification by submerged biofilm reactor experiences from a large scale plant[J]. Water Science Technology, 1994,29(10): 167-174.
    [25]张凡,程江.磁致物理化学生物效应及其在废水生物降解中的应用[J].现代化工,2003,23(12):47-50.
    [26]程江.聚丙烯填料的生物亲和亲水磁化改性对其润湿及挂膜性能的影响[J].化工学报,2004,55(9):1564-1567.
    [27]黄尚东,程江,安燕.新型聚丙烯填料在废水好氧处理中的综合性能研究[J].水处理技术,2006,32(11):27-29.
    [28]艾恒雨,汪群慧,谢维民,李雪松.接触氧化工艺中生物填料的发展及应用[J].给水排水,2005,31(2):88-92.
    [29]赖震宏.需氧生物催化填料的开发与特性试验研究[J].2004年重庆大学硕士学位论文.
    [30]唐受印,戴友芝,汪大翠.废水处理工程[M].北京:化学工业出版社,2004:122-127.
    [31]崔玉波,董婵,赵立辉,朱宝英.人工湿地填料吸附氮磷性能研究[J].吉林建筑工程学院学报,2006,23(2):7-11.
    [32]陆少鸣,方平,杜敬,刘姣.曝气生物滤池挂膜的中试实验[J].水处理技术.2006,32(8):67-69.
    [33]肖灿,全学军.焦化废水生化处理反应器研究进展[J].重庆工学院学报,2006,20(2):119-125
    [34]丁淑琴,王林平.生化处理技术治理焦化废水的实践[J].中国有色冶金,2006,6(3):48-51.
    [35]张凡,程江.磁致物理化学生物效应及其在废水生物降解中的应用[J].现代化工,2003,23(12):47-50.
    [36]Yasuzo Sakai, Kazuaki Tani, Fujio Takahashi. Sewage treatment under conditions of balancing microbial growth and cell decay with a high concentration of activated sludge supplemented with ferromagnetic powder[J]. Journal of Fermentation and Bioengineering, 1992,74(6):413-415.
    [37]Jung Jongtai, Sofer Samir.Enhancement of phenol biodegradation by south magnetic field exposure[J]. Chemistry. Technology Biotechnology,1997,70(3):299-303.
    [38]Yavuz Hlyka, Serdar S. Effects of magnetic field on activity of activated sludge in wastewater treatment[J].Enzyme and Microbial Technology,2000, 26(1):22-27.
    [39]陆光立,赵庆祥.磁粉活性污泥法工艺技术研究[J].城市环境与城市生态,1998,11(2):10-12.
    [40]孙水裕,刘鸿,谢光炎等.磁粉强化活性污泥法处理餐饮废水的研究[J].环境污染与防治,2003,25(3):170-172.
    [41]易赛莉.厌氧—磁化复合系统处理城镇生活污水中试研究.2004年武汉大学博士学位论文.
    [42]刘建荣,吴国庆,牛志卿.磁态厌氧流化床处理印染废水[J].中国环境科学,1996,16(1):64-67
    [43]范习辉.污水磁化厌氧生物处理理论与实验研究.2000年武汉水利电力大学硕士学位论文.
    [44]马放,任南琪,杨基先.污染控制微生物学试验[M].哈尔滨工业大学出版社,2002,6:32-43.
    [45]Lazarova V., Manem J. Biofilm characterization and activity analysis in water and wastewater treatment[J]. Water Research. 1995,29(10):2227-2245.
    [46]崔玉波,董婵,赵立辉,朱宝英.人工湿地填料吸附氮磷性能研究[J].吉林建筑工程学院学报,2006,23(2):7-11.
    [47]陆少鸣,方平,杜敬,刘姣.曝气生物滤池挂膜的中试实验[J].水处理技术.2006,32(8):67-69
    [48]尹军,谭学军.污水污泥处理处置与资源化利用[M].北京,化学工业出版社,2004,11:250-277.
    [49]黑姆斯B.D著,王镜岩译.生物化学[M].北京:科学出版社,2000:296-305.
    [50]Quayl J.R. Microbial biochemistry[M]. England: University Park Press,1979: 40-42.
    [51]Rosenberger S, Witzig R. Operation of different membrane bioreactors: experimental results and physiological state of the microorganisms[J]. Water Science technology. 2000, 41(10):269-277.
    [52]Wagner J, Rosenwinkel K H. Sludge production in membrane bioreactors under different conditions[J]. Water Science Technology. 2000, 41(10):251-258.
    [53]Lee N M, Welander T. Use of protozoa and metazoan for decreasing sludge production in aerobic treatment[J]. Biotechnology Letter. 1996, 18(4):429-434.
    [54]Rensink J H, Rulkens W H. Using metazoan to reduce sludge production[J]. Water Science Technology, 1997, 36(11): 171-179.
    [55]张凡.生物亲和亲水活性磁种填料的制备及其在废水生物降解中的应用.2004年华南理工大学硕士毕业论文.
    [56]Ghyoot W, Verstraete W. Reduced sludge production in a two-stage membrane-assisted bioreactor[J]. Water Research. 2000,34(1):205-215.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700