催化抗体制备及其用于选择性水解和不对称还原反应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
催化抗体,也称抗体酶,是一类具有催化活性的免疫球蛋白。它兼具抗体的高度选择性和酶的高效催化性。催化抗体的研究和开发预示着生物催化剂可以通过人工设计与制备,由此开辟了一个崭新的模拟酶的研究方向,也成为生物催化和生物催化剂的一个新的研究领域,无论是在理论探索还是实践应用方面都具有极其广阔的前景,尤其在医学、生物学、制药学等学科中将产生重要的影响。催化抗体是多学科研究的交汇点,涉及了化学、生物学、生物技术、有机生物和药物研究等领域。催化抗体的优化设计和制备以及催化抗体的酶学性质和反应规律等是在发展催化抗体技术中的几个关键问题,需要深入探究。本文的主要目的就是要运用分子设计和制备手段来制得特定的催化抗体,为制备手性药物和手性药物中间体服务,重点考虑在非水介质中的应用研究。本文完成的主要工作如下:
     催化布洛芬甲酯选择性水解的催化抗体设计和制备。通过对布洛芬甲酯水解的机理分析,根据过渡态理论设计和合成了四面体含磷和含硫半抗原作为半抗原,并与牛血清蛋白(BSA)偶联制备成免疫源,经免疫和克隆成功筛选出具有催化加速选择性水解生成S-布洛芬的特异性催化抗体,其k_(cat)/k_(uncat)达到了1.6×10~4。通过对所筛选的催化抗体的酶学性质和反应性的考察,得到了催化抗体的最适pH和温度范围,分别为7.0~8.0和30~40℃。在对其热稳定性的考察中发现,催化抗体对热很敏感,超过55℃其催化活性基本消失。通过对催化抗体催化布洛芬甲酯的选择性反应动力学分析,建立了动力学方程。结果显示,尽管催化抗体与酶在形成的中间态不一样,但催化反应同样符合Michaelis-Menten的动力学规律,并拟合得到了动力学参数K_m为28.31μmol·l~(-1),k_(cat)为1.01 s~(-1)。
     W/O型微乳液体系中催化抗体催化布洛芬甲酯选择性水解:探索了催化抗体在W/O型微乳液体系中的酶学性质,结果表明,催化抗体在W/O型微乳中保持着催化能力。影响催化抗体催化的反应初速度的最佳w_o(体系中水和琥珀酸二辛酯磺酸钠(AOT)的摩尔比)为21,较适合的pH和温度为8.0和30~40℃。在分析了水不溶性的底物在微乳胶束体系内的物质分配和表面活性剂影响的基础上,对催化抗体作为催化剂在W/O型微乳液介质中的反应的动力学进行了探索研究,从理论上得到了在胶束体系中V_(max)和k_(cat)~(app)不变,而(?)较水相反应的K_m有所增加。实验结果较好地验证了这个结论。在本研究的微乳体系中,表面活性剂对催化抗体的活性抑制为竞争性抑制,其K_i为1.5×10~(-3)mol·l~(-1)。
     共溶剂体系中催化抗体的催化消旋布洛芬甲酯的选择性水解反应:首次把由催化抗体催化消旋布洛芬甲酯的选择性水解反应用到共溶剂体系中。基于产物的转化率和对映选择性,考察了9种与水共溶的溶剂,建立了以N,N-二甲基甲酰胺为添加的共溶剂,加量为6%(v/v)和缓冲液组成的共溶剂体系。利用建立的共溶剂体系中溶剂疏水作用和底物及产物的良好分散作用,促进了反应的进程,在保持良好的对映选择性(ee>99%)基础上,有效地提高了转化率,使之达到了41.7%。通过考察催化抗体在共溶剂体系中动力学参数,说明了单相共溶剂体系对催化抗体的催化转化率的提高有着积极的作用。
     脂包衣的催化抗体在单相共溶剂体系中催化布洛芬甲酯的选择性水解:以催化活性为指标,得到了N,N-二甲基甲酰胺20%(v/v)和磷酸缓冲溶液组成的单相共溶剂反应体系。考察了用脂包衣催化抗体和脂包衣脂肪酶催化选择性水解布洛芬甲酯的实验。得到了最佳反应温度和pH值的范围分别是脂包衣催化抗体反应条件35~40℃和7.5~8.5,脂包衣脂肪酶的最适反应条件为:pH值为7.5,温度为40℃。在最适的反应条件下,用脂包衣的脂肪酶催化选择性水解拆分得到了S-布洛芬的最大转化率可达46.3%,对映选择率达241。脂包衣催化抗体的最大转化率可达44.5%,对映选择率>500。同时考察了脂包衣催化抗体和脂包衣脂肪酶的催化选择性水解的动力学,结果符合米氏动力学方程。其中V_(max)为0.56mmol·min~(-1)·g~(-1),K_(cat)为5.7min~(-1),比在水相和6%DMF加量的单相共溶剂体系催化水平明显有所提高。在脂包衣脂肪酶(250 mg/ml),DMF 20%(v/v),40℃,pH=7.5条件下,脂包衣脂肪酶催化布洛芬甲酯的选择性水解符合米氏方程。结果表明,脂包衣脂肪酶的K_m只有没有包衣的天然酶的K_m的一半,V_(max)是未包衣的酶的1.4倍左右。脂包衣催化抗体在单相共溶剂体系中和在缓冲液中的失活动力学符合一级失活动力学模型,其失活反应方程为:(?),在缓冲液中的失活反应方程为:(?)。
     催化抗体催化3-氯苯丙酮还原制备3-氯-苯丙醇:在分析了3-氯-苯丙酮不对称还原反应机理的基础上,根据半抗原设计的诱导和转换设计的原理,设计和合成了N-氧化物作为反应过渡态类似物作为半抗原,免疫并克隆化后筛选分离得到了一株能立体选择性催化3-氯-苯丙酮还原生成(S)-3-氯-苯丙醇的单克隆抗体。催化反应得到的ee值和转化率分别为96.2%和83.2%。通过对催化抗体催化3-氯-苯丙酮的不对称还原动力学过程的研究,得到其过程符合有序序列BiBi机制,经多步回归和计算得到了其速度方程:动力学方程与实验值较为符合。
     总之,本文围绕着催化选择性水解和不对称羰基还原的反应规律设计和制备了特异性催化抗体,考察了催化抗体在水介质和一些非水介质中的催化的酶学性质和反应性,并探索了各自的催化机理和动力学性质,实现了从催化抗体的设计与制备到反应性能考察的完整过程,为今后进一步深入研究催化抗体及其相关催化反应和作用机理奠定了一定的基础。
Catalytic antibody, abzyme, is an immunoglobulin that provided with catalytic activities ofcatalyzing a chemical reaction similarly to enzymes and highly selectivity similar to antibody. It is anewly developed research area derived from chemistry and biology. The development of catalyticantibody indicates that the preparation of man-made enzyme with highly effective multiple functionscatalyssis by rational design is possible. These work gave rise to a new area of investigation ofmimic enzyme and new domain of catalyst. It is great value both in theoretical and practical sciencesuch as medical science and chemistry and biology and pharmaceutics and so on. How to design andprepare catalytic antibodies and the enzymological properties and catalysis properties of the catalyticantibodies applied in non-aqueous medium are one of important things for catalytic antibodiesapplication. In this research, the special catalytic antibodies which were application in resolution ofchirle drug, ibuprofen, and selective reduction to prepare chirle pharmacuetical intermediate,(S)-3-chloro-1-phenyl- propanol, were generated from synthetic haptens that designed for thesereactions. Some reaction systems and media were investigated in detail, and emphasis was given tomicroemulsion, cosolvent systems. This study mainly includes the following contents:
     Firstly, based on the hydrolysis reaction mechanism, the two sulphate haptens and twophosphate haptens were designed and synthetized. These haptens was similar as TSA in structureand electric properties. In the space, they all has the tetrahedron structure. A catalytic antibody whichaccelerates the rate of enantioselective hydrolysis of ibuprofen methyl ester was successfully elicitedagainst an immunogen which was these haptens attached to bovine serum albumin (BSA). The rateconstant enhancement factor k_(cat)/k_(uncat) is about 1.6×10~4. As a result, the catalytic antibody canacceleratory catalysis S-ibuprofen methyl ester but R-ibuprofen methyl ester. The most active is atabout pH 7.0~8.0 and temperature 30~40℃. In the result of thermostable test, the catalyticantibody is very sensitive in hot. The catalytic activity almost lost at 55℃. The reaction kineticsequation was established according to the selective hydrolysis of ibuprofen methyl ester catalysed bythe catalytic antibody. The results shows that the kinetics conform to the Michaelis-Menten kineticequation. The values of k_(cat) and K_m obtained from the empirical data by the least squares method fitting analysis were 1.01 s~(-1) and 28.31μmol·l~(-1), respectively.
     Secondly, catalytic antibody catalyzed enantioselective hydrolysis of ibuprofen ester in W/Omicroemulsion was studied. The experiments reveal that the catalytic antibodies retains theircatalytic function after their entrapment in AOT/isooctane microemulsion. The enantioselctivity wastotal for S-enantioer of ibuprofen in this work. Optimal antibody activity was observed at a w_o valueof 21. Temperature effect, pH profile was determined. The optima temperature and pH are 30~40℃and 8.0 respectively. Kinetic analysis of the catalytic antibody catalyzed reaction was found to bepossible in this system. Kinetic studies showed that the hydrolysis in microemulsion systemfollowed Michaelis-Menten kinetics. Base on the analysis of partition of insoluble substrate indifferent phases in microemulsion, the results deduced theoretically reveal that parameters V_(max) andk_(cat)~(app) aqueous but K_m was increased. The experimental results were confirmed thisconclusion well. The catalytic active influence of surfactant in this system is the competitiveinhibition, the K_i is 1.5×10~(-3) mol·l~(-1).
     Thirdly, the catalytic activity of the catalytic antibody in the water-miscible organic-solventsystem composed of a buffer solution and N, N-dimethylformamide (DMF) was studied. With 6%DMF in the buffer solution (containing catalytic antibody 0.25μmol, 0.2 M phosphate buffer, pH 8)at 37℃for 10 h, a good conversion (41.7%) and high enantiomeric excess (>99%) could bereached. The kinetic analysis of the catalytic antibody-catalyzed reaction showed that the hydrolysisin the water-miscible organic-solvent system with DMF in buffer solution followed theMichaelis-Menten kinetics.
     Fourthly, the catalytic activity of enantioselective hydrolysis of ibuprofen methyl ester bycatalytic antibodies and the Candida cylindrucea lipase coated with didodecylN-D-glucono-L-glutamate in the water-miscible organic-solvent system composed of buffersolution and DMF was studied. The main variables affecting the resolution reaction by thelipid-coated catalytic antibody and lipid-coated lipase were optimized, including organic solvent,temperature, pH and so on. The optimal pH and temperature for lipid-coated catalytic antibodieswere 7.5~8.5 and 35~40℃. Under this condition, the total conversion rate and the enantiomericratio could reach 44.5% and >500, respectively. The optimal pH and temperature for lipase-coated lipid were 7.5 and 40℃. Under this conditions, the total conversion rate and the enantiomeric ratiocould reach 46.3% and 241 respectively. The kinetic results showed that the hydrolysis in thewater-miscible organic-solvent system followed Michaelis-Menten kinetics. The catalytic rateconstant (k_(cat)) and V_(max) of the lipid-coated catalytic antibodies were 5.7 min~(-1) and 0.56mmol·min~(-1)·g~(-1). The Micheaelis contant (K_m) of the lipid-coated lipase was only half that of thenative lipase while the maximum velocity (V_(max)) was 1.4 times higher. The deactivationkinetics of lipid-coated catalytic antibodies in the water-miscible organic-solvent system and inaqueous phase were studied. Two deactivation kinetics deduced and fitted by experimental datawere consistent with first kinetic model. The deactivation kinetic equation were(?) ( in the water-miscible organic-solvent system) and(?) (in aqueous phase).
     Fifthly, based on analysis of the asymmetric reduction mechanism of3-chloropropiophenone to (S)-3-Chloro-1-phenylpropanol, the N-oxide hapten as TSA wasdesigned and synthesized. A catalytic antibody was successfully elicited against an immunogenwhich was this hapten attached to bovine serum albumin (BSA). A high enantiomeric excess(96.2%) and conversion (83.2%) of (S)-3-chloro-1-phenylpropanol can be achieved byasymmetric reduction of 3-chloropropiophenone using the catalytic antibodies.The catalytickinetics was investigated. The result indicated that the reaction is consistent withreaction-in-sequence mechanism. The kinetic model was:
     The model simulating curves were in good agreement with the experimental data.
     In a word, the preparation, characterization and application of catalytic antibodies werecarried out in this thesis. Some important information was obtained and the differentmechanism in microemulsion and the water-miscible organic-solvent system etc. was discussed,which would certainly be useful for the application of catalytic antibodies.
引文
1.Albery R A, Silbey R J, Physical Chemistry (1~(st) ed.), New York: John Wiley & Sons Inc, 1992
    2.Aboul-EneinH Y ,Wainer I W, The Impact of Stereochemistry on Drug Development and Use, New York: John Wiley & Sons Inc, 1997
    3.Hyneck M, Dent J, Hook J B, Chirality in Drug Design and Synthesis. Brown C (Ed), London: Academic press, 1990
    4.Powell J R, Ambre J J, Ruo T I. Drug Stereochemistry Analytical Methods and Pharmacology. Wainer I W, Drayer D E (Ed), NewYork: Marcel Dekker, 1988.
    5.Jamali F, Mehvar R, Pasuto F M, Enantioselective aspects of drug action disposition: therapeutic pitfalls. J Pharm Sci, 1989,78(9):695~715.
    6.曾 苏 主编,手性药物与手性药理学.杭州:浙江大学出版社,2002
    7.袁修华,郭海泉,邱雪鹏,康传清,刘旭东,高连勋,一步法合成沙力度胺及其衍生物.高等学校化学学报,2005,26(8):1477~1479
    8.Ockenfels H, Koehler F, Meise W, Teratogenic effect of N-phthaloyl-L-aspartic acid on the mouse. Arzneimittel-Forschung/Drug Res, 1977,27(1):126~128
    9.Caldwell J, Chrial pharmacology and the regulation of new drugs. Chemistry & Industry, 1995, 5:176~179
    10.魏尔清主编,药理学前沿-信号、蛋白因子、基因与现代药理.北京:科学出版社,1999
    11.王 丹,李 亚,手性药物及其开发与应用.现代医药卫生,2007,23(6):837~838
    12.Tucker G T, Lennard M S. Enantiomer specific pharmacokinetics. Pharmacol Ther., 1990,45 (3):309~329
    13.钱鸣蓉,陈亚坤,曾苏,手性药物的研究策略,中国现代应用药学杂志,2004,21(6):461~464
    14.Foye W O, Principles of medicinal chemistry, 2~(nd) Edition, Philadelphia: Lea and Febiger, PA, 1981
    15.Wermuth C G, The Practice of Medicinal Chemistry, 2nd Edition, Elsevier-Academic Press, 2003
    16.卡米尔·乔治·微尔穆特主编,迟玉明主译,创新药物化学,广东:世界图书出版公司,2005
    17.郭宗儒编著,药物化学总论(第2版),北京:中国医药科技出版社,2003
    18.Sheldon R A, Chirotechnology, New York: Marcel Dekker, 1993.
    19.Carvalho P O, Cass Q B, Calafatti S A, Contesini F J and Bizaco R, Alternatives for the separation of drug enantiomers: ibuprofen as a model compound. Braz. J. Chem. Eng., 2006,23(3):291~300.
    20.张宇,手性药物的发展趋势.国外药讯,2004,6:51~52
    21.Kawano S, Horikawa M, Yasohara Y, and Hasegawa J, Microbial enantioselective reduction of acetylpyridine derivatives. Biosci. Biotechnol. Biochem., 2003,67(4): 809~815.
    22.张伦,萘普生市场透析.中国制药信息,2002,18(8):32~34.
    23.Boynton C S, Dick C F, Mayor G H, NSAIDs: an overview. J. Clin. Pharmacol., 1988,28(6):512~517.
    24.Salmon J A, Role of arachidonic acid metabolites in inflammatory and thrombotic responses. Biochem. Soc. Trans., 1987, 15(3):324~326.
    25.Vaananen P M, Keenan C M, Grisham M B, Wallace J L, Pharmacological investigation of the role of leukotrienes in the pathogenesis of experimental NSAID gastropathy. Inflammation, 1992,16(3): 227~240.
    26.石浩强,蔡怡,黄海,吴妍妍,非甾体抗炎药评述.临床医学,2006,26(1):85~86
    27.Evans A M, Enantioselective pharmacodynamics and pharmacokinetics of chiral non-steroidal anti-inflammatory drugs. Eur. J. Clin. Pharmacol., 1992,42(3): 237~256.
    28.Hut A J, Caldwell J, The importance of stereochemistry in the clinical pharmacokinetics of the 2-arylpropionic acid non-steroidal anti-inflammatory drugs. Clin. Pharmacokin., 1984,9(4):371~376.
    29. Mayer J M, Testa B, Pharmacodynamics, pharmacokinetics and toxicity of ibuprofen enatiomers. Drugs of the Future, 1997,22(12):1347~1366.
    30. Wyss-Corary T, Mucke L, Ibuprofen, inflammation and Alzheimer's disease. Nat. Med., 2000, 6(9): 973~974.
    31. Yoon J S, Jeong D C, Oh J W, Lee K Y, Lee H S, Koh Y Y, Kim J T, Kang J H, Lee J S, The effects and safety of dexibuprofen compared with ibuprofen in febrile children caused by upper respiratory tract infection. Br. J. Clin. Pharmacol., 2008,66(6):854~860.
    32. Adams S S, Bresloff P, Mason G C, Pharmacological difference between the optical isomers of ibuprofen: evidence for metabolic inversion of the (-) isomer. J. Pharm. Pharmacol., 1976, 28(3): 156~157.
    33. Geisslinger G, Schuster O, Stock K P, Loew D, Bach G L, Brune K, Pharmacokinetics of S (+)- and R (-)-ibuprofen in volunteers and first clinical experience with S(+)-ibuprofen in rheumatoid arthritis. Eur. J. Clin. Pharmacol., 1990,38(3):493~497.
    34. Hedstr(?)m G, Backlund M, Peter Slotte J, Enantioselective synthesis of ibuprofen esters in AOT/ isooctane microemulsions by Candida cylindracea lipase. Biotechnol Bioengineering, 1993, 42(5): 618~624.
    35. Caldwell J, Hutt A J, Gigleux-Fournel S, The metabolic chiral inversion and dispositional enantioselectivity of the 2-arylpropionic acids and their biological consequences. Biochem. Pharmacol., 1988,37(1):105~114.
    36. Mills R F N, Adams S S, Cliffe E E, Dickinson W, Nicholson J S, The metabolism of ibuprofen. Xenobiotica, 1973,3(9): 589~598.
    37. Williams K, Day R, Knihinicki R, Duffield K, The stereoselective uptake of ibuprofen enantiomers into adipose tissue. Biochem Pharmacol., 1986,35(19):3403~3405.
    38. Singer F, Mayrhofer F, Klein G, Hawel R, Kollenz CJ, Singer F, Mayrhofer F, Klein G, Evaluation of the efficacy and dose-response relationship of dexibuprofen (S(+)-ibuprofen) in patients with osteoarthritis of the hip and comparison with racemic ibuprofen using the WOMAC osteoarthritis index.Int. J. Clin. Pharmacol. Ther., 2000, 38(1):15~24.
    39. Piccolo O, Visentin G, Zinc salt catalyzed rearrangement of acetals of optically active aryl 1-chloroethyl ketones: synthesis of optically active 2-arylpropionic acids and esters. J Org. Chem., 1987, 52(1): 10~14.
    40. 赵军,许靓,光学对映体s-(+)-布洛芬的合成.浙江工业大学学报,1998,26(2):108~113.
    1. Hamon D P, Massy-Westropp A, Newton J L, Asymmetric synthesis of ibuprofen and ketoprofen. Tetrahedron: Asymmetry, 1993,4(7): 1435~1442
    42. Pettersson C, "Formation of Diastereomeric Ion-Pairs" in Chiral Separations by HPLC, New York: Wiley and Sons, 1991.
    43. Bhushan R, Martens J, Resolution of enantiomers of ibuprofen by liquid chromatography: a review. Biomed Chromator., 1998,.12(6):309~316.
    44. Zhao M J, Peter C, Holtz M C, Hugenell N, Koeffel J C, and Jung L, Gas chromatographic-mass spectrometric determination of ibuprofen enantiomers in human plasma using R(-)-2,2,2-trifluoro-1-(9-anthryl) ethanol as derivatizing reagent. Journal of Chromatography B, 1994, 656(2) :441~446.
    45. Kondo K, Imaoka T, Takao K, Nakanishi A, and Kawahara Y, Fluorescence derivatization reagent for resolution of carboxylic acid enantiomers by high performance liquid chromatography. Journal of Chromatography, 1993, 645(1):75~81.
    46. Nicoll-Griffith D, Scartozzi M, Chiem N, Automated derivatization and high performance liquid chromatographic analysis of ibuprofen enantiomers. Journal of Chromatography A, 1993, 653(2): 253~259.
    47. Ann H Y, Shiu G K, Trafton W F, Doyle T D, Resolution of the enantiomers of ibuprofen: Comparison study of diastereomeric method and chiral stationary phase method. Journal of Chromatography B, 1994,653(2):163~169.
    48. Lemko C H, Caille G, Foster R T, Stereospecific high performance liquid chromatographic assay of ibuprofen: improved sensitivity and sample processing efficiency. Journal of Chromatography, 1993, 619(2): 330~335.
    49. Wright M R, Sattari S, Brocks D R, Jamali F, Improved high performance liquid chromatographic assay method for the enantiomers of ibuprofen. Journal of Chromatography, 1992,583(2):259~265.
    50. Oi N, Kitahara H, Aoki F, Kisu N, Direct separation of carboxylic acid enantiomers by high performance liquid chromatography with amide and urea derivatives bonded to silica gel as chiral stationary phase. Journal of Chromatography A, 1995,689(2): 195~201.
    51. Haginaka J, Murashima T, Seyama C, Fujima H, Wada H, Retention and enantioselective properties of racemic compounds on ovomucoid columns. Journal of Chromatography, 1993,631(1-2): 183~190.
    52. Farkas G, Irgens L I, Qintero G, Beeson M D, Al-Saeed A, Vigh G, Displacement chromatography on cyclodextrin silicas. Journal of Chromatography, 1993, 645:67~74.
    53. Pettersson C J, Olsson A, Liquid chromatographic determination of the enantiomers of ibuprofen in plasma using a chiral agp column. Journal of Chromatography, 1991,91,414~418.
    54. Castellani L, Flieger M, Sinibaldi M, Enantiomer separation of 2-arylpropionic acids on an ergot alkaloid-based stationary phase microbore column application. Journal of Liquid Chromatography, 1994, 17:3695~3703.
    55. Emmanuel S, James T, Enantiomeric HPLC separation of selected chiral drugs using native and derivatized p-cyclodextrins as chiral mobile phase additives. J. Liq. Chromatogr. Relat. Technol. 1997,20: 855~859.
    56. 李兵,施介华,杨根生,高效液相色谱中的纤维素衍生物手性固定相.化学通报,2003,66(3):169~173.
    57. Teng X W, Wang S W, Davies N M, Stereospecific high-performance liquid chromatographic analysis of ibuprofen in rat serum. J Chromatogr. B, 2003,796(2):225~231.
    58. Tung H H, Waterson S, Reynolds S, Paul E, Resolution of ibuprofen via stereospecific crystallization. AIChE Symposium Series, 1995, 91,64~68.
    59. Tung H, Waterson S, Reynolds S D, Formation and resolution of ibuprofen lysinate, U.S. Patent 4994604,1991.
    60. Bhattacharya A, Fritch J R, Murphy C D, Zeugler L D, McAdams C A, Selective precipitation of a-aryl carboxylic acid salts. U.S. Patent 5380867,1995.
    61. Bhattacharya A, Fritch J R, Murphy C D, Zeugler L D, McAdams C A, Racemization of an enantomerically enriched a-aryl carboxylic acid. U.S. Patent 5332834, 1994.
    62. Norbert M M, Franco P, Lindner W. Separation of enantiomers: needs, challenges, perspectives. J. Chromatography A, 2001,906(1-2):3~33.
    63. Margolin A L, Enzymes in the synthesis of chiral drugs. Enzyme Microb. Technol., 1993, 15(14): 266~280.
    64. Sih C J, Gu Q M, F(?)lling G, Shih-Hsiung W, Reddy D R, The use of microbial enzymes for the synthesis of optically active pharmaceuticals. Dev. Ind. Microb., 1988, 29(3):221~229.
    65. 李新玉,酶法合成光活性化合物.精细化工中间体,2004,34(1):1~5.
    66. Carvalho P O, Calafatti S A, Marassi M, Silva D M, Contesini F J, Bizaco C R, Macedo G A, Potencial de biocatalise enantiosseletiva de lipases microbianas. Quim. Nova, 2005,28(4): 614~621.
    67. De la Casa R M , Guisan J M, Sanchez-Montero J M, Sinisterra J V, Modification of the Activities of two different lipases from Candida rugosa with dextrans. Enzyme Microb. Technol., 2002, 30(1), 30~40.
    68. Bhandarkar S V, Neau S H, Lipase-catalyzed enantioselective esterification of flurbiprofen with n-butanol. EJB Electronic J. Biotechnol., 2000,3(3): 195~201.
    69. Wu J, Liu S W, Influence of alcohol concentration on lipase-catalyzed enantioselective esterification of racemic naproxen in isooctane: under controlled water activity. Enzyme Microb. Technol., 2000, 26(2-4): 124~130.
    70. Sanchez A, Valero F, Lafuente J, Sola C, Highly enantiselective esterification of racemic ibuprofen in a packed bed reactor using immobilised rhizomucor miehei lipase. Enzyme Microb. Technol., 2000,27(1-2):157~166.
    71. Lee W H, Kim K J, Kim M G, Lee S B, Enzymatic resolution of racemic ibuprofen esters: effects of organic cosolvents and temperature. J. Ferm. Bioeng., 1995,80(6):613~615.
    72. Xin J Y, Li S B, Chen X H, Wang L L, Yi X, Improvement of the enantioselectivity of lipase-catalyzed naproxen ester hydrolysis in organic solvent. Enzyme Microb. Technol., 2000,26(2-4):137~141.
    73. Steenkamp L, Brady D, Screening of commercial enzymes for the enantioselective hydrolysis of R, S-Naproxen Ester. Enzyme Microb. Technol., 2003, 32(3-4), 472~477.
    74. Long W S, Kamaruddin A H, Bhatia S. Enzyme kinetics of kinetic resolution of racemic ibuprofen ester using enzymatic membrane reactor. Chem. Eng. Science, 2005, 60(18):4957~4970.
    75. Chang C S, Tsai S W, Lipase-catalyzed dynamic resolution of naproxen thioester by thiotransesterification in isooctane. Biochem. Eng. J., 1999,3(3):239~242.
    76. Santaniello E, Ferraboschi P, Grisenti P, Lipase-catalized transesterification in organic solvents: application of enantiomerically pure compounds. Enzyme Microb. Technol., 1993,15(5):367~382.
    77. Sih C J, Process for preparation (S)-2-arylpropionic acids. Eur. Pat. Appl., EP-0227078, 1987.
    78. Lin C N, Tsai S W, Dynamic kinetic resolution of suprofen thioester via coupled trioctylamine and lipase catalysis. Biotechnol. Bioeng., 2000,69(1): 31~38.
    79. Lopez N, Pernas M A, Pastrana L M, Sanchez A, Valero F, Rua M L, Reactivity of pure Candida rugosa Lipase Isoenzymes (Lip1, Lip2, and Lip3) in aqueous and organic madia. Influence of the isoenzymatic profile on the lipase performance in organic media. Biotechnol. Prog., 2004,20 (1), 65~73.
    80. Battistel E, Bianchi D, Cesti P, Pina C, Enzymatic resolution Of (S)-(+)-Naproxen in a continuous reactor. Biotechnol. Bioeng., 1991,38(6), 659~664.
    81. Hiroyuki N, Shigeya S, Masafumi M, Shunji K, Kazutoshi T, Jun M, Kohichi M, Taizo F, Process for optically resolving 2-(3-benzoylphenyl) propionic acid. Eur. Pat. Appl. EP703212A 1, 1996.
    82. Georg S. Crystallization process for the preparation of enantiomerically pure (S)-ketoprofen or (R)-ketoprofen. Ger. Offen. DE 4308865A1, 1994.
    83. 徐诗伟,徐清,曹桂芳,王维庆,左静,微生物酶不对称水解合成S-布洛芬的研究Ⅰ.高度立体选择性菌株的筛选.微生物学报,1995,35(3),190~196.
    84. 徐诗伟,徐清,曹桂芳等.微生物酶不对称水解合成S-布洛芬的研究Ⅱ.反应条件和产物提取.微生物学报,1995,35(4):275~279.
    85. Heefher D L, Zepp C M. Enantioselective hydrolysis of ketoprofen esters by Beauveria bassiana and enzymes derived therefrom. PCT Int. Appl. WO 9420635A1, 1994.
    86. Tsai S W, Wei H J, Effect of solvent on enantioselective esterification of Naproxen by lipase with trimethylsilyl methanol. Biotechnol. Bioeng., 1994, 43(1):64~68.
    87. Tsai S W, Wei H J, Enantioselectivity esterification of racemic Naproxen by lipase in organic solvent. Enzyme Microb. Technol. 1994, 16(4):328~333.
    88. Lopez Belmonte M T, Sinisterra J V, Sinisterra J V, Enantioselective esterification of 2-arylpropionic acids catalyzed by immobilized Rhizomucor miehei lipase. J. Org. Chem., 1997, 62(2): 1831~1840.
    89. Mustranta A. Use of lipases in the resolution of racemic ibuprofen. Appl. Microbiol. Biotechnol., 1992, 38(1):61-66.
    
    90. Arroyo M, Sinnisterra J V, High enantioselective esterification of 2-aryl-propionic acids catalyzed by immobilized lipase from Candida antaartica: a mechanistic approach. J. Org. Chem., 1994, 59(16):4410-4417.
    
    91. Lopez N, Perez R, Vazquez F, Valero F, Sanchez A, Immobilisation of different Candida rugosa Upases by adsorption onto polypropylene powder: application to chiral synthesis of ibuprofen and trans-2-phenyl-1-cyclohexanol esters. Journal of Chemical Technology & Biotechnology, 2002, 77(2): 175-182.
    
    92. Ebbers E J, Arians G J A, Houbiers J P M, Bruggink A, Zwanenburg B, Controlled racemization of optically active organic compounds: prospects for asymmetric transformation. Tetrahedron, 1997, 53(28): 9417-9476.
    
    93. Lu C H, Cheng Y C, Tsai S W, Integration of reactive membrane extraction with lipase-hydrolysis dynamic kinetic resolution of naproxen 2,2,2-trifluoroethyl thioester in isooctane. Biotechnol. Bioeng., 2002,79(2):200-210.
    
    94. Arroyo M, Moreno J M, Sinisterra J V, Alteration of the activity and selectivity of immobilized Upases by the effect of the amount of water in the organic medium. J. Mol. Catal. A: Chem., 1995,97(3): 195-201.
    
    95. Ducret A, Trani M, Lortie R, Lipase-catalyzed enantioselective esterification of ibuprofen in organic solvents under controlled water activity. Enzyme Microb. Technol., 1998,22(4):212-216.
    
    96. Arroyo M, Sanchez-Montero J M, Sinisterra J V, Thermal stabilization of immobilized lipase B from Candida antactica on different supports: effect of water activity on enzymatic activity in organic media. Enzyme Microb. Technol., 1999,24(1-2):3-12.
    
    97. Lee G, Joo H, Kim J, Lee J H, Development of magnetically separable immobilized lipase by using cellulose derivatives and their application in enantioselective esterification of ibuprofen. J. Microb. Biotech., 2008,18(3): 465-471.
    
    98. Yu H W, Wu J, Ching C B, Enhanced activity and enantioselectivity of Candida rugosa lipase immobilized on macroporous adsorptive resins for ibuprofen resolution. Biotechnl. Lett., 2004, 26(8):629-633.
    
    99. Naik P U, Nara S J, Harjani J R, Salunkhe M M, Ionic liquid anchored substrate for enzyme catalysed kinetic resolution. Journal of Molecular Catalysis B-Enzymatic, 2007,44(3-4):93-98
    
    100. Yu H W, Wu J C, Ching B C, Kinetic resolution of ibuprofen catalyzed by Candida rugosa lipase in ionic liquids. Chirality, 2005, 17(1): 16-21.
    
    101.Miyako E, Maruyama T, Kamiya N, Goto M, Enzyme-facilitated enantioselective transport of (S)-Ibuprofen through a supported liquid membrane based on ionic liquids. Chem. Commun., 2003, 7 (23):2926-2927.
    
    102. Wang Y J, Hu Y, Xu H, Luo G S, Dai Y Y, Immobilization of lipase with a special microstructure in composite hydrophilic CA/hydrophobic PTFE membrane for the chiral separation of racemic ibuprofen. Journal of Membrane Science, 2007,293(1-2): 133-141.
    
    103. Jack D S, Rumble R H, Davies N W, Francis H W, Enantiospecific gas chromatographic-mass spectrometric procedure of the determination of ketoprofen and ibuprofen in synovial fluid and plasma. J. Chromatogr., 1992, 548(2):189-197.
    
    104. Mayer S, Shurig V, Enantiomer separation by electrochromatography in open tubular columms coated with chirasil-dex. J. Liq. Chromatogr., 1993,16(4):915-931.
    
    105. Bjornsdottir I, Kepp D R, Tjornelund J, Hansen S H, Separation of the enantiomers of ibuprofen and its major phase i metabolites in urine using capillary electrophoresis. Electrophoresis, 1998, 19(3): 455-460 .
    106. Soini H, Stefansson M, Riekkola M L, Novotny M V, Matlooligosaccharides as chiral selectors for the separation of Pharmaceuticals by capillary electrophoresis. Anal. Chem., 1994,66(20): 3477~3484.
    107. Fulwood R, Parker D, A chiral solvating agent for direct NMR assay of the enantiomeric purity of carboxylic acids. Tetrahedron: Asymmetry, 1992, 3(1): 25~28.
    108. 黄梅,任其龙,杨丽娟,吴平东,超临界二氧化碳中布洛芬影响因子的研究.分析化学,2003,31(9):1040~1043.
    109. Han S K, Row K, Chiral separation of ibuprofen by supercritical fluid chromatography. Chinese Journal of Chemical Engineering, 2005, 13(6): 741~746.
    110. Molnar P, Szekely E, Simandi B, Keszei S, Lovasz J, Fogassy E, Enantioseparation of ibuprofen by supercritical fluid extraction. The Journal of Supercritical Fluids, 2006,37(3):384~389.
    111. Wilson W, Direct enantiomeric resolution of ibuprofen and flurbiprofen by packed column SFC. Chirality, 1994, 6(3): 216~219.
    112. Johannsen M, Separation of enantiomers of ibuprofen on chiral stationary phases by packed column supercritical fluid chromatography. J. Chromatogr. A, 2001,937 (1-2):135~138.
    113. DauΒmann T, Hennemann H G, Rosen T C, Enzymatische technologien zur synthese chiraler alkohol-derivate. Chem Ing Tech., 2006, 78(3):249~255
    114. 周忠强,前手性酮的不对称还原(Ⅰ).中南民族大学学报(自然科学版),2006,25(1):22~27.
    115. 周忠强,前手性酮的不对称还原(Ⅱ).中南民族大学学报(自然科学版),2006,25(3):27~32.
    116. 王维德,王宁辉,黄颖芬,酮的不对称还原研究进展.化学工业与工程,2007,24(3):277~282.
    117. Noyori R, Kitamura M, In Modern Synthetic Methods, Scheffold R Ed., Berlin: Springer-Verlag, 1989, vol. 5,p115~145.
    118. Kagan H B, In Comprehensive Organometallic Methods, Wilkinson G, Stone F G A, Abel E V, Eds.. Oxford: Pergamon, 1982, p463.
    119. Zhang J, Zhou H B, Lu S M, Luo M M, Xie R G, Chio M C K, Zhou Z Y, Chan A S C, Yang T K, Chiral squaric prolinols: a new type of ligand for the asymmetric reduction of prochiral ketones by borane. Tetrahedron Asymmetry, 2001,12(13):1907~1912.
    120. Blaser H U, Malan C, Pugin B, Spindler F, Steiner H, Studer M, Selective hydrogenation for fine chemicals: recent trends and new developments. Adv. Synth. Catal., 2003, 345(1-2):103~151.
    121. Shimizu H, Nagasaki I, Matsumura K, Sayo N, Saito T, Developments in asymmetric hydrogenation from an industrial perspective. Acc. Chem. Res. 2007,40(12):1385~1393.
    122. Honda K, Ishige T, Kataoka M, Shimizu S, Microbial and enzymatic processes for the production of chiral compounds. In: Patel RN (ed) Biocatalysis in the pharmaceutical and biotechnology industries. New York: Taylor & Francis, 2006, pp 529~546.
    123. Nakamura K, Yamanaka R, Matsuda T, Harada T, Recent developments in asymmetric reduction of ketones with biocatalysts. Tetrahedron: Asymmetry, 2003,14(18):2659~2681.
    124. Goldberg K, Schroer K, L(?)tz S, Liese A, Biocatalytic ketone reduction--a powerful tool for the production of chiral alcohols - part Ⅰ: processes with isolated enzymes. Appl. Microbiol. Biotechnol., 2007, 76(2):237~248.
    125. Goldberg K, Schroer K, L(?)tz S, Liese A, Biocatalytic ketone reduction-a powerful tool for the production of chiral alcohols - part Ⅱ: whole-cell reductions. Appl. Microbiol. Biotechnol., 2007,76(2):249~255.
    126. Schmid A, Dordick J S, Hauer B, Kiener A, Wubbolts M, Witholt B, Industrial biocatalysis today and tomorrow. Nature, 2001,409(6817):258~268.
    127. Villela Filho M, Stillger T, M(?)ller M, Liese A, Wandrey C, Is logP a convenient criterion to guide the choice of solvents for biphasic enzymatic reactions? Angew Chem Int Ed, 2003,42(26):2993~2996.
    128. Kula M R, Kragl U, In: Patel RN (ed) Stereoselective Biocatalysis. New York :Marcel Dekker, 2000.
    129. Hummel W, Abokitse K, Drauz K, Rollmann C, Gr(?)ger H, Towards a large-scale asymmetric reduction process with isolated enzymes: expression of an (S)-alcohol dehydrogenase in E. coli and studies on the synthetic potential of this biocatalyst. Adv. Synth. Catal., 2003, 345( 1/2): 153 ~ 159.
    130. Faber K, Biotransformations in Organic Chemistry (5th edn.). Berlin:Springer, 2004.
    131. 蔡谨,杨晟,许建和,袁中一,辅助因子再生研究进展.生物加工过程,2005,3(2):1~8.
    132. Wagenknecht P S, Penney J M, Hembre R T, Transition-metal-catalyzed regeneration of nicotinamide coenzymes with hydrogen. Organometallics, 2003,22(6): 1180~1182.
    133. Patel R N, Banerjee A, McNamee C G, Brzozowski D, Hanson R L, Szarka L J, Enantioselective microbial reduction of 3,5-dioxo-6-(benzyloxy) hexanoic acid, ethyl-ester. Enzyme Microb Technol, 1993, 15(12):1014~1021.
    134. Davis C, Grate J, Gray D, Gruber J, Huismann G, Ma S, Newman L, Sheldon R, Enzymatic processes for the production of 4-substituted 3-hydroxybutyric acid derivatives. Codexis, Patent no. "WO04015132,2005.
    135. Tao J H, McGee K, Development of a continuous enzymatic process for the preparation of (R)-3-(4-fluorophenyl)-2-hydroxy propionic acid. Org Process Res Dev, 2002,6(4):520~524.
    136. Orlich B, Berger H, Lade M, Schomacker R. Stability and activity of alcohol dehydrogenases in W/O-emulsions: enantioselective reduction including cofactor regeneration. Biotechnol Bioeng, 2000, 70(6):638~646.
    137. Zelinski T, Liese A, Wandrey C, Kula M R, Asymmetric reductions in aqueous media: enzymatic synthesis in cyclodextrin containing buffers. Tetrahedron Asymmetry, 1999,10(9):1681~1687.
    138. Liese A, Zelinski T, Kula MR, Kierkels H, Karutz M, Kragl U, Wandrey C, A novel reactor concept for the enzymatic reduction of poorly soluble ketones. J Mol Catal B Enzym, 1998,4(1-2):91~99.
    139. Mertens R, Greiner L, van den Ban ECD, Haaker HBCM, Liese A, Practical applications of hydrogenase Ⅰ from Pyrococcus furiosus for NADPH generation and regeneration. J Mol Catal B Enzym, 2003, 24-25(1):39~52.
    140. Schubert T, Hummel W, M(?)ller M, Highly enantioselective preparation of multi-functionalized propargylic building blocks. Angew Chem Int Ed, 2002,41(4):634~637
    141. Kosjek B, Stampfer W, Pogorevc M, Goessler W, Faber K, Kroutil W, Purification and characterization of a chemotolerant alcohol dehydrogenase applicable to coupled redox reactions. Biotechnol Bioeng, 2004,86(1):55~62.
    142. Hildebrand F, Kiihl S, Pohl M, Vasic-Racki D, Muller M, Wandrey C, L(?)tz S, The production of (R)-2-hydroxy-1-phenyl-propan-l-one derivatives by benzaldehyde lyase from Pseudomonas fluorescens in a continuously operated membrane reactor. Biotechnol Bioeng, 2006,96(5):835~843.
    143. Wolberg M, Hummel W, Wandrey C, Muller M, Highly regio- and enantioselective reduction of 3,5-dioxocarboxylates. Angew Chem. Int. Ed, 2000,39(23):4306~4308.
    144. Csuk R, Baker's yeast mediated transformations in organic chemistry. Chem. Rev., 1991,91(1):49~97.
    145. Breuer M, Ditrich K, Habicher T, Hauer B, KeΒeler M, St(?)rmer R, Zelinski T, Industrial methods for the production of optically active intermediates. Angew Chem. Int. Ed, 2004,43(7):788~824.
    146. Nakamura K, Matsuda T, Reduction of Ketones. In: Drauz K, Waldmann H (eds) Enzyme Catalysis in Organic Synthesis, Vol. Ⅲ, 2nd edn. Weinheim: Wiley-VCH Verlag GmbH, 2002, pp 991-1047.
    147. Faber K, Biotransformations in Organic Chemistry, 5th edn. New York: Springer, Berlin Heidelberg, 2004.
    148. Peters J, Zelinski T, Kula M R, Studies on the distribution and regulation of microbial keto ester reductases. Appl. Microbiol. Biotechnol., 1992, 38(3):334~340.
    149. Nanduri V B, Hanson RL, Goswami A, Wasylyk J M, LaPorte T L, Katipally K, Chung H J, Patel R N, Biochemical approaches to the synthesis of ethyl 5-(S)-hydroxyhexanoate and 5-(S)-hydroxyhexane- nitrile. Enzyme Microb. Technol., 2001,28(7-8):632~636.
    150. Kaluzna I A, Feske B D, Wittayanan W, Ghiviriga I, Stewart J D, Stereoselective, biocatalytic reductions of α-chloro-β-keto esters. J. Org. Chem., 2005, 70(1):342~345.
    151. Crans D C, Whitesides G M. Glycerol kinase: synthesis of dihydroxyacetone phosphate, sn-glycerol-3-phosphate and chiral analogs. J. Am. Chem. Soc., 1985, 107(24) :7019~7027.
    152. Claridge C A, Schmitz H. Microbial and chemical transformations of some 12, 13-epoxytri-chothec-9,10-enes. Appl Environ Microbiol, 1978,36(1):63~67.
    153. Dahl A C, Fjeldberg M, Madsen J. Baker's yeast: improving the D-stereoselectivity in reduction of 3-oxo esters. Tetrahedron:Asymmetry, 1999,10(3):551~559.
    154. Haberland J, Kriegesmann A, Wolfram E, Hummel W, Liese A, Diastereoselective synthesis of optically active (2R,5R)-hexanediol. Appl. Microbiol. Biotechnol., 2002, 58(5):595~599.
    155. Haberland J, Hummel W, DauΒmann T, Liese A, New continuous production process for enantiopure (2R,5R)-hexanediol. Org. Process Res. Dev., 2002,6(4):458~462.
    156. Engelking H, Pfaller R, Wich G, Weuster-Botz D, Reaction engineering studies on β-keto ester reductions with whole cells of recombinant Saccharomyces cerevisiae. Enzyme Microb. Technol., 2006, 38(3-4):536~544.
    157. Rodriguez S, Kayser M M, Stewart J D, Improving the stereoselectivity of bakers' yeast reductions by genetic engineering. Org. Lett., 1999, 1(8):1153~1155.
    158. Rodriguez S, Kayser M M, Stewart J D, Highly stereoselective reagents for β-keto ester reductions by genetic engineering of baker's yeast. J. Am. Chem. Soc., 2001,123(8):1547~1555.
    159. Stampfer W, Kosjek B, Moitzi C, Kroutil W, Faber K, Biocatalytic asymmetric hydrogen transfer. Angew Chem. Int. Ed, 2002,41(6):1014~1017.
    160. Fow K L, Poon C H, Sim T, Chuah G K, Jaenicke S, Enhanced asymmetric reduction of ethyl 3-oxobutyrate by baker's yeast via substrate feeding and enzyme inhibition. Engineering of Life Science, 2008, 8(4):372~328.
    161. Dahl, A. C.; Fjeldberg, M.; Madsen, J. (?). Baker's yeast: improving the D-stereoselectivity in reduction of 3-oxo esters. Tetrahedron: Asymmetry, 1999, 10(3), 551~559.
    162. Stampfer W, Kosjek B, Kroutil W, Faber K, On the organic solvent and thermostability of the biocatalytic redox system of Rhodococcus ruber DSM 44541. Biotech. Bioeng., 2000,81(7):865~869.
    163. Nakamura K, Inoue K, Ushio K, Oka S, Ohno A, Effect of allyl alcohol on reduction of β-keto esters by bakers'yeast. Chem. Lett., 1987,16(4): 679~682.
    164. Hamada, H.; Miura, T.; Kumobayashi, H.; Matsuda, T.; Harada, T.;Nakamura, K. Asymmetric synthesis of (R)-2-chloro-1-(m-chlorophenyl)ethanol using acetone powder of Geotrichum candidum. Biotechnol. Lett., 2001,23(19), 1603~1606.
    165. Matsuda, T.; Nakajima, Y.; Harada, T.; Nakamura, K. The effect of catechin derivatives on the enantioselectivity of lipase-catalyzed hydrolysis of alkynol benzoate esters. Tetrahedron: Asymmetry, 2002, 13(4),971-974.
    166. Nakamura, K.; Matsuda, T.; Harada, T. Chiral synthesis of secondary alcohols using Geotrichum candidum. Chirality, 2002, 14(9):703~708.
    167. Nakamura K, Inoue Y, Matsuda T, Misawa I, Stereoselective oxidation and reduction by immobilized Geotrichum candidum in an organic solvent. J. Chem. Soc., Perkin Trans. 1, 1999, 16:2397~2402.
    168. Brzezinska-Rodak M, Zymanczyk-Duda E, Kafaski P, Lejczak B, Application of fungi as biocatalysts for the reduction of diethyl 1-oxoalkylphosphonates in anhydrous hexane. Biotechnol. Prog., 2002, 18(6): 1287 -1291.
    
    169. Griffin D R, Gainer J L, Carta C, Asymmetric ketone reduction with immobilized yeast in hexane: Biocatalyst deactivation and regeneration. Biotechnol. Prog., 2001, 17(2):304-310.
    
    170. Medson C, Smallridge A J, Trewhella M A, Baker's yeast activity in an organic solvent system. J. Mol. Catal. B: Enzym., 2001,11(4-6):897-903.
    
    171. Athanasioun N, Smallridge-A J, Trewhella M A, Baker's yeast mediated reduction of β-keto amides in an organic solvent system. J. Mol. Catal. B: Enzym., 2001,11(4-6):893-896.
    
    172. Yajima A, Naka K, Yabuta G, Immobilized baker's yeast reduction in fluorous media. Tetrahedron Lett., 2004, 45(23):4577-4579.
    
    173. Howarth J, James P, Dai J, Immobilized baker's yeast reduction of ketones in an ionic liquid, [bmim]PF_6 and water mix. Tetrahedron Lett., 2001,42(42), 7517-7519.
    
    174. Rosche B, Breuer M, Hauer B, Rogers P L, Biphasic aqueous/organic biotransformation of acetaldehyde and benzaldehyde by Zymomonas mobilis pyruvate decarboxylase. Biotch. Bioeng., 2004, 86(7):788-794.
    
    175. Amidjojo M, Weuster-Botz D, Asymmetric synthesis of the chiral synthon ethyl (S)-4-chloro-3-hydroxybutanoate using Lactobacillus kefir. Tetrahedron: Asymmetry, 2005, 16(4):899-901.
    
    176. Chin-Joe I, Straathof A J J, Pronk J T, Jongejan J A, Heijnen J J. Effect of high product concentration in a dual fed-batch asymmetric 3-oxo ester reduction by baker's yeast. Biocatal. Biotransform., 2002, 20(5):337-345.
    
    177. Conceicao G J A, Moran P J S, Rodrigues J A R, Highly efficient extractive biocatalysis in the asymmetric reduction of an acyclic enone by the yeast Pichia stipitis. Tetrahedron: Asymmetry, 2003, 14(1):43-45.
    
    178. Pauling L, The nature of forces between large molecules of biological interest. Nature, 1948, 161(4097): 707-709.
    
    179. Jencks W. P. Current Aspects of Biochemical Energetics (eds. Kaplan, N. O. & Kennedy, E. P.), New York: Academic Press, 1966, pp. 273-298.
    
    180. Jencks, W. P. Catalysis in Chemistry and Enzymology. New York: McGraw Hill, 1967; p 288.
    
    181. Yang X, Yamamoto N, Janda K D, Catalytic antibodies: hapten design strategies and screening methods. Bioorg. & Med. Chem., 2004, 12(20): 5247-5268.
    
    182. Jr P W, Janda K D, Catalytic antibodies. Current Opinion in Chemical Biology, 1998,2(1): 138-144.
    
    183. Kohler G. Milstein C, Continuous cultures of fused cells secreting antibody of predefined specificity. Nature, 1975, 256(5517):495-497.
    
    184. Tramontano A, Janda K D,Lemer R A, Catalytic antibodies. Science, 1986,234(4783):1566-1570.
    
    185. Pollack S J, Jacobs J W, Schultz P G, Selective chemical catalysis by an antibody. Science, 1986, 234 (4783):1570-1573.
    
    186. Schlutz P G, Lerner R A, From molecular diversity of catalysis: lessons from the immune system. Science, 1995, 269(5232):1835-1842.
    
    187. Thomas N R, Catalytic antibodies: reaching Adolescence? Nat. Prod. Rep., 1996, 13(6):479-511.
    
    188. Blackburn G M, Datta A, Denham H, Wentworth P Jr., Catalytic antibodies. Adv. Phys. Org. Chem., 1998,31:249-392.
    
    189. Reymond J L, Catalytic antibodies for organic synthesis. Top. Curr. Chem., 1999, 200:59-93.
    
    190. Hilvert D, Stereoselective reactions with catalytic antibodies. Top. Stereochem. 1999,22:83-135.
    
    191. Hasserodt J, Organic synthesis supported by antibody catalysis. Synlett., 1999, 12:2007-2022.
    
    192. Salfeld J G, Isotype selection in antibody engineering. Nature Biotechnology, 2007,25(12), 1369-1372.
    
    193. Smithrud D B, Benkovic P A, Benkovic S J, Roberts V, Liu J, Neagu I, Iwama S, Phillips B W, Smith III A B., Hirschmann R, Cyclic peptide formation catalyzed by an antibody ligase. Proc. Natl. Acad. Sci. USA, 2000,97(5): 1953~1958.
    194. Janice M Reichert, Viia E. Valge-Archer, Development trends for monoclonal antibody cancer therapeutics. Nature Reviews Drug Discovery, 2007, 6(5):349~356.
    195. Marasco W A, Sui J, The growth and potential of human antiviral monoclonal antibody therapeutics. Nature Biotechnology, 2007,25(12): 1421~1434.
    196. Lian G, Ding L, Chen M, Liu Z, Zhao D, Ni J, Preparation and properties of a selenium-containing catalytic antibody as type I deiodinase mimic. J. Biol. Chem., 2001,276(30):28037~28041.
    197.王欣,王继,抗体酶技术在医学上的应用.生命的化学,2005,25(5):396~399.
    198. Wentworth P Jr, McDunn J E, Wentworth A D, Takeuchi C, Nieva J, Jones T, Bautista C, Ruedi J M, Gutierrez A, Janda K D, Babior B M, Eschenmoser A, Lerner R A, Evidence for antibody-catalysed ozone formation in bacterial killing and inflammation. Science, 2002, 298(5601): 2195~2199.
    199. Lacroix-Desmazes S, Bayry J, Kavri V S, Hayon-Sonsino D, Thorenoor N, Charpentier J, Luyt Charles-Edouard, Mira Jean-Paul, Nagaraja V, Kazatchkine M D, Dhainaut Jean-Francis, and Mallet V O, High levels of catalytic antibodies correlate with favorable outcome in sepsis. Proc. Natl. Acad. Sci. U.S.A., 2005, 102(11): 4109~4113.
    200. Tanaka F. Catalytic antibodies as designer proteases and esterases. Chem. Rev., 2002, 102(12): 4885~4906.
    201. Janda K D, Weinhouse M I, Schloeder D M, Lerner R A, Benkovic S J, Bait and switch strategy for obtaining catalytic antibodies with acyltransfer capabilities. J. Am. Chem. Soc., 1990,112(3): 1274~1275.
    202. Wentworth P, Liu Y Q, Wentworth A D, Fan P, Foley M J, Janda K D, A bait and switch hapten strategy generates catalytic antibodies for phosphodiester hydrolysis. Proc. Natl. Acad. Sci. U.S.A., 1998, 95(11): 5971~5975.
    203. Tanaka F, Barbas C F, Reactive immunization: a unique approach to catalytic antibodies. J. Immunol. Methods. 2002,269(l-2):67~79.
    204. Tawfik D S, Green B S, Chap R, Sela M, Eshhar Z, catELISA: A facile general route to catalytic antibodies. Proc. Natl. Acad. Sci. U.S.A., 1993, 90(2):373~377.
    205. Cashman J. R., Berkman C. E., Underiner G. E. Catalytic antibodies that hydrolyze (-)-cocaine obtained by a high-throughput procedure. J. Parmacol. Exp. Ther. 2000,293(3):952~961.
    206. Cashman J R, Berkman C E, Underiner G, Kolly C A, Hunter A D, Cocaine benzoyl thioester: Synthesis, kinetics, of base hydrolysis, and application to the assay of cocaine esterases. Chem. Res. Toxicol. 1998, 11(8): 895~901.
    207. Isomura S, Hoffman T Z, Wirsching P, Janda K D, Synthesis, properties, and reactivity of cocaine benzoylthio ester possessing the cocaine absolute configuration. J. Am. Chem. Soc., 2002, 124(14):3661~3668.
    208.朱国念,吴刚,吴慧明,有机磷杀虫剂毒死蜱人工抗原的合成与鉴定.中国农业科学.2003,36(6):657~662.
    209. Jung F, Gee S J, Harrison R O, Goodrow M H, Kara A E, Braun A L, Li Q X, Hammock B D, Use of immunochemical techniques for the analysis of pesticides. Pestic. Sci., 1989, 26(3):303~317.
    210. Goodrow M H, Hammock B D. Hapten design for compound selective antibodies: ELISA for environmentally deleterious small molecules. Analytica Chimica Acta, 1998,376(1):83~91.
    211. Thomas N R. Hapten design for the generation of catalytic antigens. Appl. Biochem. Biotech., 1994, 47(2-3):345~372.
    212. Skerrit J H, Guihot S L, Asha M B, Rani B E A, Karanth N G K, Sensitive immunoassays for methyl-parathion and parathion and their application to residues in foodstuffs. Food & Agricultural Immunology, 2003, 15(1): 1~15.
    213. Mader M M, Bartlett P A, Binding energy and catalysis: The implications for transition-state analogs and catalytic antibodies. Chem. Rev., 1997, 97(5):1281~1301.
    214. Eyring H. The activated complex in chemical reactions. J. Chem. Phys., 1935,3(2):107~l 15.
    215. Eyring H. The activated complex and the absolute rate of chemical reactions. Chem. Rev., 1935, 17(1):65~77.
    216. Blackburn G M, Kang A S, Kingsbury G A, Burton D R, Catalytic antibodies. Biochem. J., 1989, 262(2):381~390.
    217. Stewart J D, Benkovic S J, Transition-state stabilization as a measure of the efficiency of antibody catalysis. Nature, 1995, 375(6530):388~391.
    218. Gao C S, Lavey B J, Lo C H L, Datta A, Wentworth P, Janda K D, Direct selection for catalysis from combinatorial antibody libraries using a boronic acid probe: Primary amide bond hydrolysis. J. Am. Chem. Soc., 1998, 120(10):2211~2217.
    219. Janda K D, Schloeder D, Benkovic S J, Lerner R A, Induction of an antibody that catalyzes the hydrolysis of an amide bond. Science, 1988, 241(4870): 1188~1191.
    220. Stewart J D, Krebs J F, Siuzdak G, Berdis A J, Smithrud D B, Benkovic S, Dissection of an antibody catalyzed reaction. J. Proc. Natl. Acad. Sci. U.S.A., 1994,91(16):7404~7409.
    221. Thayer M M, Olender E H, Arvai A S, Koike C K, Canestrelli I L, Stewart J D, Benkovic S J, Getzoff E D, Roberts V A, Structural basis for amide hydrolysis catalyzed by the 43C9 antibody. J. Mol. Biol., 1999, 291(2):329~345.
    222. Kitazume T, Takeda M, A cyclization reaction catalysed by antibodies. J. Chem. Soc. Chem. Commun., 1995, 1:39~40.
    223. Hasserodt J, Janda K D, Lerner R A, A class of 4-aza-lithocholic acid-derived haptens for the generation of catalytic antibodies with steroid synthase capabilities. Bioorg. Med. Chem., 2000, 8(5):995~ 1003.
    224. Reymond J L, Chen Y, Catalytic, enantioselective aldol reaction using antibodies against a quaternary ammonium ion with aprimary amine cofactor. Tetrahedron Lett., 1995,36(15): 2575~2582.
    225. Suga H, Ersoy O, Tsumuraya T, Lee J, Sinskey A J, Masamune, S. Esterolytic antibodies induced to haptens with a 1,2-amino alcohol functionality. J. Am. Chem. Soc., 1994, 116(2):487~494.
    226. Wirshing P, Ashley J A, Lo C-H L, Janda K D, Lerner R A, Reactive immunization. Science, 1995, 270(5243):1775~1783.
    227. Wagner J, Lerner R A, Barbas C F Ⅲ, Efficient aldolase catalytic antibodies that use the enamine mechanism of natural enzymes. Science, 1995,270(5243):1797~1800.
    228. Zhong G, Shabat D, List B, Anderson J, Sinha S C, Lerner R A, Barbas C F, Catalytic enantioselective retro-aldol reactions kinetic resolution of β-hydroxyketones with aldolase antibodies. Angew. Chem. Int. Ed. Engl., 1998, 37(18): 2481~2484.
    229.杨日芳,恽榴红,王字玲,梭曼抗体酶研究Ⅱ:“潜过渡态”半抗原设计策略及其在梭曼抗体酶研究中的应用.军事医学科学院院刊,2000.24(2):105~109,113.
    230.杨日芳,赵毅民,恽榴红,梭曼抗体酶研究Ⅰ:五配位氧膦烷半抗原的设计与合成及其水解稳定性研究.军事医学科学院院刊,1998,22(1):1~4,12.
    231. Tsumuraya T, Suga H, Meguro S, Tsunakawa A, Masamune S, Catalytic antibodies generated via homologous and heterologous immunization. J. Am. Chem. Soc., 1995, 117(46): 11390~11396.
    232. Patten P A, Gray N S, Yang P L, Marks C B, Wedemayer G J, Boniface J J, Stevens R C, Schultz PG, The immunological evolution of catalysis. Science, 1996,271(5252):1086~1091.
    233. Guo J, Huang W, Zhou G W, Fletterick R J, Scanlan T S, Mechanistically different catalytic antibodies obtained from immunization with a single transition-state analog. Proc. Natl. Acad. Sci. U. S. A., 1995, 92(5): 1694~1698.
    234. Iverson B L, Lerner R A, Sequence-specific peptide cleavage catalyzed by an antibody. Science, 1989, 243(4895):1184~1188.
    235. Takahashi N, Kakinuma H, Hamada K, Shimazaki K, Takahashi K, Niihata S, Aoki Y, Matsushita H, Nishi Y, Efficient screening for catalytic antibodies using a short transition-state analogand-detailed characterization of selected antibodies. Eur. J. biochem., 1999, 261(1): 108~114.
    236. Fujie T, Carlos F. Reactive immunizations unique approach to catalytic antibodies. J. Immun. Meth., 2002, 269(1):67~69.
    237. Janda K D, Benkovic S J, Lerner R A. Catalytic antibodies with lipase activity and R or S substrate specificity. Science, 1989,244(4903):437~440.
    238. Benedetti F; Berti F, Colombatti A, Flego M, Gardossi L, Linda P, Peressini, Antibody catalyzed modification of amino acids. Efficient hydrolysis of yrosine benzoate. Chem Commun, 2001, 8:715~216.
    239.胡允金,杨炳辉,赵河,吴毓林,季永镛,叶敏,对映选择性催化萘普生乙酯水解的多克隆抗体.科学通报,1997,42(4):386~388.
    240. Hsieh L C, Yonkovich S, Kochersperger L, Schultz P G, Controlling chemical reactivity with antibodies. Science, 1993,260(5106), 337~339.
    241. Nakayama G R, Schultz P G, Stereospecific antibody-catalyzed reduction of an a-keto amide. J. Am. Chem. Soc., 1992,114(2):780~781.
    242. Goncalves O, Dintinger T, Lebreton J, Blanchard D, Tellier C, Mechanism of an antibody-catalysed allylic isomerization. Biochem. J., 2000, 346(Pt3):691~698.
    243. Durfor C N, Bolin R J, Sugasawara R J, Massey R J., Jacobs Jeffrey, Schultz P G., Antibody catalysis in reverse micelles. J. Am. Chem. Soc., 1988,110(26):8713~8714.
    244. Matveeva E G, Meerovich I G, Savitsky A P. The synthesis of conjugates of phthalocyanines with monoclonal antibodies in AOT/n-octane reversed micelles and in water-organic mixtures. Bioorganicheskaya Khimiya, 1998,24(1): 64~71.
    245. Franqueville E, Loutrari H, Mellou F, Stamatis H, Friboulet A, Kolisis F N, Reverse micelles, a system for antibody-catalysed reactions. J. Mol. Cat. B: Enzymatic, 2003,21(1-2):15~17.
    246. Franqueville E, Stamatis H, Loutrari H. Studies on the catalytic behaviour of a cholinesterase-like abzyme in an AOT microemulsion system. Journal of Biotechnology, 2002, 97(2): 177~182.
    247. Page M I, Enzyme Mechanisms. Page M I (Ed.), London: Royal Society of Chemistry, 1987, Chapterl.
    248. Pauling L, Molecular architecture and biological reactions. Chem. Eng. New, 1946,24(10):1375~1377.
    249. Schowen R L, Transition States of Biochemical Processes, Gandour R D, Schowen R L, Eds., New York: Plenum, 1978, Chapter 2.
    250. Schramm L V, Enzymatic transition states and transition state analogues. Current Opinion in Structural Biology, 2005, 15(6):604~613.
    251. Jacobs J W, New perspectives on catalytic antibodies. Bio/Technology, 1991, 9:258~262.
    252. Stewart J D, Benkovic S J, Transition-state stabilization as a measure of the efficiency of antibody catalysis. Nature, 1995, 375(6530): 388~391.
    253. Mader M M, Bartlett P A, Binding energy and catalysis: The implications for transition-state analogs and catalytic antibodies. Chem. Rev. 1997, 97(5):1281~1301.
    254.谢桂阳,孔亚丽,王俊梅,徐筱杰,金声,新型含硫半抗原的晶体结构、构象分析及其电性研究.高等学校化学学报,1999,20(6):890~894.
    255. Larsen N A, Prada P, Deng S X, Mittal A, Braskett M, Zhu X, Wilson I A, Landry D W, Crystallographic and biochemical analysis of cocaine-degrading antibody 15A10. Biochemistry, 2004,43(25): 8067~8076.
    256.李述文,范加霖.实用有机化学手册.上海:上海科学技术出版社,1981,p257~259.
    257.杨炳辉,赵河,胡允金,吴毓林,季永镛,叶敏,一种多克隆抗体、制备方法及其用途.CN1116548,1996
    258.董志伟,王瑛,抗体工程(第二版)北京:北京大学医学出版社,2002,p.47
    259. Cayot P, Tainturier G. The quantification of protein amino groups by the trinitrobenzene sulfonic acid method: A reexamination. Analytical Chemistry, 1997,249(2): 184~200.
    260. Fields R. The measurement of amino groups in proteins and peptides. Biochem. J., 1971,124(3): 581~590.
    261.杨利国,胡少旭,魏平华,酶免疫检测技术.南京:南京大学出版社,1998,p242~476.
    262.覃雅丽,石德时,王桂枝,陈焕春,抗氯霉素单克隆抗体的制备及鉴定.中国兽医学报,2001,21(6):556~558.
    263. Harlow E, Lane D (Eds). Antibodies, A Laboratory Manual. Cold Spring Harbor: Cold Spring Harbor Laboratory Press, 1988
    264.刘晓波,蔡美英,王霞,李喜荣,一种简单实用纯化腹水McAb方法--辛酸/硫酸铵法.华西医科大学学报,1999,30(4):455~456.
    265. Bradford M M, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976,72:248~254.
    266.陈毓荃主编,生物化学实验方法与技术.北京:科学出版社,2002,p95~96.
    267. Kapsenberg M L. Chemicals and proteins as allergens and adjuvants. Toxicology Letter, 1996, 86 (223):79~83.
    268. James P T, Fidel Z J. Multiple antigen peptide. J. Immunol. Meth., 1989,124(1): 53~61.
    269.周大勇,戚晓玉,陈舜胜,周培根.诺氟沙星与牛血清蛋白及卵清蛋白结合物的合成.上海水产大学学报,2002,11(4):362~366.
    270. Schechter I, Sela M, Preferential formation of antibodies specific toward D-amino acid residues upon immunization with poly-DL-peptidyl proteins. Biochemistry, .1967,6(3):897~905.
    271. Michael B, Wallance ,Brent L Iverson, The influence of hapten size and hydrophobicity on the catalytic activity of elicited polyclonal antibodies. J. Am. Chem. Soc., 1996, 118(1): 251~252.
    272. Marti S, Andres J, Moliner V, Silla E, Tunon I, Bertran J, Computational design of biological catalysts. Chem. Soc. Rev., 2008, 37(12):2634~2643.
    273. Tonegawa S, Somatic generation of antibody diversity. Nature, 1983,302:575~581.
    274. Nisonoff A, Hopper J E, Spring S B, The Antibody Molecule. New York: Academic Press, 1975, p45.
    275. Oreskes I, Mandel D, Size fractionation of thermal aggregates of immunoglobulin G.Anal. Biochem. 1983, 134(1): 199~204.
    276. Rosenqvist E, Jossng T, Feder J, Thermal properties of human IgG. Mol. Immunol., 1987, 24(4):495~501.
    277. Venu Madhav M, Ching C B, Study on the enzymatic hydrolysis of racemic methyl ibuprofen ester. J. Chem. Technol. Biotechnol., 2001, 76(9):941~948.
    278. William C B ed, Biochemistry (Volume one): Energy, Cell and Catalysis. (3~(rd) edition). England: Wm. C. Brown Communications Inc. 1993, p197~254.
    279. Martinek K, Levashov A V, Klyachko N, Khmelnitski Y L, Berezin I V, Micellar enzymology. Eur. J. Biochem., 1986, 155(3):453~468.
    280. Luisi P L, Enzymes hosted in reverse micelles in hydrocarbon solution. Angew Chem., 1985, 24(6): 439~450.
    281. Politi M J, Brand O, Fender J H, Ground- and excited-state proton transfers in reversed micelles. Polarity restrictions and isotope effects. J. Phys. Chem., 1985, 89(11):2345~2354.
    282.李干佐,郝树萱,李英,阳离子表面活性剂胶束的增溶过程及其微乳液相图研究.山东大学学报(自然科学版),1994,29(4):437~444.
    283.朱浩,施鼐,范映辛,反相胶束体系中的酶学研究.生物化学与生物物理进展,1998,25(3):204~210.
    284. Kotlarchyk M, Chen S H, Huang J S, Kim M W, Structure of three-component microemulsions in the critical region determined by small-angle neutron scattering. Phys. Rev. A, 1984,29(4):2054~2069.
    285. Martinek K, Klyachko N L, Kabanov A V, Micellar enzymology: its relation to membranology. Biochim. Biophys. Acta, 1989,981(12):161~172.
    286. Shaw A K, Pal, S K, Fluorescence relaxation dynamics of acridine orange in nanosized micellar systems and DNA. J. Phys. Chem. B, Condensed matter, materials, surfaces, interfaces & biophysical, 2007, 111(16):4189~4199.
    287. Jurado Alameda E, Camacho Rubio F, Luzon Gonzalez G, Fenandez Serrano M, Garcia Roman M, Kinetic model for the enzymatic hydrolysis of tributyrin in O/W emulsions. Chemical Engineering Science, 2006, 61(15):5010~5020.
    288. Pshezhetsky A V, Klyachko N L, Levashov A V, Catalysis by laccase (from Coriolus versicolor), in microheterogeneous media of the water/organic solvent/surfactant type. Biocatalysis and Biotransformation, 1990,4(2-3): 185~198.
    289. Brown E D, Yada R Y, Marangoni A G, The dependence of the lipolytic activity of Rhizopous arrhizus lipase on surfactant concentration in aerosol-OT/isooctane reverse micelles and its relationship to enzyme structure. Biochim. Biophys. Acta, 1993, 1161(1): 66~72.
    290. Jurado E, Camacho F, Luzon G, Fernandez-Serrano M, Garcia-Roman M, Kinetic model for the enzymatic hydrolysis of tributyrin in O/W emulsions. Chem. Engin. Sci., 2006,61 (15):5010~5020.
    291. Barbas C F Ⅲ, Wong C H, Papain catalyzed peptide synthesis: control of amidase activity and the introduction of unusual amino acids. J. Chem. Soc. Commun., 1987, 8:553~534.
    292. Barbas C F Ⅲ, Matos J R, West J B, Wong C H, A search for peptide ligase: cosolvent mediated conversion of proteases to esterases for peptide synthesis. J. Am. Chem. Soc., 1988,110(15):5162~5166.
    293. Chen C -S, Fujimoto Y, Girdaukas G, Sih C J, Quantitative analyses of biochemical kinetic resolutions of enantiomers. J. Am. Chem. Soc., 1982, 104(25):7294~7299.
    294. Singer S J, The properties of proteins in nonaqueous solvents. Advances in Protein Chem., 1962, 17(1):1~68
    295. Phillips R S, Zheng C, Pham V T, Andrade F A C, Andrade M A C, Effects of temperature on stereochemistry of enzymatic reactions. Biocatalysis and Biotransformation, 1994, 10(1): 77~86
    296. Klibanov A M, Asymmetric transformations catalyzed by enzymes in organic solvents. Acc Chem Res, 1990,23(4):114~120.
    297. Klibanov A M, Enzymatic catalysis in anhydrous organic solvents. Trend. Biochem. Sci., 1989, 14(4): 141~144.
    298. Basri M, Ampon K, Wan Yunus Z W, Razak C N A, Bakar Salleh A, Synthesis of fatty esters by polyethylene glycol modified lipase. J. Chem. Tech. Biotech., 1995, 64(l):10~16.
    299. Wu J C, He Z M, Yao C Y, Yu K T, Increased activity and stability of Candida rugosa lipase in reverse micelles formed by chemically modified AOT isooctane. J. Chem. Tech. Biotech., 2001, 76(9):949~953.
    300. Goto M, Kamiya N, Miyata M, Nakashio F. Enzymatic esterification by surfactant-coated lipase in organic media. Biotechnology Progress, 1994, 10(3):263~268.
    301. Wu J C, Ding H, Song B D, Hayashi Y, Talukder M M R, Wang S C, Hydrolytic reactions catalyzed by surfactant-coated Candida rugosa lipase in an organic-aqueous two-phase system. Process Biochemistry, 2003, 39(2):233~238.
    302. Okahata Y, Fujimoto Y, Ijiro K, A lipid-coated lipase as an enantioselective ester synthesis catalyst in homogeneous organic solvents. J. Org. Chem., 1995,36(24):2244~2250.
    303. Mori T, Kishimoto S, Ijiro K, Kobayashi A, Okahata Y, A lipid-coated lipase as an efficient hydrolytic catalyst in the two phase aqueous-organic system. Biotech. Bioeng., 2001, 76(2):157-163.
    304. Okahata Y, Fujimoto Y, Ijiro K. Lipase-lipid complex as a resolution catalyst of racemic alcohols in organic solvents. Tetrahedron Lett., 1988,29 (40) :5133~5134.
    305. Okahata Y, Ijiro K. A lipid-coated lipase as a new catalyst for triglyceride synthesis in organic solvents. J Chem Soc Chem Commun, 1988,20:1392~1394.
    306. Okahata, Y, Yamaguchi. M., Tanaka. F and Fujii. I. A lipid-coated catalytic antibody in water-miscible organic solvents. Tetrahedron, 1995, 51(28):7673~7680.
    307. Okahata Y, Mori T, Lipid-coated enzymes as efficient catalysts in organic media. Trend in Biotechnology, 1997, 15(2):50~54.
    308. Okahata Y, Lim H J, Hachiya, Nakamura S G Bilayer-coated capsule membranes. Ⅳ. Control of NaCl permeability by phase transition of synthetic bilayer coatings, depending on their hydrophilic head groups. J Membr Sci, 1984, 19(3):237~247.
    309.张河哲,白光月,王玉洁,严 忠,谷氨酸二烷基酯的合成及其表面活性研究.高等学校化学学报,1992,13(6):816~818.
    310. Goto M, Kamiya N, Miyata M, Nakashio F. Enzymatic esterification by surfactant-coated lipase in organic media. Biotechnology Progress, 1994, 10(3):263~268.
    311. Philips R S, Temperature effects on stereochemistry of enzymatic reactions. Enzyme Microb. Technol., 1992,14(5): 417~419.
    312. Faber K, Ottolina G, Riva S, Selectivity-enhancement of hydrolase reactions. Biocatalysis, 1993, 8(2): 91~132.
    313. Phillips P S, Temperature modulation of the stereochemistry of enzymatic catalysis: Prospects for exploitation. Trend in Biotech., 1996, 14(1): 13~16.
    314. Klibanov A M, Enzymes that work in organic solvents. Chemtech., 1986, 16:354~359.
    315. Okazaki S, Kamiya N, Goto M, Application of novel preparation method for surfactant-protease complexes catalytically active in organic media. Biotech. Prog., 1997,13(5):551~556.
    316. Marangoni A G, Enzyme Kinetics: A Modern Approach. John Wiley & Sons, 2003.
    317.姚传义,新型反胶团体系的构建及脂酶在反胶团中催化橄榄油水解反应研究.天津大学博士论文,1998.
    318. Katsuki T, Sharpless K B, The first practical method for asymmetric epoxidation. J. Am. Chem. Soc., 1980,102(18):5974~5976.
    319. Bhattacharjee K, Anderson J A, Novel chiral sulphonato-salen-manganese (Ⅲ)-pillared hydrotalcite catalysts for the asymmetric epoxidation of styrenes and cyclic alkenes. Advanced Synthesis & Catalysis. 2006,348(1/2): 151~158.
    320. Wang L, Sharpless K B, Catalytic asymmetric dihydroxylation of cis-disubstituted olefins. J. Am. Chem. Soc., 1992, 114(19):7568~7570.
    321. Corey E J, Bakshi R K, A new system for catalytic enantioselective reduction of achiral ketones to chiral alcohols. Synthesis of chiral a-hydroxy acids. Tetrahedron Lett., 1990,31(5):611~614.
    322. M. Ito, Y. Kobayashi, Production of optically active (s)-3-chloro-1-phenyl-1-propanol, JP Patent 04,234989,1992.
    323. M. Ito, Y. Kobayashi, Production of optically active (s)-3-chloro-1-phenyl-1-propanol. JP Patent 04,316489,1992.
    324.欧志敏,微生物法还原羰基化合物制备手性药物中间体的研究.浙江大学博士学位论文,2003.
    325.Noyori Ryoji.不对称催化:科学与机遇.化学通报,2002,6:363~372.
    326. Buchholz K, Kasche V, Bomscheuer U T, Biocatalysts and Enzyme Technology. Weinheim: Wiley-VCH Verlag GmbH, 2005.
    327.刘国斌,5-溴代戊酸的制造方法.CN1757624,2006.
    328. Cochran A G, Pham T, Sugasawara R, Schultz P G, Antibody-catalyzed biomolecular imine formation. J. Am.Chem. Soc., 1991,113(17),6670~6672.
    329.张裕蓉,张鹏,译,酶催化动力学-方法与应用(Enzyme Kinetics:A Modern Approach)Marangoni A G著,北京:化学工业出版社,2007.p85~90.
    330. Suzuki T, Idogaki H, Kasai N, Dual production of highly pure methyl (R)-4-chloro-3-hydroxybutyrate and (S)-3-hydroxy-r-butyrolactone with Enterobacter sp. Enzyme and Microbial Technology, 1999, 24(1-2): 13~20.
    331. Blandino A, Marias M, Cantero D, Glucose oxidase release from calcium alginate gel pellets. Enzymes Microb. TechnoL, 2000,27(3-5):319~324.
    332. Wang J L, Nigel H, Et Stentiford, Qian Y. The radial distribution and bioactivity of Pseudomonas sp immobilized in calcium alginate gel beads. Process Biochemistry, 1999,35(5):465~469.
    333. Blandino A, Macias M, Cantero D. Formation of calcium alginate gel capsules: Influence of sodium alginate. J. Biosci. Bioeng, 1999,88(6): 686~689.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700