有机催化的不对称Aldol反应及其它相关反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
不对称有机合成是当代有机合成的最具有吸引力的领域之一。作为不对称合成的一个新方法,对映选择性的有机催化已经成为越来越普遍应用的方法。在本论文中,多官能化的手性有机催化剂的设计和合成是十分重要的。因此,我们发展了一系列双功能、性能可调的手性二级胺-双酰胺衍生物作为有机催化剂。在催化剂分子中,存在两个不同的用于反应的作用位点。这样,通过改变不同的基团,可以有效地精微调控催化剂在不对称反应中的活性和选择性。催化剂的基本结构单元如下:
     为了检验新型有机催化剂的催化活性,我们研究了硫代四氢吡喃酮和各种醛的直接不对称Aldol反应。我们发现对于这一类反应,上述催化剂表现出显著的催化活性。各种醛与硫代四氢吡喃酮反应,高产率高立体选择性地得到反应产物,反应产率最高达到91%,ee值最高达到99%,dr值最高达到99∶1。
     水是一种环境友好、安全、价廉的溶剂。人们对使用水作为添加物或者取代传统的有机溶剂的有机反应已经进行了大量的研究。相反,尽管在盐水溶液中的反应效果可以比在水中的效果要好,但是较少有使用盐水溶液作为反应介质的报道。我们研究了在盐水溶液中使用双功能可调的有机催化剂催化的环己酮和醛的不对称Aldol反应。使用这类二级胺-双酰胺有机催化剂在盐水溶液中的反应,得到了高对映选择性和非对映选择性。
     α-取代的磷酸酯化合物是一类重要的生物活性分子,这类化合物被广泛用作酶抗体、抗菌素、抗HIV药物以及催化抗体的半抗原等。因此,α-取代的磷酸酯化合物和它的官能化衍生物的合成是一个十分重要的课题。我们初步实验了对映选择性的有机催化二烷基亚磷酸酯和醛的反应不对称合成α-羟基膦酸酯。
     从简单的原料各种取代苯酚出发,通过Grubbs催化剂催化的烯烃交叉复分解反应合成了一系列含氧原子的α,β-不饱和醛化合物。
Asymmetric organic synthesis is one of the most attractive research areas in organic synthesis. As a new method for asymmetric synthesis, enantioselective organocatalysis has become more and more popular. In this context, the design and synthesis of multifunctional chiral organocatalysts are of great importance. Accordingly, we have prepared a series of bifunctional chiral secondary amine-amides in which one catalyst molecule possesses two reaction-promoting functionalities. Thus, the activity and selectivity can be tuned by a simple modification in the structural motif of the catalyst. The basic structure units of the catalysts are outlined as below.
     In order to examine the catalytic activity of the new catalysts, we have carried out the direct asymmetric Aldol reaction of tetrahydro-4H-thiopyran-4-one with aldehydes. It has been found that the above catalysts have remarkable activities for this particular reaction. The reactions of aromatic aldehydes with tetrahydro-4H-thiopyran-4-one afford the Aldol adducts in good to excellent yield, with enantioselectivities ranging from 97% to 99% ee.
     There have been considerable efforts to develop organic reactions using water as an additive or a solvent instead of conventional organic solvents with respect to environmental concerns, safety, and cost. In contrast, there have been relatively few investigations using brine as the reaction media, although the reaction efficiency in brine may be superior to that in water. We examine the asymmetric Aldol reaction with cyclohexanone and aldehyde using tunable and bifunctional organocatalysts in aqueous media. To our delight, we obtain high diastereo- and enantioselectivities in brine with these chiral diamide organocatalysts.
     α-Substituted phosphonates are particularly important in connection with their remarkable biological activities. They have been found widespread use as enzyme inhibitors, antibacterial agents, anti-HIV agents, botryticides, and haptens for catalytic antibodies. For these reasons, the synthesis ofα-substituted phosphonates and their functionalized derivatives is an important objective. We have initially examined organocatalytic enantioselective synthesis ofα-Hydroxy phosphonates through the reaction of dialkyl phosphates and aldehydes.
     A series ofα,β-unsaturated aldehydes have been prepared in high yields through Ru-catalyzed cross metathesis reactions of various substituted allyloxy-benzene with (E)-but-2-enal.
引文
[1] (a) 林国强,李月明,陈耀全,陈新滋,手性合成-不对称反应及其应用,北京:科学出版社,第二版,2005,pp33-46.
    (b) Trost, B. M. Asymmetric catalysis: an enabling science. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 5348-5355.
    [2] Trost, B. M. The atom economy-a search for synthetic efficiency. Science 1991, 254, 1471-1477.
    [3] Trots, B. M. Atom economy-a challenge for organic synthesis: Homogeneous catalysis leads the way. Angew. Chem. Int. Ed. Engl. 1995, 34, 259-281.
    [4] Knowles, W. S.; Sabaeky, M. J. Catalytic asymmetric hydrogenation employing a soluble, optically active, rhodium complex. J. Chem. Soc., Chem. Commun. 1968, 22, 1445-1446.
    [5] Homer, L.; Siegewel, H.; Buthe, H. Asymmetric catalytic hydrogenation with an optically active phosphinerhodium complex in homogeneous solution. Angew. Chem. Int. Ed. Engl. 1968, 7, 942.
    [6] Noyori, R.; Ohta, M.; Hsiao, Y. Kitamura, M.; Ohta, T.; Takaya, H. Asymmetric synthesis of isoquinoline alkaloids by homogeneous catalysis. J. Am. Chem. Soc. 1986, 108, 7117-7119.
    [7] Noyori, R. Asymmetric catalysis in organic synthesis. John Wiley & Sons Inc., 1994, Chapter 3, pp 96.
    [8] Katsuki, T.; Sharpless, K. B. The first practical method for asymmetric epoxidation. J. Am. Chem. Soc. 1980, 102, 5974-5976.
    [9] 方唯硕主译,立体选择性生物催化.北京:化学工业出版社,第一版,2004,pp 57-63.
    [10] Kurt Faber. 吉爱国,译.有机化学中的生物转化.北京:化学工业出版社,2005,pp 19-206.
    [11] Langenbeck, W. Fermentproblem und organische katalyse. Angew. Chem. 1932, 45, 97-99.
    [12] Berkessel, A.; Groger, H. 赵刚,译.不对称有机催化.上海:华东师范大学出版社,2006,pp 2.
    [13] Saner, G.; Wiechert, R. New type of asymmetric eyclization to optically active steroid CD partial structures. Angew. Chem. Int. Ed. Engl. 1971, 10, 496-497.
    [14] Hajos, Z. G.; Parrish, D. R. Asymmetric synthesis of bicyclic intermediates of natural product chemistry. J. Org. Chem. 1974, 39, 1615-1621.
    [15] List, B.; Lemer, R. A.; Barbas, C. F., Ⅲ. Proline-catalyzed direct asymmetric Aldol reactions. J. Am. Chem. Soc. 2000, 122, 2395-2396.
    [16] Groger, H.; Wiiken, J. The application of L-proline as an enzyme mimic and further new asymmetric syntheses using small organic molecules as chiral catalysts. Angew. Chem. Int. Ed. 2001, 40, 529-531.
    [17] Movassaghi, M.; Jacobsen, E. N. The simplest "enzyme". Science 2002, 298, 1904-1905.
    [18] Notz, W.; List, B. Catalytic asymmetric synthesis of anti-1, 2-diols. J. Am. Chem. Soc. 2000, 122, 7386-7387.
    [19] MacMillan, D. W. C.; Northrup, A. B. The first direct and enantioselective cross-Aldol reaction of aldehydes. J. Am. Chem. Soc. 2002, 124, 6798-6799.
    [20] Bahmanyar, S.; Houk, K. N.; Martin, H. J.; List, B. Quantum mechanical predictions of the stereoselectivities of proline-catalyzed asymmetric intermolecular Aldol reactions. J. Am. Chem. Soc. 2003,125, 2475-2479.
    [21] Northrup, A. B.; Mangion, I. K.; Hettche, E; MacMillan, D. W. C. Enantioselective organoeatalytic direct Aldol reactions of α-oxyaldehydes: step one in a two-step synthesis of carbohydrates. Angew. Chem. Int. Ed. 2004, 43, 2152-2154.
    [22] Pan, Q.; Zou, B.; Wang, Y.; Ma, D. Diastereoselective Aldol reaction of N, N-dibenzyl-α-amino adehydes with ketones catalyzed by proline. Org. Lett. 2004, 6, 1009-1012.
    [23] Zhou, Y.; Shan, Z. X. Chiral Diols: A new class of additives for direct Aldol reaction catalyzed by L-proline. J. Org. Chem. 2006, 71, 9510-9512.
    [24] Tang, Z.; Jiang, F.; Yu, L.-T.; Cui, X.; Gong, L.-Z.; Mi, A.-Q.; Jiang, Y.-Z.; Wu, Y.-D. Novel small organic molecules for a highly enantioselective direct Aldol reaction. J. Am. Chem. Soc. 2003, 125, 5262-5263.
    [25] Tang, Z.; Jiang, F.; Cui, X.; Gong, L.-Z.; Mi, A.-Q.; Jiang, Y.-Z.; Wu, Y.-D. Enantioselective direct Aldol reactions catalyzed by L-prolinamide derivatives. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 5755-5760.
    [26] Tang, Z.; Yang, Z.-H.; Chen, X.-H.; Cun, L.-F.; Mi, A.-Q.; Jiang, Y.-Z.; Gong, L.-Z. A highly efficient organocatalyst for direct Aldol reactions of ketones with aldedydes. J. Am. Chem. Soc. 2005, 127, 9285-9289.
    [27] List, B. The direct catalytic asymmetric three-component mannich reaction. J. Am. Chem. Soc. 2000, 122, 9336-9337.
    [28] List, B.; Pojarliev, P.; Biller, W. T.; Martin, H. J. The proline-catalyzed direct asymmetric three-component mannich reaction: scope, optimization, and application to the highly enantioselective synthesis of 1, 2-amino alcohols. J. Am. Chem. Soc. 2002, 124, 827-833.
    [29] Cordova, A.; Notz, W.; Zhong, G.; Betancort, J. M.; Barbas, C. F., Ⅲ. A highly enantioselective amino acid-catalyzed route to functionalized α-amino acids. J. Am. Chem. Soc. 2002, 124, 1842-1843.
    [30] Cordova, A.; Watanabe, S.; Tanaka, F.; Notz. W.; Barbas, C. F., Ⅲ. A highly enantioseleetive route to either enantiomer of both α- and β-amino acid derivatives. J. Am. Chem. Soc. 2002, 124, 1866-1867.
    [31] Chowdari, N. S.; Ramachary, D. B.; Barbas, C. F., Ⅲ. Organocatalysis in ionic liquids: highly efficient L-proline-catalyzed direct asymmetric mannich reactions involving ketone and aldehyde nucleophiles. Synlett 2003, 25, 1906-1909.
    [32] Cobb, A. J. A.; Shaw, D. M.; Ley, S. V. 5-Pyrrolidin-2-yltetrazole: A new, catalytic, more soluble alternative to proline in an organocatalytic asymmetric mannich-type reaction. Synlett 2004, 3, 558-560.
    [33] Cobb, A. J. A.; Shaw, D. M.; Longbottom, D. A.; Gold, J. B.; Ley, S. V. Organocatalysis with proline derivatives: improved cataysts for the asymmetric Mannich, nitro-Michael and Aldol reactions, Org. Biomol. Chem. 2005, 3, 84-96.
    [34] Mitsumori, S.; Zhang, H.; Ha-Yeon Cheong, P.; Houk, K. N.; Tanaka, F.; Barbas, C. F., Ⅲ. Direct asymmetric anti-mannich-type reactions catalyzed by a designed amino acid. J. Am. Chem. Soc. 2006, 128, 1040-1041.
    [35] Ibrahem, I.; Córdova, A. Direct catalytic asymmetric anti-selective mannich-type reactions. Chem. Commun. 2006, 1760-1762.
    [36] Zhang, H.; Mifsud, M.; Tanaka, F.; Barbas, C. F., Ⅲ. 3-Pyrrolidinecarboxylic acid for direct catalytic asymmetric anti-mannich-type reactions of unmodified ketones. J. Am. Chem. Soc. 2006, 128, 9630-9631.
    [37] Yamaguchi, M.; Yokota, N.; Minami, J. The Michael addition of dimethyl malonate to α, β-unsaturated aldehydes by praline lithium salt. J. Chem. Soc., Chem. Commun. 1991, 1088-1089.
    [38] Yamaguchi, M.; Igarashi, Y.; Reddy, R. S.; Shiraishi, T.; Hirama, M. Asymmetric Michael addition of nitroalkanes to prochiral acceptors catalyzed by proline rubidium salts. Tetrahedron 1997, 53, 11223-11236.
    [39] Hanessian, S.; Pham, V. Catalytic asymmetric conjugate addition of nitroalkanes to cycloalkenones. Org. Lett. 2000, 2, 2975-2978.
    [40] List, B.; Pojarliev, P.; Martin, H. J. Efficient proline-catalyzed Michael additions of unmodified ketones to nitro olefins. Org. Lett. 2001, 3, 2423-2425.
    [41] List, B. Praline-catalyzed asymmetric reactions. Tetrahedron 2002, 58, 5573-5590.
    [42] Wang, W.; Wang, J.; Li, H. Direct, highly enantioselective pyrrolidine sulfonamide catalyzed Michael addition of aldehydes to nitrostyrenes. Angew. Chem. Int. Ed. 2005, 44, 1369-1371.
    [43] Huang, H.; Jacobsen, E. N. Highly enantioselective direct conjugate a ddition of ketones to nitroalkenes promoted by a chiral primary amine-thiourea catalyst. J. Am. Chem. Soc. 2006, 128, 7170-7171.
    [44] Cao, Y.-J.; Lu, H.-H.; Lai, Y.-Y.; Lu, L.-Q.; Xiao, W.-J. An effective bifunctional thiourea catalyst for highly enantio-and diastercoselective Michael additon of cyclohexanone to nitroolefins. Synthesis 2006, 22, 3795-3800.
    [45] Thayumanavan, R.; Dhevalapally, B.; Sakthivel, K.; Tanaka, F.; Barbas, C. F., Ⅲ. Aminecatalyzed direct Diels-Alder reactions of α, β-unsaturated ketones with nitro olefins. Tetrahedron Lett. 2002, 43, 3817-3820.
    [46] Ramachary, D. B.; Chowdari, N. S.; Barbas, C. E, Ⅲ. Amine-catalyzed direct self Diels-Alder reactions of α, β-unsaturated ketone, in water: synthesis of pro-chiral cyclohexanones. Tetrahedron Lett. 2002, 43, 6743-6746.
    [47] Juhl, K.; Jφrgensen, K. A. The first organocatalytic enantioselective inverse-electron-demand hetero-Diels-Alder reaction. Angew. Chem. Int. Ed. 2003, 42, 1498-1501.
    [48] Barrett, A. G. M.; Cook, A. S.; Kamimura, A. Asymmetric Baylis-Hillman reactions: catalysis using a chiral pyrrolizidine base. Chem. Commun. 1998, 2533-2534.
    [49] Shi, M.; Jiang, J.-K.; Li, C.-Q. Lewis base and L-proline co-catalyzed Baylis-Hillman reaction of arylaldehydes with methyl vinyl ketone. Tetrahedron Lett. 2002, 43, 127-130.
    [50] List, B. Direct catalytic asymmetric α-amination of aldehydes. J. Am. Chem. Soc. 2002, 124, 5656-5657.
    [51] Kumaragurubaran, N.; Juhl, K.; Zhuang, W.; Bogevig, A.; Jφrgensen, K. A. Direct L-prolinecatalyzed asymmetric α-amination of ketones. J. Am. Chem. Soc. 2002, 124, 6254-6255.
    [52] Bogevig, A.; Juhl, K.; Kumaragurubaran, N.; Zhuang, W.; Jφrgensen, K. A. Direct organocatalytic asymmetric α-amination of aldehydes-a simple approach to optically active α-amino aldehydes, α-amino alcohols, and α-amino acids. Angew. Chem. Int. Ed. 2002, 41, 1790-1793.
    [53] Ahrendt, K. A.; Borths, C. J.; MacMillan, D. W. C. New strategies for organic catalysis: the first highly enantioselective organocatalytic Diels-Alder reaction. J. Am. Chem. Soc. 2000, 122, 4243-4244.
    [54] Northrup, A. B.; MacMillan, D. W. C. The first general enantioselective catalytic Diels-Aider reaction with simple α, β-unsaturated ketones. J. Am. Chem. Soc. 2002, 124, 2458-2460.
    [55] Wdson, R. M.; Jen, W. S.; MacMillan, D. W. C. Enantioselective organoeatalytic intramolecular Diels-Alder reactions. The asymmetric synthesis of solanapyrone D. J. Am. Chem. Soc. 2005, 127, 11616-11617.
    [56] Paras, N. A.; MacMillan, D. W. C. New stratcgies in organic catalysis: the first cnantioselective organocatalytic Friedel-Crafls alkylation. J. Am. Chem. Soc. 2001, 123, 4370-4371.
    [57] Austin, J. F.; MacMillan, D. W. C. Enantioselective organocatalytic indole alkylations. Design of a new and highly effective chiral amine for iminium catalysis. J. Am. Chem. Soc. 2002, 124, 1172-1173.
    [58] Paras, N. A.; MacMillan, D. W. C. The enantioselective organocatalytic 1, 4-addition of electron-rich benzenes to α, β-unsaturated aldehydes. J. Am. Chem. Soc. 2002, 124, 7894-7895.
    [59] Brown, S. P.; Goodwirg N. C.; MacMillan, D. W. C. The first enantioselective organocatalytic Mukaiyama-Michael reaction: a direct method for the synthesis of enantioenriched γ- butenolide architecture. J. Am. Chem. Soc. 2003, 125, 1192-1194.
    [60] Wang, W.; Li, H.; Wang, J. Enantioselective organocatalytic Mukaiyama-Michael addition of silyl enol ethers to α, β-unsaturated aldehydes. Org. Lett. 2005, 7, 1637-1639.
    [61] List, B.; Fonseca, M. T. H. Catalytic asymmetric intramolecular Michael reaction of aldehydes. Angew. Chem. Int. Ed. 2004, 43, 3958-3960.
    [62] Mangion, I. K.; Northrup, A. B.; MacMillan, D. W. C. The importance of iminium geometry control in enamine catalysis: identification of a new catalyst architecture for aldehyde-aldehyde couplings. Angew. Chem. Int. Ed. 2004, 43, 6722-6724.
    [63] Brochu, M. P.; Brown, S. P.; MacMillan, D. W. C. Direct and enantioselective organocatalytic α-chlorination of aldehydes. J. Am. Chem. Soc. 2004, 126, 4108-4109.
    [64] Beeson, T. D.; MacMillan, D. W. C. Enantioselective organocatalytic α-fluorination of aldehydes. J. Am. Chem. Soc. 2005, 127, 8826-8828.
    [65] Ouellet, S. G.; Tuttle, J. B.; MacMillan, D. W. C. Enantioselective organocatalytic hydride reduction. J. Am. Chem. Soc. 2005, 127, 32-33.
    [66] Tuttle, J. B.; Ouellet, S. G.; MacMillan, D. W. C. Organocatalytic transfer hydrogenation of cyclic enones. J. Am Chem. Soc. 2006, 128, 12662-12663.
    [67] Dalko, P, I.; Moisan, L. Enantioselective organocatalysis. Angew. Chem. Int. Ed. 2001, 40, 3726-3748.
    [68] Dalko, P, I.; Moisan, L. In the golden age of organocatalysis. Angew. Chem. Int. Ed. 2004, 43, 5138-5175.
    [69] Methot, J. L.; Roush, W. R. Nucleophilic phosphine organocatalysis. Adv. Synth. Catal. 2004, 346, 1035-1050.
    [70] Seayad, J.; List, B. Asymmetric organocatalysis. Org. Biomol. Chem. 2005, 3, 719-724.
    [1] 方唯硕主译,立体选择性生物催化.北京:化学工业出版社,第一版,2004,pp 215-235.
    [2] Còrdova, A.; Zou, W.; dziedzic, P.; Ibrahem, I.; Reyes, E.; Xu, Y.-M. Direct asymmetric intermolccular Aldol reactions catalyzed by amino acids and small peptides. Chem. Eur. J. 2006, 12, 5383-5397.
    [3] Tian, S.-K.; Chert, Y.-G.; Hang, J.-F.; Tang, L.; Mcdaid, P.; Deng, L. Asymmetric organic catalysis with modified cinchona alkaloids. Ace. Chem. Res. 2004, 37, 621-631.
    [4] Corey, E. J.; Shibata, T.; Lee, T. W. Asymmetric Diels-Alder reactions catalyzed by a triflic acid activated chiral oxazaborolidine. J. Am. Chem. Soc. 2002, 124, 3808-3809.
    [5] Austin, J. F.; Kim, S.-G.; Sinz, C. J.; Xiao, W.-J.; MacMillan, D. W. C. Enantioselective organocatalytic construction of pyrroloindolines by a cascade addition-cyclization strategy: Synthesis of (-)-flustramine B. Prec. Natl. Acad. Sci. U.S.4. 2004, 101, 5482-5487.
    [6] Tian, S.-K.; Hong, R.; Deng, L. Catalytic asymmetric cyanosilylation of ketones with chiral lewis base. J. Am. Chem. Soc. 2003,125, 9900-9901.
    [7] (a) Hoashi, Y.; Okino, T.; Takemoto, Y. Enantioselective Michael addition to α, β-unsaturated imides catalyzed by a bifunctional organocatalyst.Angew. Chem. Int. Ed. 2005, 44, 4032-4035.
    (b) Inokuma, T.; Hoashi, Y.; Takemoto, Y. Thiourea-catalyzed asymmetric Michael addition of activated methylene compounds to α,β-unsaturated imides: dual activation of imide by intra- and intermolecular hydrogen bonding. J. Am. Chem. Soc. 2006, 128, 9413-9419.
    [8] Fuerst, D. E.; Jacobsen, E. N. Thiourea-catalyzed enantioselective cyanosilylation of ketones. J. Am. Chem. Soc. 2005, 127, 8964-8965.
    [9] Akiyama, T.; Itoh, J.; Fuchibe, K. Recent progress in chiral brensted acid catalysis. Adv. Synth. Catal. 2006, 348, 999-1010.
    [10] Kano, T.; Takai, J.; Tokuda, O.; Maruoka, K. Design of an axially chiral amino acid with a binaphthyl backbone as an organocatalyst for a direct asymmetric Aldol reaction. Angew. Chem. Int. Ed. 2005, 44, 3055-3057.
    [11] Scayad, J.; List, B. Asymmetric organocatalysis. Org. Biomol. Chem. 2005, 3, 719-724.
    [12] Pihko, P. M. Activation of carbonyl compounds by double hydrogen bonding: an emerging tool in asymmetric catalysis. Angew. Chem. Int. Ed. 2004, 43, 2062-2064.
    [13] Rajaram, S.; Sigman, M.S. Design of hydrogen bond catalysts based on a modular oxazoline template: Application to an enantioselective hetero Diels-Alder reaction. Org. Lett. 2005, 7, 5473-5475.
    [14] Tang, Z.; Yang, Z.-H.; Chen, X.-H.; Cun, L.-F.; Mi, A.-Q.; Jiang, Y.-Z.; Gong, L.-Z. A highly efficient organocatalyst for direct Aldol reactions of ketones with aldedydes. J. Am. Chem. Soc. 2005, 127, 9285-9289.
    [15] Chen, J.-R.; Lu, H.-H.; Li, X.-Y.; Cheng, L.; Wan, J.; Xiao, W.-J. Readily tunable and bifunctional L-prolinamide derivatives: Design and application in the direct enantioselective Aldol reactions. Org. Lett. 2005, 7, 4543-4545.
    [16] Ahrendt, K. A.; Borths, C. J.; MacMillan, D. W. C. New strategies for organic catalysis: The first highly enantiosclective organocatalytic Diels-Alder reaction. J. Am. Chem. Soc. 2000, 122, 4243-4244.
    [17] MacMillan, D. W. C.; Ahrendt, K. A. Chiral imidacolidinone-based catalyst composition and reaction system. US Pantent 13475, 2002, 1-20.
    [1] Machajewski, T. D.; Wong, C.-H. The catalytic asymmetric Aldol reaction. Angew. Chem. Int. Ed. 2000, 39, 1352-1375.
    [2] Nelson, S. G. Catalyzed enantioselective Aldol additions of latent enolate equivalents. Tetrahedron: Asymmetry 1998, 9, 357-389.
    [3] Bach. T. Catalytic enantioselective C-C coupling -allyl transfer and Mukaiyama Aldol reaction. Angew. Chem. Int. Ed. Engl. 1994, 33, 417-419.
    [4] A. Kleemann. J. Engels. B. Kutscher. D. Reichert. Pharmaceutical substances: Syntheses. Patents. Applications. 4th edition. Thieme. Stuttgart. 2001.
    [5] Groger, H.; Vogl, M.; Shibasaki, M. New catalytic concepts for the asymmetric Aldol reaction. Chem. Eur. J. 1998, 4, 1137-1141.
    [6] Mahrwald, R. Diastereoselection in lewis-acid-mediated Aldol additions. Chem. Rev. 1999, 99, 1095-1120.
    [7] Kobayashi, S.; Fujishita, T.; Mukaiyama, T. The efficient catalytic asymmetric Aldol-type reaction. Chem. Lett. 1990, 1455-1458.
    [8] Yamada, Y. M. A.; Yoshikawa, N.; Sasai, H.; Shibasaki, M. Direct catalytic asymmetric Aldol reactions of aldehydes with unmodified kctones. Angew. Chem. Int. Ed. Engl. 1997, 36, 1871-1873.
    [9] Evans, D. A.; Kozlowski, M. C.; Burgey, C. S.; MacMillan, D. W. C. C_2-symmetric copper(Ⅱ) complexes as chiral lewis acids. Catalytic enantioselective Aldol additions of enolsilanes to pyruvate esters. J. Am. Chem. Soc. 1997, 119, 7893-7894.
    [10] Yoshikawa, N.; Yamada, Y. M. A.; Das, J.; Sasai, H.; Shibasaki, M. Direct catalytic asymmetric Aldol reaction. J. Am. Chem. Soc. 1997, 121, 4168-4178.
    [11] List, B.; Lemer, R. A.; Barbas, C. F., Ⅲ. Proline-catalyzed direct asymmetric Aldol reactions. J. Am. Chem. Soc. 2000, 122, 2395-2396.
    [12] List, B. Proline-catalyzed asymmetric reactions. Tetrahedron 2002, 58, 5573-5590.
    [13] Northrup, A. B.; MacMillan, D. W. C. Two-step synthesis of carbohydrates by selective Aldol reactions. Science 2004, 305, 1752-1755.
    [14] Brown, S. P.; Brochu, M. P.; Sinz, C. J.; MacMillan, D. W. C. The direct and enantioselective organocatalytic α-oxidation of aldehydes. J. Am. Chem. Soc. 2003, 125, 10808-10809.
    [15] Chowdari, N. S.; Ramachary, D.B.; Córdova, A.; Barbas, C. F., Ⅲ. Proline-catalyzed asymmetric assembly reactions: enzyme-like assembly of carbohydrates and polyketides from three aldehydesubstrates. Tetrahedron Lett. 2002, 43, 9591-9595.
    [16] Sun, B.; Peng, L.-Z.; Chen, X.-S.; Li, Y.-L.; Li, Y. A short and stereoselective synthesis of the (-)-(5R, 6S)-6-acetoxy-hexadecane-5-olide. Chinese Chemical Letters. 2004, 15, 1177-1178.
    [17] (a) 魏晓芳.光学活性脯氨酸催化的不对称有机合成反应.有机化学,2005,25,1619-1625.
    (b) 姜丽娟,张兆国.有机小分子催化的不对称羟醛缩合反应.有机化学,2006,26,618-626.
    [18] Cobb, A. J.; Shaw, D. M.; Longbottom, D. A.; Gold, J. B.; Ley, S. V. Organocatalysis with praline derivatives: improved cataysts for the asymmetric Mannich, nitro-Michael and Aldol reactions. Org. Biomol. Chem. 2005, 3, 84-96.
    [19] Pihko, P. M.; Laurikainen, K, M.; Usano, A.; Nyberg, A, I.; Kaavi, J. A. Effect of additives on the proline-catalyzed ketone-aldehyde Aldol reactions. Tetrahedron 2006, 62, 317-328.
    [20] Tang, Z.; Yang, Z.-H.; Chen, X.-H.; Cun, L.-F.; Mi, A.-Q.; Jiang, Y.-Z.; Gong, L.-Z. A highly efficient organocatalyst for direct Aldol reactions of ketones with aldedydes. J. Am. Chem. Soc. 2005, 127, 9285-9289.
    [21] Chen, J.-R.; Lu, H.-H.; Li, X.-Y.; Cheng, L.; Wan, J.; Xiao, W.-J. Readily tunable and bifunctional L-prolinamide derivatives: Design and application in the direct enantioselective Aldol reactions. Org. Lett. 2005, 7, 4543-4545.
    [22] Wassetscheid, P.; Keim, W. Ionic liquids-new "solution" for transition metal catalysis. Angew. Chem. Int. Ed. 2000, 39, 3772-3789.
    [23] Sheldon, R. Catalytic reactions in ionic liquids. Chem. Commun. 2001, 2399-2407.
    [24] 杜大明,陈晓,花文廷.离子液体介质中有机合成及不对称催化反应研究新进展.有机化学,2003,23,331-343.
    [25] 郭海明,牛红英,蒋耀忠.离子液体在不对称催化反应中的应用进展.合成化学,2005,13,6-15.
    [26] Nyberg, A. I.; Usano, A.; Pihko, P. M. Proline-catalyzed ketone-aldehyde Aldol reactions are accelerated by water. Synlett 2004, 1891-1896.
    [27] Font, D.; Jimeno, C.; Pericas, M. A. Polystyrene-supported hydroxyproline: An insoluble, recyclable organocatalyst for the asymmetric Aldol reaction in water. Org. Lett. 2006, 8, 4653-4655.
    [28] List, B.; Hoang, L.; Martin, H. J. New mechanistic studies on the proline-catalyzed Aldol reaction. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 5839-5842.
    [1] 李远哲.面对21世纪的挑战.化学通报,1998,7,2-6.
    [2] 江桂斌.环境化学的回顾与展望.化学通报,1999,11,14-15.
    [3] Anastas P T. Green chemistry, theory and practice. London: Oxford University Press, 1998.
    [4] (a) 吴毓林,新世纪有机化学与可持续发展的一些思考.大学化学,2003,18,13-25.
    (b) 胡常伟,李贤均编著.绿色化学原理和应用.中国石化出版社,2002,pp 10-34.
    [5] Sinou, D. Asymmetric organometallic-catalyzed reactions in aqueous media. Adv. Synth. Catal. 2002, 344, 221-237
    [6] Peng Y.-Y.; Ding, Q.-P.; Li, Z.-C.; Wang, P. G.; Cheng, J.-P. Proline catalyzed Aldol reactions in aqueous micelles: An environmentally friendly reaction system. Tetrahedron Lett. 2003, 44, 3871-3875.
    [7] 史达清,水介质中有机反应的最新研究进展.徐州师范大学学报(自然科学版).2005,23,1-9.
    [8] Lindstrom, U. M. Stereoselective organic reactions in water. Chem. Rev. 2002, 102, 2751-2772.
    [9] Kobayashi, S.; Manabe, K. Development of novel lewis acid catalysts for selective organic reactions in aqueous media. Acc. Chem. Res. 2002, 35, 209-217.
    [10] Mase, N.; Nakai, Y.; Ohara, N.; Yoda, H.; Takabe, K.; Tanaka, F.; Barbas, C. F., Ⅲ. Organocatalytic direct asymmetric Aldol reactions in water. J. Am. Chem. Soc. 2006, 128, 734-735
    [11] Li, C.-J.; Chen, L. Organic chemistry in water. Chem. Soc. Rev. 2006, 35, 68-82.
    [12] Kohayashi, S.; Nagayama, S.; Busujima, T. Catalytic asymmetric Mukaiyama Aldol reactions in aqueous media. Tetrahedron 1999, 55, 8739-8746.
    [13] Tian, H.-Y.; Li, H.-J.; Chen, Y.-J.; Wang D.; Li, C.-J. Development of highly effective encapsulating suffactants for Mukaiyama Aldol reactions in water. Ind. Eng. Chem. Res. 2002, 41, 4523-4527.
    [14] Sasaid, M.; Furukawa, M.; Minami, K.; Adschiri, T.; Arai, K. Kinetics and mechanism of cellobiose hydrolysis and retro-Aldol condensation in subcritical and supercdtical water. Ind. Eng. Chem. Res. 2002, 41, 6642-6649.
    [15] Nyberg, A. I.; Usano, A.; Pihko, P. M. Proline-catalyzed ketone-aldehyde Aldol reactions are accelerated by water. Synlett 2004, 11, 1891-1896.
    [16] Zhang, X. -Y.; Houk, K. N. Acid/base catalysis by pure water: the Aldol reaction. J. Org. Chem. 2005, 70, 9712-9716.
    [17] Luo, S.-Z.; Mi, X.-L.; Liu, S.; Xu, H.; Cheng, J.-P. Surfactant-type asymmetric organocatalyst: Organocatalytic asymmetric Michael addition to nitrostyrenes in water. Chem. Commun. 2006, 3687-3689.
    [18] Mase, N.; Watanabe, K.; Yoda, H.; Takabe, K.; Tanaka, F.; Barbas, C. F., Ⅲ. Organocatalytic direct Michael reaction of ketones and aldehydes with β-nitrostyrene in brine. J. Am. Chem. Soc. 2006, 128, 4966-4967.
    [19] Hayashi, Y.; Sumiya, T.; Takahashi, J.; Gotoh, H.; Urushima, T.; Shoji, M. Highly diastereo- and enantioselective direct Aldol reactions in water. Angew. Chem. Int. Ed. 2006, 45, 958-961.
    [20] Sakthivel, K.; Notz, W.; Bui, T.; Barbas, C. F., Ⅲ. Amino acid catalyzed direct asymmetric Aldol reactions: A bioorganic approach to catalytic asymmetric carbon-carbon bond- forming reactions. J. Am. Chem. Soc. 2001, 123, 5260-5267.
    [21] List, B. Asymmetric Aminocatalysis. Synlett 2001,11, 1675-1686.
    [22] Bφgevig, A.; Kumaragurubaran, N.; Jφrgensen, K. A. Direct catalytic asymmetric Aldol reactions of aldehydes. Chem. Commun. 2002, 620-621.
    [23] Northrup, A. B.; Mangion, I. K.; Hettche, F.; MacMillan, D. W. C. Enantioselective organoeatalytie direct Aldol reactions of α-oxyaldehydes: Step one in a two-step synthesis of carbohydrates. Angew. Chem. Int. Ed. 2004, 43, 2152-2154.
    [24] Notz, W. G.; Tanaka, F. J.; Barbas, C. F., Ⅲ. Enamine-based organocatalysis with proline and diamines: The development of direct catalytic ketones and then direct bond-forming reactions with an asymmetric Aldol, Mannich, Michael, and Diels-Alder reactions. Acc. Chem. Res. 2004, 37, 580-591.
    [25] Wu, Y.; Zhang, Y.; Yu, M.; Zhao, G.; Wang, S. Highly efficient and reusable dendritic catalysts derived from N-prolylsulfonamide for the asymmetric direct Aldol reaction in water. Org. Lett. 2006, 8, 4417-4420.
    [26] Wang, G.-W.; Zhang, Z.; Dong Y.-W. Environmentally friendly and efficient process for the preparation of β-hydroxyl ketones. Organic Process Research & Development. 2004, 8, 18- 21.
    [1] (a) Patel, D. V.; Katherine, R. G.; Ryono, D. E.; Preparation of peptidic α-hydroxy phosphonates a new class of transition state analog renin inhibitors. Tetrahedron Lett. 1990, 31, 5587-5590.
    (b) Patel, D. V.; Katherine, R. G.; Ryono, D. E.; Pcptidic α-hydroxy phosphinyls C-terminal modification methodology. Tetrahedron Lett. 1990, 31, 5591-5594.
    [2] Stowasser, B.; Budt, K. H.; Li, J.-Q.; Peyman, A.; Ruppert, D. New hybrid transition state analog inhibitors of HIV protese with peripheric C_2-symmetry. Tetrahedron Lett. 1992, 33, 6625-6628.
    [3] Yokomatsu, T.; Yoshida, Y.; Shibuya, S. Stcreosclective synthesis of β-oxygenated α-hydroxyphosphonates by lewis acid-mediated stereoselective hydrophosphonylation of α-benzyloxy aldehydes. An application to the synthesis of phosphonic acid analogs of oxyamino acids. J. Org. Chem. 1994, 59, 7930-7933.
    [4] Leitzke, A.; Flyunt, R.; Theruvathu, J. A.; Sonntag, C. V. Ozonolysis of vinyl compounds, CH_2=CH-CX, in aqueous solution-the chemistries of the ensuing formyl compounds and hydroperoxides. Org. Biomol. Chem. 2003,1, 1012-1019.
    [5] Schlemminger, I.; Saida, Y.; Groger, H.; Maison, W.; Durot, N.; Sasai, H.; Shibasaki, M.; Martens, J. Concept of improved rigidity: How to make enantioselective hydrophosphonylation of cyclic imines catalyzed by chiral heterobimetallic lanthanoid complexes almost perfect. J. Org. Chem. 2000, 65, 4818-4825.
    [6] Akiyama, T.; Morita, H.; Itoh, J.; Fuchibe, K. Chiral bφrnsted acid catalyzed enantioselective hydrophosphonylation of imines: Asymmetric synthesis of α-amino phosphonates. Org. Lett. 2005, 7, 2583-2585.
    [7] Groger, H.; Hammer, B. Catalytic concepts for the enantioseleetive synthesis of α-amino and α-hydroxy phosphonates. Chem. Eur. J. 2000, 6, 943-948.
    [8] Hirschmann, Ralph; Smith, Amos B.; Taylor, Carol M.; Benkovic, Patdcia A.;Taylor, Scott D.; Yager, Kraig M.; Sprengeler, Paul A.; Benkovic, Stephen J. Peptide synthesis catalyzed by an antibody containing a binding site for variable amino acids. Science 1994, 265, 234-237.
    [9] Patel, D. V.; Katherine, R. G.; Ryono, D. E.; Free, C. A.; Rogers, W. L.; Smith, S. A.; DeForrest, J. M.; Oehl, R. S.; Petrillo, E. W.; Jr. α-Hydroxy phosphinyl-based inhibitors of human renin. J. Med. Chem. 1995, 38, 4557-4569.
    [10] Rath, N. P.; Spilling, C. D. The enantioselective addition of dialkylphosphites to aldehydes: Catalysis by a lanthanum binaphthoxide complex. Tetrahedron Lett. 1994, 35, 227-230.
    [11] Pàmies, O.; Backvall, J.-E. An efficient route to chiral α-and β-hydroxy- alkanephosphonates. J. Org. Chem. 2003, 68, 4815-4818.
    [12] Kolodiazhnyi, O. I. Asymmetric synthesis of hydroxyphosphonates. Tetrahedron: Asymmetry 2005, 16, 3295-3340.
    [13] Corey, E. J.; HelM, C. J. Reduction of carbonyl compounds with chirai oxazaborolidine catalysts: A new paradigm for enantioselective catalysis and a powerful new synthetic method. Angew. Chem. Int. Ed. 1998, 37, 1986-2012.
    [14] (a) Meier, C.; Laux, W. H. G. Asymmetric synthesis of chiral, nonracemic dialkyl-α-, β-, and γ-hydroxyalkylpbosphonates via a catalyzed enantioselective catecholborane reduction. Tetrahedron: Asymmetry 1995, 6, 1089-1092.
    (b) Meier, C.; Laux, W. H. G.; Bats, J. W. Asymmetric synthesis of chiral, nonracemic dialkyl-α-hydroxyalkylphosphonates via a (-)-chlorodiiso-pinocampheylborane (Ipc_2B-Cl) reduction. Tetrahedron: Asymmetry 1996, 7, 89-94.
    [15] Samanta, S.; Zhao, C.-G. Organocatalytic enantioselective synthesis of α-hydroxy phosphonates. J. Am. Chem. Soc. 2006, 128, 7442-7443.
    [16] Dodda, R.; Zhao, C.-G. Organocatalytic highly enantioselective synthesis of secondary α-hydroxyphosphonates. Org. Lett. 2006, 8, 4911-4914.
    [17] Sasai, H.; Suzuld, T.; Arai, S.; Arai, T.; Shibasald, M. Basic character of rare earth metal alkoxides. Utilization in catalytic carbon-carbon bond-forming reactions and catalytic asymmetric nitro-Aldol reactions. J. Am. Chem. Soc. 1992, 114, 4418-4420.
    [18] Yokomatsu, T.; Yamagishi, T.; Shibuya, S. Enantioselectiveity for hydrophosphonylation of aromatic aldehydes catalyzed by lanthanum binaphthol complex. Remarkable electronic effect of aromatic substituents. Tetrahedron: Asymmetry 1993, 4, 1783-1784.
    [19] Sasai, H.; Bougauchi, M.; Arai, T.; Shibasaki, M. Enantioselective synthesis of α-hydroxy phosphonates using the LaLi_3tris(binaphthoxide) catalyst (LLB), prepared by an improved method. Tetrahedron Lett. 1997, 38, 2717-2720.
    [20] Pawar, V. D.; Bettigeri,S.; Weng, S.-S.; Kao, L-Q.; Chen, C.-T. Highly enantioselective aerobic oxidation of α-hydroxyphosphonates catalyzed by chiral vanadyl(V) methoxides bearing N-salicylidene-α-aminocarboxylates. J. Am. Chem. Soc. 2006, 128, 6308-6309.
    [21] Arai, T.; Bougauchi, M.; Sasai, H.; Shibasald, M. Catalytic asymmetric synthesis of α-hydroxy phosphonates using the Al-Li-BINOL complex. J. Org. Chem. 1996, 61, 2926- 2927.
    [22] 钱长涛,黄太生.手性稀土配合物催化的亚膦酸酯对醛的不对称加成(Pudovik)反应研究.分子催化,1997,11,455-457.
    [23] Ward, C. V.; Jiang, M.; Kee, T. P. New chiral catalysts for phospho-transfer. Tetrahedron Lett. 2000, 41, 6181-6184.
    [24] B. Saito, T. Katsuki. Synthesis of an optically active C_1-symmetric Al(salalen) complex and its application to the catalytic hydrophosphonylation of aldehydes. Angew. Chem. Int. Ed. 2005, 44, 4600-4602.
    [25] Wynberg, H.; Smaardijk, A. A. Asymmetric catalysis in carbon-phosphorus bond formation. Tetrahedron Lett. 1983, 24, 5899-5900.
    [26] Tian, S.-K.; Chert, Y.-G.; Hang, J.-F.; Tang, L.; Mcdaid, P.; Deng, L. Asymmetric organic catalysis with modified cinchona alkaloids. Acc. Chem. Res. 2004, 37, 621- 631.
    [27] Chen, Y.-G.; Mcdaid, P.; Deng, L. Asymmetric alcoholysis of cyclic anhydrides. Chem. Rev. 2003, 103, 2965-2983.
    [28] Li, H.-M.; Wang, Y.; Tang, L.; Deng, L. Highly enantioselective conjugate addition of malonate and β-ketoester to nitroalkenes: Asymmetric C-C bond formation with new bifunctional organic catalysts based on cinchona alkaloids. J. Am. Chem. Soc. 2004, 126, 9906-9907.
    [29] Walsh, E. N. Conversion of tertiary phosphites to secondary phosphonates. Diphenyl phosphonate~1. J. Am. Chem. Soc. 1959, 81, 3023-3026.
    [30] 李在国.有机中间体制备,第二版,北京:化学工业出版社,2002,224-226.
    [1] Blackwell, H. E.; O' Leary, D. J.; Chatterjee, A. K.; Washenfelder, R, A.; Bussmann, D. A.; Grubbs, R. H. New approaches to olefin cross-metathesis. J. Am. Chem. Soc. 2000, 122, 58-71.
    [2] Tmka, T. M.; Grubbs, R. H. The development of L_2X_2Ru=CHR olefin metathesis catalysts: an organometallie success story. Acc. Chem. Res. 2001, 34, 18-29.
    [3] Connon, S. J.; Blechert, S. Recent developments in olefin cross-metathesis. Angew. Chem. Int. Ed. 2003, 42, 1900-1923.
    [4] Grubbs, R. H. Olefin metathesis. Tetrahedron 2004, 34, 7117-7140.
    [5] Chaudhari, V. D.; Ajish Kurnar, K. S.; Dhavale, D. D. An efficient synthesis of D-erythro- and D-threo-sphingosine from D-Glucose: Olefin eross-metathesis approach. Org. Lett. 2005, 7, 5805-5807.
    [6] Kim, S.-G.; Park, T.-H.; Kim, B. J. Efficient total synthesis of (+)-exo-, (-)-endo-brevicomin and their derivatives via asymmetric organoeatalysis and olefin cross-metathesis. Tetrahedron Lett. 2006, 47, 6369-6372.
    [7] (a) 李蕊琼,傅尧,刘磊,郭庆祥.钌催化烯烃复分解反应的研究进展.有机化学,2004,24,1004-1017.
    (b)郭盈岑,肖文精.烯烃的交叉复分解反应(CM)及其合成应用.有机化学,2005,25,1334-1341.
    [8] (a) BouzBouz, S.; Lemos, E. D.; Cossy, J. Cross-metathesis reaction: direct synthesis of functionalized allylsilanes. Adv. Synth. Catal. 2002, 344, 627-630.
    (b) Cossy, J.; Bargiggia, F.; BouzBouz, S. Tandem cross-metathesis/hydrogenation/eyclization reactions by using compatible catalysts. Org. Lett. 2003, 5, 459-462.
    [9] Bieniek, M.; Bujok, R.; Cabaj, M.; Lugan, N.; Lavigne, G.; Arlt, D.; Grela, K. Advanced fine-tuning of Grubbs/Hoveyda olefin metathesis catalysts: A further step toward an optimum balance between antinomic properties. J. Am. Chem. Soc. 2006,128, 13652-13653.
    [10] Lera, M.; Hayes, C. J. An olefin cross-metathesis approach to vinylphosphonate-linked nucleic acids. Org. Lett. 2001, 3, 2765-2768.
    [11] Funk, T. W.; Efskind, Jon.; Grubbs, R. H. Chemoselective construction of substituted conjugated dienes using an olefin cross-metathesis protocol. Org. Lett. 2005, 7, 187-190.
    [12] Netscher, T. Preparation of trialkyl-substituted olefins by ruthenium catalyzed cross- metathesis. Journal of Organometallic Chemistry. 2006, 691, 5155-5162.
    [13] Demchuk, O. M.; Pietrusiewicz, K. M.; Michrowska, A.; Grela, K. Synthesis of substituted P-stereogenic vinylphosphine oxides by olefin eross-metathesis. Org. Lett. 2003, 5, 3217-3220.
    [14] Malasé, G.; Bonrath, W.; Breuninger, M.; Netscher, T. A new route to vitamin E keyintermediates by olefin cross-metathesis. Helvetica Chimica Acta. 2006, 89, 797-812.
    [15] Choi, T.-L.; Chatterjee, A. K.; Grubbs, R. H. Synthesis of α, β-unsaturated amides by olefin cross-metathesis. Angew. Chem. Int. Ed. 2001, 40, 1277-1279.
    [16] Chatterjee, A. K.; Choi, T.-L.; Sanders, D. P.; Grubbs, R. H. A general model for selectivity in olefin cross metathesis. J. Am. Chem. Soc. 2003,125, 11360-11370.
    [17] Pederson, R. L.; Fellows, I. M.; Ung, T. A.; Ishihara, H.; Hajela, S. P. Applications of olefin cross metathesis to commericial products. Adv. Synth. Catal. 2002, 344, 728-735.
    [18] Agnusdei, M.; Bandini, M.; Melloni, A.; Achille, U.-R. New versatile route to the synthesis of tetrahydro-β- carbolines and tetrahydro-pyrano [3, 4-b] indoles via an intramolecular Michael addition catalyzed by InBr_3. J. Org. Chem. 2003, 68, 7126-7129.
    [19] Nichols, D. E.; Snyder, S. E.; Oberlender, R.; Johnson, M. P.; Huang, X.-M. 2, 3-Dihydrobenzofuran analogs of hallucinogenic phencthylamines. J. Med. Chem. 1991, 34, 276-281.
    [20] Ma, D.; Cai, Q.; Zhang, H. Mild method for ullmann coupling reaction of amines and aryl halides. Org. Lett. 2003, 5, 2453-2455.
    [21] Angeli, M.; Banditti, M.; Garelli, A.; Piccinelli, F.; Tommasi, S.; Achille U.-R. A practical synthetic route to functionalized THBCs and oxygenated analogues via intramolecular Friedel-Crafts reactions. Org. Biomol. Chem. 2006, 4, 3291-3296.
    [22] Paras, N. A.; MacMillan, D. W. C. The enantioselective organocatalytic 1, 4-addition of electron-rich benzenes to α, β-unsaturated aldehydes. J. Am. Chem. Soc. 2002, 124, 7894- 7895.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700