黑曲霉脂肪酶的酶学性质、基因克隆与表达及结构预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在利用sn-1,3位置选择性的脂肪酶催化植物油脂转变为质构脂质的同时,还可以获得绿色新型生物能源——生物柴油。开发此工艺路线,对于植物油脂深加工和提高产品附加值具有重要意义,但目前我国关于sn-1,3位置选择性脂肪酶和质构脂质的研究开发尚处于起步阶段。本实验重点立足于研究开发具有sn-1,3位置选择性的脂肪酶,以期为发展质构脂质奠定酶学基础。本论文的主要内容和结果如下:
     筛选到一株热稳定、耐酸和高比活力脂肪酶产生菌株。以罗丹明B作为指示剂,利用选择性培养基,从油污土壤中筛选到一株胞外脂肪酶高产菌株,经形态学和ITS序列鉴定为黑曲霉,该菌株编号为F044。黑曲霉F044脂肪酶发酵上清液经硫酸铵沉淀、透析、DEAE Sepharose Fast Flow阴离子交换层析和Sephadex G-75凝胶过滤层析得到电泳纯的脂肪酶,纯化倍数为73.71倍,活性回收率为33.99%。对纯化脂肪酶酶学性质的研究表明:该脂肪酶分子量为35~40 kDa,水解橄榄油的最适温度和最适pH分别为45℃和7.0,在60℃以下和pH2.0~9.0之间有很好的稳定性。该脂肪酶的水解活性对Ca2+表现出明显的依赖性,而Mn2+、Fe2+和Zn2+对水解活性则有显著的抑制作用。在最适条件下水解pNPP的Km和Vmax分别为7.37 mmol/l和25.91μmol/min.mg。其N-端的15个氨基酸残基序列为Ser(Glu/His)-Val-Ser-Thr-Ser-Thr- Leu-Asp-Glu-Leu-Gln-Leu-Phe-Ala-Gln。
     首次克隆了黑曲霉脂肪酶基因。根据黑曲霉F044脂肪酶N-端氨基酸残基序列,结合丝状真菌脂肪酶分子活性中心和第一个氧阴离子洞区的保守氨基酸残基序列,运用生物信息学方法,从NCBI核酸数据库中找到一个与黑曲霉脂肪酶基因同源的侯选基因A84689。根据该基因序列,设计引物直接PCR扩增得到黑曲霉脂肪酶全长基因anl。anl全长1044 bp,含3个内含子,分别为54 bp,45 bp和51 bp,编码297个氨基酸(含信号肽27个氨基酸)。在基因水平上,anl与其它脂肪酶基因核苷酸序列没有任何同源性;在蛋白质水平上,anl编码的氨基酸序列与A. flavus, T. lanuginosus, P. allii脂肪酶氨基酸序列分别有40%、50%和40%的同源性。
     首次实现了黑曲霉脂肪酶基因的异源表达。将黑曲霉FO44脂肪酶基因克隆到大肠杆菌表达载体pET-28a上,转化E. coli BL21(De3)。经IPTG诱导后,成熟黑曲霉F044脂肪酶的编码基因在宿主菌中大量表达,表达量为50 mg/g湿细胞,但均以无活性的包含体形式存在。利用Ni-NTA金属亲和色谱柱,一步纯化出N-端携带6×His标签的重组脂肪酶蛋白。通过大量稀释法和DEAE Sepharose Fast Flow柱层析法相结合的复性方法,变性后的纯化重组脂肪酶蛋白在体外实现再折叠复性。复活后的重组脂肪酶比活力为221.49 U/mg。
     将N-端融合有6×His编码序列的成熟黑曲霉F044脂肪酶基因克隆到pPIC9K载体上,转化P. pastoris GS115。经甲醇诱导表达后,黑曲霉F044脂肪酶基因在P. pastoris GS115中实现了功能性表达,发酵上清液脂肪酶酶活为15.50 U/ml。利用Ni-NTA金属亲和色谱柱,一步纯化出N-端携带6×His标签的重组脂肪酶蛋白。SDS-PAGE电泳显示,P. pastoris GS115产生两种分子大小不同的重组脂肪酶蛋白。Sephadex G-75凝胶过滤分离纯化出这两种重组脂肪酶蛋白,均有脂肪酶活性,其中分子量较小的重组脂肪酶蛋白水解橄榄油的比活力为812 U/mg。
     首次尝试利用BioEdit、PSIPRED和SwissModel等软件或服务器对黑曲霉脂肪酶的一级结构、二级结构和三级结构进行了分析。分析结果显示,无论是在一级结构、二级结构还是三级结构上,预测的黑曲霉脂肪酶结构与丝氨酸水解酶结构均相吻合。预测的黑曲霉脂肪酶三级结构与黑曲霉阿魏酸酯酶三级结构在“盖子”结构区存在显著差异。
Biodiesel, a novel alternative energy, can be attained as by-product in the structured lipids synthesis when the transesterification reaction is catalyzed by lipases with sn-1, 3-regionselectivity. It’s important for deeply processing of agriculture products and enhancing value of the oils and fats. However, there are very few reports on the lipases with sn-1, 3-regionselectivity and structured lipids synthesis in China. In this study, a lipase with sn-1, 3-regionselectivity from Aspergillus niger 404 was purified and biochemically characterized, and the lipase gene was cloned and expressed in E. coli and P. pastoris, respectively, for the first time in China. Furthermore, based on the homology of its amino acid sequence with T. lanuginosus lipase, the 3D-model of the A. niger lipase was predicted. The main results were as follows:
     A novel filamentous fungi strain producing lipase with acid-tolerant, thermostable and high-specific activity characters was screened. On the selective media with rhodamine B as the indicator, a high-level lipase-producing strain was isolated from oil-polluted soil samples. The strain was identified and named as A. niger F044 based on the colony morphology characters and the ITS sequence analysis. The lipase from A. niger F044 was purified to homogeneity using ammonium sulfate precipitation, dialysis, DEAE-Sepharose Fast Flow anion exchange chromatography, and Sephadex G-75 gel filtration chromatography. This protocol resulted in a 73.71-fold purification with 33.99 % final yield, and the relative molecular weight of the lipase was determined to be approximately 35-40 kDa using SDS-PAGE. The optimal pH and temperature for lipolytic activity of the lipase were 7.0 and 45℃, respectively. It was stable at temperature below 60℃and retained 98.70 % of its original activity for 30 min, while its activity declined rapidly as soon as the temperature rose over 65℃. The lipase was highly stable in the pH range from 2.0 to 9.0 for 4 h. Ca2+ ions stimulated its lipolytic activity, whereas Mn2+, Fe2+, and Zn2+ ions caused inhibition. The values of Km and Vmax calculated from the Lineweaver–Burk plot using p-nitrophenyl palmitate as hydrolysis substrate were 7.37 mmol/l and 25.91μmol·min-1·mg-1, respectively. The N-terminal amino acid sequence of the lipase was Ser/Glu/His-Val-Ser-Thr-Ser-Thr-Leu-Asp-Glu-Leu-Gln-Leu-Phe-Ala -Gln.
     It is the first time that the lipase gene from A. niger was cloned and reported. Based on the N-terminal amino acid sequence of the lipase from A. niger F044 and the same conserved sequences with filamentous fungi lipases, a potential homologous gene A84689 to the anl (the gene encoding the lipase from A. niger F044) was identified in NCBI nucleotide database by means of bioinformatics. A pair of primers was designed according to the nucleotide sequence of A84689, and the anl was directly cloned by PCR. Nucleotide sequencing revealed that the anl has an ORF of 1, 044 bp, containing three introns of 54 bp, 45 bp and 51 bp. The deduced amino acid sequence corresponds to 297 amino acid residues including a signal sequence of 27 amino acid residues. Nucleotide sequence alignment through BLAST reveal that the anl had no sequence identity to any known lipase genes except for another A. niger lipase gene (GenBank access No. DQ680030). The overall amino-acid sequence identity of the ANL (the mature A. niger lipase) to those of A. flavus lipase, T. lanuginosus lipase, P. allii lipase was 40%, 50% and 40%, respectively.
     It is also for the first time that the lipase gene from A. niger was expressed successfully in heterogeneous host. The cDNA coded for the ANL was cloned into pET28a vector and the recombinant plasmid was transformed into E. coli BL21 (De3). The anl was overexpressed in E. coli BL21 (De3) after induction by IPTG, and the rANL accumulated in the cells in an insoluble form as inclusion bodies. The production level of the anl in the cells was 50 mg rANL/g wet cells. The recombinant ANL with 6-His-tag was purified by Ni-NTA Agrose chromatography. The denatured recombinant ANL by 8mol/l urea was refolded in vitro by dilution and DEAE Sepharose Fast Flow chromatography. The specific activity of the renatured rANL was 221.49 U/mg.
     The cDNA fragment coding the ANL with 6-His encoding sequence at N-terminus was cloned into the pPIC9K vector and the reconstructed expression plasmid was then transformed into P. pastoris GS115. The anl was actively expressed in P. pastoris GS115 after induction by mehanol and the rANL was secreted into the fermentation broth. The measured lipolytic activity of the fermentation broth was 15.50 U/ml. The rANL with 6-His-tag at N-terminus was purified by Ni-NTA Agrose chromatography. Two kinds of rANL, ANLⅠand ANLⅡ, were detected in the fermentation broth by SDS-PAGE analysis. After isolation by Sephadex G-75 gel filtration chromatography, the specific activity of the ANLⅡwas 812 U/mg.
     We have tried for the first time to annotate the primary structure, the secondary structure, and the three-dimensional structure of the A. niger lipase through the homologous lipase with known structure in BioEdit software, PSIPRED server and SwissModel sever, respectively. The predicted structures of the A. niger lipase were consistent with those of the serine hydrolase. The molecular structure models of the A. niger lipase and the A. niger feruloyl esterase were superimposed on each other to study the structure difference, and the result suggested that the main structure difference lied in the lid structure covering the active site.
引文
[1] Jaeger KE, Reetz MT. Microbial lipases form versatile tools for biotechnology[J]. Trends in Biotechnology, 1998, 16: 396-403
    [2] Pandey A, Benjamin S, Soccol CR, et al. The realm of microbial lipases in biotechnology[J]. Biotechnology and Applied Biochemistry, 1999, 29: 119-131
    [3] Davis BG, Boyer V. Biocatalysis and enzymes in organic synthesis[J]. Natural Products Reports, 2001, 18: 618-640
    [4] Hasan F, Shah AA, Hameed A. Industrial applications of microbial lipases[J]. Enzyme and Microbial Technology, 2006, 39: 235-251
    [5] Jaeger KE, Eggert T. Lipases for biotechnology[J]. Current Opinion in Biotechnology, 2002, 13: 390-397
    [6] Schmid RD, Verger R. Lipases: interfacial enzymes with attractive applications. Angewandte Chemie International Edition, 1998, 37: 1608-1633
    [7] Gupta R, Gupta N, Rathi P. Bacterial lipases: an overview of production, purification and biochemical properties[J]. Applied Microbiology and Biotechnology, 2004, 64: 763-781
    [8] Arpigny JL, Jaeger KE. Bacterial lipolytic enzymes: classification and properties. Biochemistry Journal, 1999, 343: 177-183
    [9] Jaeger KE, Dijkstra BW, Reetz MT. Bacterial biocatalysis: molecular biology, three-dimensional structures, and biotechnological applications of lipases[J]. Annual Review of Microbiology, 1999, 53: 315-351
    [10] Rosenau F, Tommassen J, Jaeger KE. Lipase-specific foldases[J]. ChemBioChem, 2004, 5: 152-161
    [11] Svendsen A. Lipase protein engineering[J]. Biochimica et Biophysica Acta, 2000, 1543: 223-238
    [12] Pleiss J, Fischer M, Peiker M, et al. Lipase engineering database: understanding and exploiting sequence–structure–function relationships[J]. Journal of Molecular Catalysis B: Enzymatic, 2000, 10: 491-508
    [13] Bell PJ, Sunna A, Gibbs MD, et al. Prospecting for novel lipase genes using PCR.Microbiology[J], 2002, 148: 2283-2291
    [14] Ollis DL, Cheah E, Cygler M, et al. Theα/βhydrolase fold[J]. Protein Engineering, 1992, 5: 197-211
    [15] Nardini M, Dijkstra BW.α/βHydrolase fold enzymes: the family keeps growing[J]. Current Opinion in Structural Biology, 1999, 9: 732-737
    [16] Pouderoyen GV, Eggert T, Jaeger KE, et al. The crystal structure of Bacillus subtilis lipase: a minimalα/βhydrolase fold enzyme[J]. Journal of Molecular Biology, 2001, 309: 215-226
    [17] Kim KK, Song HK, Shin DH, et al. The crystal structure of a triacylglycerol lipase from Pseudomonas cepacia reveals a highly open conformation in the absence of a bound inhibitor[J]. Structure, 1997, 5: 173-185
    [18] Lang D, Hofmann B, Haalck L, et al. Crystal structure of a bacterial lipase from Chromobacterium viscosum ATCC 6918 refined at 1. 6 ? resolution[J]. Journal of Molecular Biology, 1996, 259: 704-717
    [19] Schmidt-Dannert C. Recombinant microbial lipases for biotechnological applications[J]. Bioorganic and Medicinal Chemistry, 1999, 7: 2123-2130
    [20] Pleiss J, Fischer M, Schmid RD. Anatomy of lipase binding sites: the scissile fatty acid binding site[J]. Chemistry and Physics of Lipids, 1998, 93: 67-80
    [21] Jaeger KE, Ransac S, Dijkstra BW, et al. Bacterial lipases[J]. FEMS Microbiology Reviews, 1994, 15: 29-63
    [22] Tjalsma H, Bolhuis A, Jongbloed JD, et al. Signal peptide-dependent protein transport in Bacillus subtilis: a genome-based survey of the secretome[J]. Microbiology and Molecular Biology Reviews, 2000, 64: 515-547
    [23] Rosenau F, Jaeger KE. Bacterial lipases from Pseudomonas: regulation of gene expression and mechanisms of secretion[J]. Biochimie, 2000, 82: 1023-1032
    [24] Wilhelm S, Tommassen J, Jaeger KE. A novel lipolytic enzyme located in the outer membrane of Pseudomonas aeruginosa[J]. Journal of Bacteriology, 1999, 181: 6977-6986
    [25] Brok R, Van GP, Winterhalter M, et al. The C-terminal domain of the Pseudomonas secretin XcpQ forms oligomeric rings with pore activity[J]. Journal of MolecularBiology, 1999, 294: 1169-1179
    [26] Ahn JH, Lee YP, Rhee JS. Investigation of refolding condition for Pseudomonas fluorescens lipase by response surface methodology[J]. Journal of Bacteriology, 1997, 54: 151-160
    [27] Ihara F, Okamoto I, Akao K, et al. Lipase modulator protein (LimL) of Pseudomonas sp. strain 109[J]. Journal of Bacteriology, 1995, 177: 1254-1258
    [28] Hobson AH, Buckley CM, Aamand JL, et al. Activation of a bacterial lipase by its chaperone[J]. Proceedings of the National Academy of Sciences, 1993, 90: 5682-5686
    [29] El Khattabi M, Van Gelder P, Bitter W, et al. Role of the lipase-specific foldase of Burkholderia glumae as a steric chaperone[J]. Journal of Biological Chemistry, 2000, 275: 26885-26891
    [30] El Khattabi M, Ockhuijsen C, Bitter W, et al. Specificity of the lipase-specific foldases of gram negative bacteria and the role of the membrane anchor[J]. Molecular Genetics and Genomics, 1999, 261: 770-776
    [31] Shibata H, Kato H, Oda J. Random mutagenesis on the Pseudomonas lipase activator protein, lipB: exploring amino acid residues required for its function[J]. Protein Engineering, 1998, 11: 467-472
    [32] Martinez A, Ostrovsky P, Nunn DN. LipC, a second lipase of Pseudomonas aeruginosa, is lipB and Xcp dependent and is transcriptionally regulated by pilus biogenesis components[J]. Molecular Microbiology, 1999, 34: 317-326
    [33] Gerritse G, Ure R, Bizoullier F, et al. The phenotype enhancement method identifies the Xcp outer membrane secretion machinery from Pseudomonas alcaligenes as a bottleneck for lipase production[J]. Journal of Biotechnology, 1998, 64: 23-38
    [34] Kim EK, Jang WH Ko JH, et al. Lipase and its modulator from Pseudomonas sp. strain KFCC 10818: proline-to-glutamine substitution at position 112 induces formation of enzymatically active lipase in the absence of the modulator[J]. Journal of Bacteriology, 2001, 183: 5937-5941
    [35] Tanaka J, Ihara F, Nihira T, et al. A low-Mr lipase activation factor cooperating with lipase modulator protein LimL in Pseudomonas sp. strain 109[J]. Microbiology, 1999, 145: 2875-2880
    [36] Beer HD, McCarthy JE, Bornscheuer UT, et al. Cloning, expression, characterization and role of the leader sequence of a lipase from Rhizopus oryzae[J]. Biochimica et Biophysica Acta, 1998, 1399: 173-180
    [37] Haas MJ, Allen J, Berka TR. Cloning, expression and characterization of a cDNA encoding a lipase from Rhizopus delemar[J]. Gene, 1991, 109: 107-113
    [38] Kugimiya W, Otani Y, Kohno M, et al. Cloning and sequence analysis of cDNA encoding Rhizopus niveus lipase[J]. Bioscience Biotechnology and Biochemistry, 1992, 56: 716-719
    [39] Boel E, Huge-Jensen B, Christensen M, et al. Rhizomucor miehei triglyceride lipase is synthesized as a precursor[J]. Lipids, 1988, 23: 701-706
    [40] Nagao T, Shimada YJ, Sugihara A, et al. Increase in stability of Fusarium heterosporum lipase[J]. Journal of Molecular Catalysis B: Enzymatic, 2002, 17: 125-132
    [41] G?tz F, Verheij HM, Rosenstein R. Staphylococcal lipases: molecular characterisation, secretion, and processing[J]. Chemistry and Physics of Lipids, 1998, 93: 15-25
    [42] Rosenstein R, G?tz F. Staphylococcal lipases: Biochemical and molecular characterization[J]. Biochimie, 2000, 82: 1005-1014
    [43] Takahashi S, Ueda M, Tanaka A. Function of the prosequence for in vivo folding and secretion of active Rhizopus oryzae lipase in Saccharomyces cerevisiae[J]. Applied Microbiology and Biotechnology, 2001, 55: 454-462
    [44] Beer HD, Wohlfahrt G, Schmid RD, et al. The folding and activity of the extracellular lipase of Rhizopus oryzae are modulated by a prosequence[J]. Biochemical Journal, 1996, 319: 351-359
    [45] Weissman JS, Kim PS. The proregion of BPTI facilitates folding[J]. Cell, 1992, 71: 841-851
    [46] Creighton TE, Bagley CJ, Cooper L, et al. On the biosynthesis of bovine pancreatic trypsin inhibitor (BPTI). Structure, processing, folding and disulphide bond formation of the precursor in vitro and in microsomes[J]. Journal of Molecular Biology, 1993, 232: 1176-1196
    [47] Cunningham EL, Jaswal SS, Sohl JL, et al. Kinetic stability as a mechanism forprotease longevity[J]. Proceedings of the National Academy of Sciences, 1999, 96: 11008-11014
    [48] Yabuta Y, Takagi H, Inouye M, et al. Folding pathway mediated by an intramolecular chaperone. propeptide release modulates activation precision of pro-subtilisin[J]. Journal of Biological Chemistry, 2001, 276: 44427-44434
    [49] Ayora S, Lindgren PE, G?tz F. Biochemical properties of a novel metalloprotease from Staphylococcus hyicus subsp. hyicus involved in extracellular lipase processing[J]. Journal of bacteriology, 1994, 176: 3218-3223
    [50] Jaswal SS, Sohl JL, Davis JH, et al. Energetic landscape ofα-lytic protease optimizes longevity through kinetic stability[J]. Nature, 2002, 415: 343-346
    [51] Amada K, Haruki M, Imanaka T, et al. Overproduction in Escherichia coli, purification and characterization of a family I. 3 lipase from Pseudomonas sp. MIS38[J]. Biochimica et Biophysica Acta, 2000, 1478: 201-210
    [52] Baumann U, Wu S, Flaherty KM, et al. Three-dimensional structure of the alkaline protease of Pseudomonas aeruginosa: a two-domain protein with a calcium-binding parallel beta roll motif[J]. EMBO Journal, 1993, 12: 3357-3364
    [53] Amada K, Kwon HJ, Haruki M, et al. Ca2+ induced folding of a family I. 3 lipase with repetitive Ca2+ binding motifs at the C-terminus[J]. FEBS Letters, 2001, 509: 17-21
    [54] Hobson AH, Buckley CM, J?rgensen ST, et al. Interaction of the Pseudomonas cepacia DSM3959 lipase with its chaperone, LimA[J]. Journal of Biochemistry, 1995, 118: 575-581
    [55] Yang JH, Kobayashi K, Iwasaki Y, et al. In vitro analysis of roles of a disulfide bridge and a calcium binding site in activation of Pseudomonas sp. strain KWI-56 lipase[J]. Journal of Bacteriology, 2000, 182: 295-302
    [56] Liebeton K, Zacharias A, Jaeger KE. Disulfide bond in Pseudomonas aeruginosa lipase stabilizes the structure but is not required for interaction with its foldase[J]. Journal of Bacteriology, 2001, 183: 597-603
    [57] El Khattabi M, Van Gelder P, Bitter W. Role of the calcium ion and the disulfide bond in the Burkholderia glumae lipase[J]. Journal of Molecular Catalysis B: Enzymatic, 2003, 22: 329-338
    [58] Kohno M, Enatsu M, Takee R, et al. Thermal stability of Rhizopus niveus lipase expressed in a kex2 mutant yeast[J]. Journal of Biotechnology, 2000, 81: 141-150
    [59] Kim MH, Kim HK, Lee JK, et al. Thermostable lipase of Bacillus Stearothermophilus: high-level production, purification, and calcium-dependent thermostability[J]. Bioscience Biotechnology and Biochemistry, 2000, 64: 280-286
    [60] Choi WC, Kim MH, Ro HS, et al. Zinc in lipase L1 from Geobacillus stearothermophilus L1 and structural implications on thermal stability[J]. FEBS Letters, 2005, 579: 3461-3466
    [61] Danielsen S, Eklund M, Deussen HJ, et al. In vitro selection of enzymatically active lipase variants from phage libraries using a mechanism-based inhibitor[J]. Gene, 2001, 272: 267-274
    [62] Neves Petersen MT, Fojan P, Petersen SB. How do lipases and esterases work: the electrostatic contribution[J]. Journal of Biotechnology, 2001, 85: 115-147
    [63] Tan TW, Zhang M, Wang BW, et al. Screening of high lipase producing Candida sp. and production of lipase by fermentation[J]. Process Biochemistry, 2003, 39: 459-465
    [64]李江华,邬敏辰,陶文沂等.用筛选抗性突变株法选育碱性脂肪酶的高产菌[J].无锡轻工大学学报, 1999, 18: 7-11
    [65] Destain J, Roblain D, Thonart P. Improvement of lipase production from Yarrowia lipolytica[J]. Biotechnology Letters, 1997, 19: 105-107
    [66] Adrio JL, Demain AL. Genetic improvement of processes yielding microbial products[J]. FEMS Microbiology Review, 2006, 30: 187-214
    [67] Nishikubo T, Nakagawa N, Kuramitsu S, et al. Improved heterologous gene expression in Escherichia coli by optimization of the AT-content of codons immediately downstream of the initiation codon[J]. Journal of Biotechnology, 2005, 120: 341-346
    [68] Sreekrishna K, Brankamp RG, Kropp KE, et al. Strategies for optimal synthesis and secretion of heterologous proteins in the methylotrophic yeast Pichia pastoris[J]. Gene, 1997, 190: 55-62
    [69] Shibatani T, Omori K, Akatsuka H, et al. Enzymatic resolution of diltiazemintermediate by Serratia marcescens lipase: molecular mechanism of lipase secretion and its industrial application[J]. Journal of Molecular Catalysis B: Enzymatic, 2000, 10: 141-149
    [70] Gerritse G, Hommes RW, Quax WJ. Development of a lipase fermentation process that uses a recombinant Pseudomonas alcaligenes strain[J]. Applied and Environment Microbiology, 1998, 64: 2644-2651
    [71] Ahn JH, Pan JG, Rhee JS. Homologous expression of the lipase and ABC transporter gene cluster, tliDEFA, enhances lipase secretion in Pseudomonas spp.[J]. Applied and Environment Microbiology, 2001, 67: 5506-5511
    [72] Ueda M, Takahashi S, Washida M, et al. Expression of Rhizopus oryzae lipase gene in Saccharomyces cerevisiae[J]. Journal of Molecular Catalysis B: Enzymatic, 2000, 17: 113-124
    [73] Ma JS, Zhang ZM, Wang BJ, et al. Overexpression and characterization of a lipase from Bacillus subtilis[J]. Protein Expression and Purification, 2006, 45: 22-29
    [74] Cereghino JL, Cregg JM. Heterologous protein expression in the methylotrophic yeast Pichia pastoris[J]. FEMS Microbiology Reviews, 2000, 24: 45-66
    [75] Brocca S, Schmidt-Dannert C, Lotti M, et al. Design, total synthesis, and functional overexpression of the Candida rugosa lip1 gene coding for a major industrial lipase[J]. Protein Science, 1998, 7: 1415-1422
    [76] Chang SW, Lee GC, Shaw JF. Codon optimization of Candida rugosa lip1 Gene for improving expression in Pichia pastoris and biochemical characterization of the purified recombinant LIP1 lipase[J]. Journal of Agricultural and Food Chemistry, 2006, 54: 815-822
    [77] Fusetti F, Brocca S, Porro D, et al. Effect of the leader sequence on the expression of recombinant C. rugosa lipase by S. cerevisiae cells[J]. Biotechnology Letters, 1996, 18: 281-286
    [78] Reetz MT, Jaeger KE. Overexpression, immobilization and biotechnological application of Pseudomonas lipases[J]. Chemistry and Physics of Lipids, 1998, 93: 3-14
    [79] Ahn JO, Choi ES, Lee HW, et al. Enhanced secretion of Bacillus stearothermophilus L1 lipase in Saccharomyces cerevisiae by translational fusion tocellulose-binding domain[J]. Applied Microbiology and Biotechnology, 2004, 64: 833-839
    [80] Eom GT, Song JK, Ahn JH, et al. Enhancement of the efficiency of secretion of heterologous lipase in Escherichia coli by directed evolution of the ABC transporter system[J]. Applied and Environment Microbiology, 2005, 71: 3468-3474
    [81] Okkels JS, Svendsen A, Patkar SA, et al. Protein engineering of microbial lipases of industrial interest, in: Malcata FX (Ed. ), Engineering of/with Lipases, NATO ASI Series, Series E: Applied Sciences, 1995, 317, 203-217
    [82] Jung HC, Ko S, Ju SJ, et al. Bacterial cell surface display of lipase and its randomly mutated library facilitates high-throughput screening of mutants showing higher specific activities[J]. Journal of Molecular Catalysis B: Enzymatic, 2003, 26: 177-184
    [83] Suen WC, Zhang NY, Xiao Li, et al. Improved activity and thermostability of Candida antarctica lipase B by DNA family shuffling[J]. Protein Engineering, Design & Selection, 2004, 17: 133-140
    [84] Acharya P, Rajakumara E, Sankaranarayanan R, et al. Structural basis of selection and thermostability of laboratory evolved Bacillus subtilis lipase[J]. Journal of Molecular Biology, 2004, 341: 1271-1281
    [85] Frenken LG, Egmond MR, Batenburg AM, et al. Pseudomonas glumae lipase: increased proteolytic stability by protein engineering[J]. Protein Engineering, 1993, 6: 637-642
    [86] Sharma R, Chisti Y, Banerjee UC. Production, purification, characterization, and applications of lipases[J]. Biotechnology Advances, 2001, 19: 627-662
    [87] Castilho LR, Polato CMS, Baruque EA, et al. Economic analysis of lipase production by Penicillium restrictum in solid-state and submerged fermentations[J]. Biochemical Engineering Journal, 2000, 4: 239-247
    [88] Yang XH, Wang BW, Cui FN, et al. Production of lipase by repeated batch fermentation with immobilized Rhizopus arrhizus[J]. Process Biochemistry, 2005, 40: 2095-2103
    [89] Montesinos JL, Dalmau E, Casas C. Lipase production in continuous culture of Candida rugosa[J]. Journal of Chemical Technology and Biotechnology, 2003, 78:753-761
    [90] Lotti M, Monticelli S, Luis MJ, et al. Physiological control on the expression and secretion of Candida rugosa lipase[J]. Chemistry and Physics of Lipids, 1998, 93: 143-148
    [91] O’Donnell D, Wang LP, Xu JF, et al. Enhanced heterologous protein production in Aspergillus niger through pH control of extracellular protease activity[J]. Biochemical Engineering Journal, 2001, 8: 187-193
    [92] Martinez DA, Nudel BC. The improvement of lipase secretion and stability by addition of inert compounds into Acinetobacter calcoaceticus cultures[J]. Canadian Journal of Microbiology, 2002, 48: 1056-1061
    [93] Kamiya N, Ogawa T, Nagamune T. Enhancement of apparent thermostability of lipase from Rhizopus sp. by the treatment with a microbial transglutaminase[J]. Biotechnology Letters, 2001, 23: 1629-1632
    [94]张虎,李光浩,陈瑞等.脂肪酶的固定化新技术[J].工业微生物, 2000, 30: 50-52
    [95] Villeneuve P, Muderhwa JM, Graille J, et al. Customizing lipases for biocatalysis: a survey of chemical, physical and molecular biological approaches[J]. Journal of Molecular Catalysis B: Enzymatic, 2000, 9: 113-148
    [96] Chen JP, Lin WS. Sol-gel powders and supported sol-gel polymers for immobilization of lipase in ester synthesis[J]. Enzyme and Microbial Technology, 2003, 32: 801-811
    [97] Shiraga S, Kawakami M, Ishiguro M, et al. Enhanced reactivity of Rhizopus oryzae lipase displayed on yeast cell surfaces in organic solvents: potential as a whole-cell biocatalyst in organic solvents[J]. Applied and Environmental Microbiology, 2005, 71: 4335-4338
    [98]郭诤,张根旺.脂肪酶的结构特征和化学修饰[J].中国油脂, 2003, 28: 5-10
    [99] Siddiqui KS, Ricardo C. Improved thermal stability and activity in the cold-adapted lipase B from Candida antarctica following chemical modification with oxidized polysaccharides[J]. Extremophiles, 2005, 9: 471-476
    [100] Fishman A, Basheer S, Shatzmiller S, et al. Fatty-acid-modified enzymes asenantioselective catalysts in microaqueous organic media[J]. Biotechnology Letters, 2003, 25: 83-87
    [101] Fickers P, Ongena M, Destain J, et al. Production and down-stream processing of an extracellular lipase from the yeast Yarrowia lipolytica[J]. Enzyme and Microbial Technology, 2006, 38: 756-759
    [102] Sharma S, Gupta MN. Alginate as a macroaffinity ligand and an additive for enhanced activity and thermostability of lipases[J]. Biotechnology and Applied Biochemistry, 2001, 33: 161-165
    [103] Noel M, Combes D. Rhizomucor miehei lipase: differential scanning calorimetry and pressure/temperature stability studies in presence of soluble additives[J]. Enzyme and Microbial Technology, 2003, 33: 299-308
    [104]裘爱泳,吴冀华.质构脂质的研究进展[J].无锡轻工大学学报, 2001, 20: 656-660
    [105]别小妹,陆兆新.脂肪酶催化结构酯的合成及其应用概况[J].食品科学, 2003, 24: 221-225
    [106]万银松,江英.酶催化酸解生产结构脂质的研究进展[J].食品科技, 2006, 7: 9-12
    [107]刘雄,阚健全,陈宗道.油脂酶法改性研究进展[J].粮食与油脂, 2002, 1: 30-32
    [108] Xu XB. Production of specific-structured triacylglycerols by lipase-catalyzed reactions: a review[J]. European Journal of Lipid Science and Technology, 2000, 102: 287-303
    [109] Iwasaki Y, Yamane T. Enzymatic synthesis of structured lipids[J]. Journal of Molecular Catalysis B: Enzymatic, 2000, 10: 129-140
    [110] Krawczyk T. Biodiesel—alternative fuel makes inroads but hurdles remain[J]. Information, 1996, 7: 801-829
    [111] Meher LC, Vidya Sagar D, Naik SN. Technical aspects of biodiesel production by transesterification—a review[J]. Renewable and Sustainable Energy Reviews, 2006, 10: 248-268
    [112]谭天伟,王芳,邓立等.生物柴油的生产和应用[J].现代化工, 2002, 2: 4-6
    [113] K?rbitz W. Biodiesel production in Europe and North America: an encouragingprospect[J]. Renewable Energy, 1999, 16: 1078-1083
    [114] Barnwal BK, Sharma MP. Prospects of biodiesel production from vegetable oils in India[J]. Renewable and Sustainable Energy Reviews, 2005, 9: 363-378
    [115]刘伟伟,张无敌.生物柴油的理化性质及质量标准[J].能源工程, 2006, 1: 27-31
    [116] Ma FR, Hanna MA. Biodiesel production: a review[J]. Bioresource Technology, 1999, 70: 1-15
    [117] Marchetti JM, Miguel VU, Errazu AF. Possible methods for biodiesel production[J]. Renewable and Sustainable Energy Reviews, 2007, 11: 1300-1311
    [118] Fukuda H, Kondo A, Noda H. Biodiesel fuel production by transesterification of oils[J]. Journal of Bioscience and Bioengineering, 2001, 92: 405-416
    [119]舒正玉,杨江科,黄瑛等.生物柴油生产用脂肪酶资源及研发现状. (投稿)
    [120] Fu X, Zhu X, Gao K, et al. Oil and fat hydrolysis with lipase from Aspergillus sp[J]. Journal of Americal oil chemical society, 1995, 72: 527-530
    [121] Macris JB, Kourentzi E, Hatzinkolaou DG. Studies on localization and regulation of lipase production by Aspergillus niger[J]. Process Biochemistry, 1996, 31: 807-812
    [122] Yang K, Wang YJ, Kuo MI. Effects of substrate pretreatment and water activity on lipase-catalyzed cellulose acetylation in organic media[J]. Biotechnology Progress, 2004, 20: 1053-1061
    [123] Stander MA, Bornscheuer UT, Henke E, et al. Screening of commercial hydrolases for the degradation of ochratoxin A[J]. Journal of Agricultural and Food Chemistry, 2000, 48: 5736-5739
    [124] Saisubramanian N, Edwinoliver NG, Nandakumar N, et al. Efficacy of lipase from Aspergillus niger as an additive in detergent formulations: a statistical approach[J]. Journal of Industrial Microbiology and Biotechnology, 2006, 33: 669-676
    [125] Mahadik ND, Bastawde KB, Puntambekar US, et al. Production of acidic lipase by a mutant of Aspergillus niger NCIM 1207 in submerged fermentation[J]. Process Biochemistry, 2004, 39: 2031-2034
    [126] Mahadik ND, Puntambekar US, Bastawde KB, et al. Production of acidic lipase by Aspergillus niger in solid state fermentation[J]. Process Biochemistry, 2002, 38: 715-721
    [127] Ellaiah P, Prabhakar T, Ramakrishna B, et al. Production of lipase by immobilized cells of Aspergillus niger[J]. Process Biochemistry, 2004, 39: 525-528
    [128] Fernández-Lorente G, Ortiz C, Segura R L, et al. Purification of different lipases from Aspergillus niger by using a highly selective adsorption on hydrophobic supports[J]. Biotechnology and Bioenginering, 2005, 92: 773-779
    [129] Namboodiri VM, Chattopadhyaya R. Purification and biochemical characterization of a novel thermostable lipase from Aspergillus niger[J]. Lipids, 2000, 35: 495-502
    [130] Torossian K, Bell AW. Purification and characterization of an acid-resistant triacylglycerol lipase from Aspergillus niger[J]. Biotechnology and Applied Biochemistry, 1991, 13: 205-211
    [131] H?felmann M, Hartmann J, Zink A, et al. Isolation, purification, and characterization of lipase isoenzymes from a technical Aspergillus niger enzyme[J]. Journal of Food Science, 1985, 50: 1721-1725
    [132] Yu J, Mohawed SM, Bhatnagar D, et al. Substrate-induced lipase gene expression and aflatoxin production in Aspergillus parasiticus and Aspergillus flavus[J]. Journal of Applied Microbiology, 2003, 95: 1334-1342
    [133] Tsuchiya A, Nakazawa H, Toida J, et al. Cloning and nucleotide sequence of the mono- and diacylglycerol lipase gene (mdlB) of the Aspergillus oryzae[J]. FEMS Microbiology Letters, 1996, 143: 63-67
    [134] Toida J, Fukuzawa M, Kobayashi G, et al. Cloning and sequencing of the triacylglycerol lipase gene of Aspergillus oryzae and its expression in Escherichia coli[J]. FEMS Microbiology Letters, 2000, 189: 159-164
    [135] Lawrence RC, Fryer TF, Reiter B. Rapid method for the quantitative estimation of microbial lipases[J]. Nature, 1967, 213: 1264-1265
    [136] Sierra G. A simple method for the detection of lipolytic activity of micro-organisms and some observations on the influence of the contact between cells and fatty substances[J]. Antonie van Leeuwenhoek Journal of Microbiology and Serology, 1957, 23: 15-22
    [137] Karnetova J, Mateju J, Rezanka T, et al. Estimation of lipase activity by the diffusion plate method[J]. Folia Microbiology, 1984, 29: 346-347
    [138] Kouker G, Jaeger KE. Specific and sensitive plate assay for bacterial lipases[J].Applied and Environmental Microbiology, 1987, 53: 211-213
    [139] Sonnet PE. Lipase selectivities[J]. Journal of the American Oil Chemists Society, 1988, 65: 900-904
    [140] Sugihara A, Shimada Y, Tominaga Y. Purification and characterization of Aspergillus niger lipase[J]. Agricultural and Biological Chemistry, 1988, 52: 1591-1592
    [141] Samad MY, Razak CN, AbuBakar S, et al. A plate assay for primary screening of lipase activity[J]. Journal of Microbiology Methods, 1989, 9: 51-56
    [142] Gupta R, Rathi P, Gupta N, et al. Lipase assays for conventional and molecular screening: an overview[J]. Biotechnology and Applied Biochemistry, 2003, 37: 63-71
    [143]齐祖同.中国真菌志(第五卷):曲霉属及其相关有性型[M].北京:科学出版社, 1997
    [144]曾凡亚,张义正.从多糖丰富的样品中制备食用真菌DNA[J].食用菌学报, 1996, 3: 13-17
    [145]曾东方,罗信昌,傅伟杰.松口蘑菌丝体的分离和RAPD-PCR分析[J].微生物学报, 2001, 41: 278-286
    [146]程度,黄翔宇等.药用真菌高质量总DNA的制备及基因组文库的构建[J].菌物系统, 2002, 21: 137-139
    [147]骆志成,王端礼,李若瑜等.烟曲霉rRNA基因ITS区的克隆测序分析[J].菌物系统, 2000, 19: 336-341
    [148] Accensi F, Cano J, Figuera L, et al. New PCR method to differentiate species in the Aspergillus niger aggregate[J]. FEMS Microbiology Letters, 1999, 180: 191-196
    [149] J.萨姆布鲁克, D. W.拉塞尔著.分子克隆实验指南(第三版)[M].黄培堂等译.北京:科学出版社, 2002
    [150] Hiol A, Jonzo MD, Rugani N, et al. Purification and characterization of an extracellular lipase from a thermophilic Rhizopus oryzae strain isolated from palm fruit[J]. Enzyme and Microbial Technology, 2000, 26: 421-430
    [151] Saxena RK, Davidson WS, Sheoran A, et al. Purification and characterization of analkaline thermostable lipase from Aspergillus carneus[J]. Process Biochemistry, 2003, 39: 239-247
    [152] Hiol A, Jonzo MD, Druet D, et al. Production, purification and characterization of an extracellular lipase from Mucor hiemalis f. hiemalis[J]. Enzyme and Microbial Technology, 1999, 25: 80-87
    [153] Kordel M, Hofmann B, Schomburg D, et al. Extracellular lipase of Pseudomonas sp. strain ATCC 21808: purification, characterization, crystallization, and preliminary X-ray diffraction data[J]. Journal of Bacteriology, 1991, 173: 4836-4841
    [154]邬敏辰,孙崇荣,邬显章.平板扩散法粗略确定碱性脂肪酶的活性[J].无锡轻工业大学学报, 2000, 19: 168-172
    [155]邬敏辰,刘为平,许云敏等.碱性脂肪酶的高效液相色谱和质谱分析[J].无锡轻工大学学报, 2000, 19: 484-487
    [156] Laemmli UK. Cleavage of structural proteins during assembly of the head of Bacteriophage T4[J]. Nature, 1970, 227: 680-685
    [157] Bradford MM. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Chemistry, 1976, 72: 248-254
    [158] Svoboda M, Meuris S, Robyn C, et al. Rapid electrotransfer of proteins from polyacrylamide gel to nitrocellulose membrane using surface-conductive glass as anode[J]. Analytical Biochemistry, 1985, 151: 16-23
    [159]邹国林,朱汝璠.酶学(第1版)[M].武汉:武汉大学出版社, 1997, p76-78
    [160]魏景超.真菌鉴定手册[M].上海:上海科学技术出版社, 1979
    [161] Van HE, Litthauer D, Verger R. Biochemical characterisation and kinetic properties of a purified lipase from Aspergillus niger in bulk phase and monomolecular films[J]. Enzyme and Microbial Technology, 2002, 30: 902-909
    [162] Hatzinikolaou DG, Macris JB, Christakopoulos P, et al. Production and partial characterisation of extracellular lipase from Aspergillus niger[J]. Biotechnology Letters, 1996, 5: 547-552
    [163] Schmidt M, Bornscheuer UT. High-throughput assays for lipases and esterases[J]. Biomolecular Engineering, 2005, 22: 51-56
    [164] Beisson F, Tiss A, Rivière C, et al. Methods for lipase detection and assay: a critical review[J]. European Journal of Lipid Science and Technology, 2000, 34: 133-153
    [165] Streit WR, Daniel Rolf, Jaeger KE. Prospecting for biocatalysts and drugs in the genomes of non-cultured microorganisms[J]. Current Opinion in Biotechnology, 2004, 15: 285-290
    [166] Voget S, Leggewie C, Uesbeck A, et al. Prospecting for novel biocatalysts in a soil metagenome[J]. Applied and Environmental Microbiology, 2003, 69: 6235-6242
    [167] Lorenz P, Schleper C. Metagenome---a challenging source of enzyme discovery[J]. Journal of Molecular Catalysis B: Enzymatic, 2002, 19: 13-19
    [168] Jiang ZB, Wang HP, Ma YS, et al. Characterization of two novel lipase genes isolated directly from environmental sample[J]. Applied Microbiology and Biotechnology, 2006, 70: 327-332
    [169] Henne A, Schmitz RA, B?meke M, et al. Screening of environmental DNA libraries for the presence of genes conferring lipolytic activity on Escherichia coli[J]. Applied and Environmental Microbiology, 2000, 66, 3113-3116
    [170] Prathumpai W, Flitter SJ, McIntyre M, et al. Lipase production by recombinant strains of Aspergillus niger expressing a lipase-encoding gene from Thermomyces lanuginosus[J]. Applied Microbiology and Biotechnology, 2004, 65: 714-719
    [171] Leopold J, Seichertova O. The parasitism of the mould Penicillium purpurogenum on Aspergillus niger. 3. The determination of the part of some enzymes of Penicillium purpurogenum in the mycelium lysis of the mould Aspergillus niger[J]. Folia Microbiology, 1967, 12: 458-465
    [172] Kambourova M, Kirilova N, Mandeva R, et al. Purification and properties of thermostable lipase from a thermophilic Bacillus stearothermophilus MC 7[J]. Journal of Molecular Catalysis B: Enzymatic, 2003, 22: 307-313
    [173] Lee SY, Rhee JS. Production and partial purification of a lipase from Pseudomonas putida 3SK[J]. Enzyme and Microbial Technology, 1993, 15: 617-623
    [174] Kwoun KH, Jung YJ, Choi WC, et al. Sequence-based approach to finding functional lipases from microbial genome databases[J]. FEMS Microbiology Letters, 2004, 235: 349-355
    [175] Ouzounis CA, Karp PD. The past, present and future of genome-widere-annotation[J]. Genome Biology, 2002, 3: 1-6
    [176]朱新宇.基因功能注释的计算方法[J].生物技术, 2003, 13: 59-61
    [177] Jonasson P, Liljeqvist S, Nygren P?, et al. Genetic design for facilitated production and recovery of recombinant proteins in Escherichia coli[J]. Biotechnology and Applied Biochemistry, 2002, 35: 91-105
    [178] Makrides SC. Strategies for achieving high-level expression of genes in Escherichia coli[J]. Microbiology Reviews, 1996, 60: 512-538
    [179]朱红裕,李强.外源蛋白在大肠杆菌中的可溶性表达策略[J].过程工程学报, 2006, 6: 150-155
    [180] S?rensen HP, Mortensen KK. Soluble expression of recombinant proteins in the cytoplasm of Escherichia coli[J]. Microbial Cell Factories, 2005, 4: 1-8
    [181] Liu D, Schmid RD, Rusnak M. Functional expression of Candida antarctica lipase B in the Escherichia coli cytoplasm—a screening system for a frequently used biocatalyst[J]. Applied Microbiology and Biotechnology, 2006, 72: 1024-1032
    [182] Blank K, Morfill J, Gumpp H, et al. Functional expression of Candida antarctica lipase B in Eschericha coli[J]. Journal of Biotechnology, 2006, 125: 474-483
    [183] Lorenzo MD, Hidalgo A, Haas M, et al. Heterologous production of functional forms of Rhizopus oryzae lipase in Escherichia coli[J]. Applied and Environmental Microbiology, 2005, 71: 8974-8977
    [184] Vallejo LF, Rinas U. Strategies for the recovery of active proteins through refolding of bacterial inclusion body proteins[J]. Microbial Cell Factories, 2004, 3: 11-23
    [185] Li M, Su ZG, Janson JC. In vitro protein refolding by chromatographic procedures[J]. Protein Expression and Purification, 2004, 33: 1-10
    [186] Jungbauer A, Kaar W, Schlegl R. Folding and refolding of proteins in chromatographic beds[J]. Current Opinion in Biotechnology, 2004, 15: 487-494
    [187] Park S, Liu G, Topping T, et al. Modulation of folding pathways of exported proteins by the leader sequence[J]. Science, 1988, 239: 1033-1035
    [188] Laminet AA, Plückthun A. The precursor of beta-lactamase: purification, properties and folding kinetics[J]. EMBO Journal, 1989, 8: 1469-1477
    [189] Tombs MP, Blake GG. Stability and inhibition of Aspergillus and Rhizopuslipases[J]. Biochimica et Biophysica Acta, 1982, 700: 81-89
    [190] Joerger RD, Haas MJ. Overexpression of a Rhizopus delemar lipase gene in Escherichia coli[J]. Journal of the American Oil Chemists Society, 1993, 28: 81-88
    [191]王黎明,王琦,梅汝鸿.巴斯德毕赤酵母表达系统研究进展[J].微生物学杂志, 2004, 24: 42-45
    [192] Daly R, Hearn MT. Expression of heterologous proteins in Pichia pastoris: a useful experimental tool in protein engineering and production[J]. Journal of Molecular Recognition, 2005, 18: 119-138
    [193]于平.巴斯德毕赤酵母表达系统研究进展[J].工业微生物, 2005, 35: 50-54
    [194] Macauley-Patrick S, Fazenda ML, McNeil B, et al. Heterologous protein production using the Pichia pastoris expression system[J]. Yeast, 2005, 22: 249-270
    [195] Bretthauer RK, Castellino FJ. Glycosylation of Pichia pastoris-derived proteins[J]. Biotechnology and Applied Biochemistry, 1999, 30: 193-200
    [196] Cos O, Ramón R, Montesinos JL. Operational strategies, monitoring and control of heterologous protein production in the methylotrophic yeast Pichia pastoris under different promoters: A review[J]. Microbial Cell Factories, 2006, 5: 17-36
    [197] Tang SJ, Shaw JF, Sun KH, et al. Recombinant expression and characterization of the Candida rugosa lip4 lipase in Pichia pastoris: comparison of glycosylation, activity, and stability[J]. Archives of Biochemistry and Biophysics, 2001, 387: 93-98
    [198] Quyen DT, Schmidt-Dannert C, Schmid RD. High-level expression of a lipase from Bacillus thermocatenulatus BTL2 in Pichia pastoris and some properties of the recombinant lipase[J]. Protein Expression and Purification, 2003, 28: 102-110
    [199] Holmquist M, Tessier DC, Cygler M. High-level production of recombinant Geotrichum candidum lipases in yeast Pichia pastoris[J]. Protein Expression and Purification, 1997, 11: 35-40
    [200] Catoni E, Schmidt-Dannert C, Brocca S, et al. Overexpression of lipase A and B of Geotrichum candidum in Pichia pastoris: high-level production and some properties of functional expressed lipase B[J]. Biotechnology Techniques, 1997, 11: 689-695
    [201] Cos O, Resina D, Ferrer P, et al. Heterologous production of Rhizopus oryzae lipase in Pichia pastoris using the alcohol oxidase and formaldehyde dehydrogenase promoters in batch and fed-batch cultures[J]. Biochemical Engineering Journal, 2005, 26: 86-94
    [202] Minning S, Schmidt-Dannert C, Schmid RD. Functional expression of Rhizopus oryzae lipase in Pichia pastoris: high-level production and some properties[J]. Journal of Biotechnology, 1998, 66: 147-156
    [203] Resina D, Serrano A, Valero F, et al. Expression of a Rhizopus oryzae lipase in Pichia pastoris under control of the nitrogen source-regulated formaldehyde dehydrogenase promoter[J]. Journal of Biotechnology, 2004, 109: 103-113
    [204] Pfeffer J, Richter S, Nieveler J, et al. High yield expression of lipase A from Candida antarctica in the methylotrophic yeast Pichia pastoris and its purification and characterization[J]. Applied Microbiology and Biotechnology, 2006, 72: 931-938
    [205] Gustavsson M, Lehti? J, Denman S, et al. Stable linker peptides for a cellulose-binding domain-lipase fusion protein expressed in pichia pastoris[J]. Protein engineering, 2001, 14: 711-715
    [206] Song HT, Jiang ZB, Ma LX. Expression and purification of two lipases from Yarrowia lipolytica AS2. 1216[J]. Protein Expression and Purification, 2006, 47: 393-397
    [207] Chang SW, Lee GC, Shaw JF. Efficient production of active recombinant Candida rugosa LIP3 lipase in Pichia pastoris and biochemical characterization of the purified Enzyme[J]. Journal of Agricultural and Food Chemistry, 2006, 54: 5831-5838
    [208] Yu MR, Lange S, Richter S, et al. High-level expression of extracellular lipase Lip2 from Yarrowia lipolytica in Pichia pastoris and its purification and characterization[J]. Protein Expression and Purification, 2006, 53: 255-263
    [209] Brunel L, Neugnot V, Landucci L, et al. High-level expression of Candida parapsilosis lipase/acyltransferase in Pichia pastoris[J]. Journal of Biotechnology, 2004, 111: 41-50
    [210] Schwede T, Kopp J, Guex N, et al. SWISS-MODEL: an automated proteinhomology-modeling server[J]. Nucleic Acids Research, 2003, 31: 3381-3385
    [211] Tramontano A, Leplae R, Morea V. Analysis and assessment of comparative modeling predictions in CASP4[J]. Proteins, 2001, 45 (Suppl. 5): 22-38
    [212] Marti-Renom MA, Stuart AC, Fiser A, et al. Comparative protein structure modeling of genes and genomes[J]. Annual Review of Biophysics and Biomolecular Structure, 2000, 29: 291-325
    [213] Bryson K, McGuffin LJ, Marsden RL, et al. Protein structure prediction servers at University College London[J]. Nucleic Acids Research, 2005, 33: 36-38
    [214] McGuffin LJ, Bryson K, Jones DT. The PSIPRED protein structure prediction server[J]. Bioinformatics, 2000, 16: 404-405
    [215] Jones DT. Protein secondary structure prediction based on position-specific scoring matrices[J]. Journal of Molecular Biology, 1999, 292: 195-202
    [216] Guex N, Peitsch MC. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modelling[J]. Electrophoresis, 1997, 18: 2714-2723
    [217] Jürgen K, Torsten S. The SWISS-MODEL repository of annotated three-dimensional protein structure homology models[J]. Nucleic Acids Research, 2004, 32: 230-234
    [218] Peitsch MC. Protein modeling by E-mail[J]. Biotechnology, 1995, 13: 658-660
    [219] Humphrey W, Dalke A, Schulten K. VMD-Visual Molecular Dynamics[J]. Journal of Molecular Graphics and Modelling, 1996, 14: 33-38
    [220] Shindyalov IN, Bourne PE. Protein structure alignment by incremental combinatorial extension (CE) of the optimal path[J]. Protein Engineering, 1998, 11: 739-747
    [221] Kelly SM, Jess TJ, Price NC. How to study proteins by circular dichroism[J]. Biochimica et Biophysica Acta, 2005, 1751: 119-139
    [222] Johnson WC. Protein secondary structure and circular dichroism: a practical guide[J]. Proteins: Structure, Function, and Genetics, 1990, 7: 205-214
    [223] Pelton JT, McLean LR. Spectroscopic methods for analysis of protein secondary structure[J]. Analytical Biochemistry, 2000, 277: 167-176
    [224] Fojan P, Jonson PH, Petersen SB. What distinguishes an esterase from a lipase: A novel structural approach[J]. Biochimie, 2000, 82: 1033-1041
    [225] Nicholls A, Sharp KA, Honig B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons[J]. Proteins: Structure, Function, and Genetics, 1991, 11: 281-296
    [226] Sigrist CJA, Cerutti L, Hulo N, et al. PROSITE: a documented database using patterns and profiles as motif descriptors[J]. Briefings in Bioinformatics, 2002, 3: 265-274
    [227] Hulo N, Bairoch A, Bulliard V, et al. The PROSITE database[J]. Nucleic Acids Research, 2006, 34: 227-230
    [228]汪家政,范明主编.蛋白质技术手册[M].北京:科学出版社, 2004
    [229]中国科学院微生物研究所《常见与常用真菌》编写组.常见与常用真菌[M].北京:科学出版社, 1973: 166-167
    [230] pET system manual(the 11th edition). 2005, Novagen
    [231] A handbook for high-level expression and purification of 6×His-tagged proteins (the fifth edition). 2003, QIAGEN Ltd
    [232] Multi-copy Pichia expression kit: for the isolation and expression of recombinant proteins from Pichia pastoris strains containing multiple copies of a particular gene(Version F, Catalog no. K1750-01). 2002, Invitrogen Ltd
    http: //www. ncbi. nlm. nih. gov
    http: //www. rcsb. org/pdb/home/ home. do
    http: //www. led. uni-stuttgart. de
    http: //www. expasy. ch/
    http: //bioinf. cs. ucl. ac. uk/psipred/
    http: //swissmodel. expasy. org/
    http: //www. ks. uiuc. edu/Research/vmd/
    http: //cl. sdsc. edu/
    http: //www. umass. edu/microbio/ rasmol/
    http: //www. umanitoba. ca/faculties/medicine/biochem/gietz/Trafo. html
    http: //www. bioon. com/experiment/

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700