TiO_2介孔复合体的设计合成及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米晶介孔TiO_2由于规整的孔道结构、窄的孔径分布以及高的孔隙率,在光、电等领域具有潜在的应用前景。但是,单纯介孔TiO_2的稳定性较低,晶化度较差,导致光生载流子的分离效率较低。为拓展介孔TiO_2的应用,设计合成介孔TiO_2复合材料具有重要意义。本文在大孔径有序介孔TiO_2的基础上,设计合成了一系列TiO_2复合材料。我们以介孔TiO_2薄膜为基底,采用电泳沉积技术制备了介孔TiO_2/SWCNTs薄膜电极,发现其光电转换效率显著提高;利用β-环糊精(CD)和CNTs之间的范德华力以及相邻β-CD之间的氢键作用,制备了MWCNT-β-CD复合材料;利用β-CD的自组装行为在太阳光诱导下构筑了线状TiO_2-β-CD-MWCNT复合体,将其构筑的夹心结构染料敏化光阳极组装成电池,发现其光电转换效率明显提高;采用水热方法使酸处理的SWCNTs通过表面的-COOH与TiO_2表面的-OH发生作用,得到了键合型TiO_2-SWCNTs复合体,其光催化活性明显优于Degussa P25;采用原位合成的方法首次制备了多孔径介孔TiO_2-ZrO2复合材料,展示了良好的光催化活性和超亲水性;以介孔TiO_2为宿主,首次利用纳米铸造方法制备了双功能介孔TiO_2/α-Fe2O3复合体,它结合了介孔TiO_2优异的光催化性能和α-Fe2O3良好的吸附性能,实现了同步吸附和光催化氧化,达到了一次性有效去除砷污染物的目的,该复合体具有很高的稳定性,循环使用多次其性能几乎不变。
Mesoporous materials which belong to the category of nanomaterials have opened some interesting applications in the field of catalysis, separation, adsorption, and others due to their ordered mesopores, narrow pore size distribution, high porosity, and large surface area. Compared with Si-based mesoporous materials, ordered mesoporous nanocrystalline TiO_2 (meso-nc-TiO_2) will have vast potential applications in the field of photoelectricity and magnetism, due to their unique structural character. However, the stability of meso-nc-TiO_2 is usually low, so its crystallinity is poor, leading to its low separation efficiency of photo-generated electrons and holes. In order to extend their applications, it is essential to be able to synthesize mesoporous TiO_2 composite materials. In this dissertation, we designed and synthesized a series of TiO_2 composites. They were characterized in detail and their photoelectrical properties were also investigated. These convenient and low-cost strategies for fabricating other composites offer new ideas. The main contents are as follows:
     1. Mesoporous TiO_2/single walled carbon nanotubes (SWCNTs) thin films were successfully prepared through electrophoretic deposition method on large pore meso-nc-TiO_2 substrate. The dye-sensitized solar cells were assembled with the films and they were sensitized by TCPP and N719, respectively. The results showed that they exhibited enhanced power conversion efficiency. This may be attributed to the compact contact of mesoprous TiO_2 with SWCNTs and the excellent property of SWCNTs in favor of the transportation of photogenerated electrons.
     2. Multiwall carbon nanotubes (MWCNTs)-β-cyclodextrins (β-CD) composites have been successfully synthesized through combining polymer wrapping and layer-by-layer self-assembly techniques. The obtained MWCNTs-β-CD composites possessed good dispersibility both in ethanol and water media and the solution was found to be very stable for several weeks. Therefore, the problem of the insolubility of CNTs was solved. And then, wire-like TiO_2-β-CD-MWCNT composites were fabricated through solar-induced self-assembly process, combining the self-assembly behavior ofβ-CD, and its interaction with TiO_2 nanoparticles and MWCNTs. The wires were stable for more than several months both in water and under air in dry condition. Raman mapping results confirmed that monodisperse TiO_2 nanoparticles and MWCNTs distributed uniformly in this wire. Furthermore, the dye-sensitized solar cells were assembled with the sandwich structure electrode containing the TiO_2-β-CD-MWCNT composites wires, and they exhibited enhanced power conversion efficiency (8%). This maybe attribute to the compact composite structure of the wires and the unique electronic property of CNTs in favor of the transportation of photogenerated electrons.
     3. Bond-type TiO_2-SWCNTs composites were fabricated by hydrothermal method, combing with the interaction between the -COOH of SWCNTs and the -OH of TiO_2. The results confirmed that the heterogeneity between SWCNTs and TiO_2 was formed. The crystalline size of the obtained anatase was small and uniform. The composites exhibited better photocatalytic activity than Degussa P25 and TiO_2 nanoparticles. This may be attributed to the chemical bond, which was fabricated the effective transportation channel of electrons between TiO_2 and SWCNTs. Therefore, the effective separation of electrons and holes is achieved. Moreover, the reasonable photocatalytic mechanism of the bond-type TiO_2-SWCNTs composites was also presented.
     4. On the basis of the large pore meso-nc-TiO_2, a series of multi-modal mesoporous TiO_2-ZrO_2 composites were designed and synthesized for the first time through adding different amount of ZrOCl2 using one-step synthesis strategy. The results demonstrated that after the introduction of ZrO_2, the crystalline growth and aggregation, and the crystal phase transformation from anatase-to-rutile structure were strongly retarded. The obtained composites showed high thermal stability and the crystal phase of anatase was remained at a large scale of temperature. Compared with pure mesoporous TiO_2, the structure parameters of the composites, such as surface area, pore volume and porosity, was improved obviously. The photocatalytic activity of mesoporous TiO_2-ZrO_2 composites was superior to that of pure mesoporous TiO_2 and Degussa P25. This was attributed to the introduction of ZrO_2 enhanced the surface area, restrained the crystal phase transformation and crystalline growth. Therefore, the photo-generated electrons and holes were separated efficiently. Furthermore, the presented mesoporous composites thin films exhibit higher hydrophilicity than mesoporous TiO_2 in the absence of light irradiation. This was because the introduction of ZrO_2 changed the surface microstructure of the composites, enhancing the infiltration and wick effect. The reasonable mechanisms of photocatalysis and high hydrophilicity of our obtained multi-modal mesoporous TiO_2-ZrO_2 composites were also presented.
     5. Bifunctional mesoporous TiO_2/α-Fe2O3 composite were designed and synthesized in our laboratory for the first time by nanocasting method. The“Bifunctional”means that the composites possess of synergy of the photocatalytic ability of meso-TiO_2 for oxidation of As (III) to As (V) and the adsorption performance ofα-Fe2O3 for As (V). This will completely remove the arsenite from contaminated water by one time. According to the statement of arsenite in nature, the photocatalytic activity and adsorption performance of the composites under different pH values were investigated systemically. In comparison with pure mesoporous TiO_2 orα-Fe2O3, the obtained meso-TiO_2/α-Fe2O3 composites not only presented higher photocatalytic activity but also exhibited excellent adsorbed property. This showed that the composites improved the adsorption and photocatalytic activity obviously. Meanwhile, the photocatalytic oxidation mechanism of As (III) was presented. In addition, As (V) can be easily desorbed from the composites by heat treatment in alkali solution. After reusage for several times, the composites still present comparable catalysis and adsorption performance with that of first use, indicating the excellent stability of the bifunctional composites. The novel nanostructured bifunctional composites will have vast applications in contaminated water treatment. At the same time, this strategy for synthesizing other composites with special physical and chemical character offers new ideas.
引文
[1] Cheng H, Hu Y, Zhao J. Meeting China’s Water Shortage Crisis: Current Practices and Challenges [J]. Environmental Science & Technology, 2009, 43(2): 240-244.
    [2] Schnoor J L. Global financial and environmental crises [J]. Environmental Science & Technology, 2008, 42(23): 8615-8615.
    [3] Kim S, Dale B E. Energy and Greenhouse Gas Profiles of Polyhydroxybutyrates Derived from Corn Grain: A Life Cycle Perspective [J]. Environmental Science & Technology, 2008, 42(20): 7690-7695.
    [4] West J J, Fiore A M. Management of Tropospheric Ozone by Reducing Methane Emissions [J]. Environmental Science & Technology, 2005, 39(13): 4685-4691.
    [5] Gren I M, Destouni G, Tempone R. Cost effective policies for alternative distributions of stochastic water pollution [J]. Journal of Environmental Management, 2002, 66(2): 145-157.
    [6] S?RENSEN B. Renewable energy 1st edi [M]. London: Academic Press, 1979.
    [7] Winter C J, Sizmann R L, Vant-Hull L L. Solar power plants: Fundamentals, Technology, Systems, Economics [M]. Springer-Verlag. Berlin Heidelberg, 1991, 17-83.
    [8] Chen C C, Chung H W, Chen C H, Lu H P, Lan C M, Chen S F, Luo L, Hung C S, Diau E W G. Fabrication and Characterization of Anodic Titanium Oxide Nanotube Arrays of Controlled Length for Highly Efficient Dye-Sensitized Solar Cells [J]. The Journal of Physical Chemistry C, 2008, 112(48): 19151-19157.
    [9] Xue B, Fu Z, Li H, Liu X, Cheng S, Yao J, Li D, Chen L, Meng Q. Cheap and Environmentally Benign Electrochemical Energy Storage and Conversion Devices Based on AlI3 Electrolytes [J]. Journal of the American Chemical Society, 2006, 128(27): 8720-8721.
    [10] Zhao Y, Zhai J, He J, Chen X, Chen L, Zhang L, Tian Y, Jiang L, Zhu D.High-Performance All-Solid-State Dye-Sensitized Solar Cells Utilizing Imidazolium-Type Ionic Crystal as Charge Transfer Layer [J]. Chemistry of Materials, 2008, 20(19): 6022-6028.
    [11] Hattori S, Wada Y, Yanagida S, Fukuzumi S. Blue Copper Model Complexes with Distorted Tetragonal Geometry Acting as Effective Electron-Transfer Mediators in Dye-Sensitized Solar Cells [J]. Journal of the American Chemical Society, 2005, 127(26): 9648-9654.
    [12] O’Regan B, Gr?tzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films [J]. Nature, 1991, 353: 737-740.
    [13] Fabregat-Santiago F, Bisquert J, Palomares E, Otero L, Kuang D, Zakeeruddin S M, Gr?tzel M. Correlation between Photovoltaic Performance and Impedance Spectroscopy of Dye-Sensitized Solar Cells Based on Ionic Liquids [J]. The Journal of Physical Chemistry C, 2007, 111(17): 6550-6560.
    [14] Pasquier A D, Stewart M, Spitler T, Coleman M. Aqueous coating of efficient flexible TiO2 dye solar cell photoanodes [J]. Solar Energy Materials and Solar Cells, 2009, 93(4): 528-535.
    [15] Kra?ovec U O, Berginc M, Ho?evar M, Topi? M. Unique TiO2 paste for high efficiency dye-sensitized solar cells [J]. Solar Energy Materials and Solar Cells, 2009, 93(3): 379-381.
    [16] Gust D, Moore T A, Moore A L. Mimicking Photosynthetic Solar Energy Transduction [J]. Accounts of Chemical Research, 2001, 34(1): 40-48.
    [17] Gubbala S, Chakrapani V, Kumar V, Sunkara M K. Band-Edge Engineered Hybrid Structures for Dye-Sensitized Solar Cells Based on SnO2 Nanowires [J]. Advanced Functional Materials, 2008, 18(16): 2411-2418.
    [18] Choi H, Baik C, Kang S O, Ko J, Kang M S, Nazeeruddin M K, Gratzel M. Highly Efficient and Thermally Stable Organic Sensitizers for Solvent-Free Dye-Sensitized Solar Cells [J]. Angewandte Chemie International Edition, 2007, 47(2): 327-330.
    [19] Robertson N. Catching the Rainbow: Light Harvesting in Dye-Sensitized Solar Cells [J]. Angewandte Chemie International Edition, 2008, 47(6): 1012-1014.
    [20] Park J H, Lee T W, Kang M G. Growth, detachment and transfer ofhighly-ordered TiO2 nanotube arrays: use in dye-sensitized solar cells [J]. Chemical Communications, 2008, 25: 2867-2869.
    [21] Glaspell G, Fuoco L, El-Shall M S. Microwave Synthesis of Supported Au and Pd Nanoparticle Catalysts for CO Oxidation [J]. The Journal of Physical Chemistry B, 2005, 109(37): 17350-17355.
    [22] Guzman J, Gates B C. Catalysis by Supported Gold: Correlation between Catalytic Activity for CO Oxidation and Oxidation States of Gold [J]. Journal of the American Chemical Society, 2004, 126(9): 2672-2673.
    [23] Hasegawa S, Horike S, Matsuda R, Furukawa S, Mochizuki K, Kinoshita Y, Kitagawa S. Three-Dimensional Porous Coordination Polymer Functionalized with Amide Groups Based on Tridentate Ligand: Selective Sorption and Catalysis [J]. Journal of the American Chemical Society, 2007, 129(9): 2607-2614.
    [24] Heidt L J. Fuel Cells [J]. Journal of the American Chemical Society, 1960, 82(24): 6426-6426.
    [25] Casado-Rivera E, Volpe D J, Alden L, Lind C, Downie C, Vázquez-Alvarez T, Angelo A C D, DiSalvo F J, Abru?a H D. Electrocatalytic Activity of Ordered Intermetallic Phases for Fuel Cell Applications [J]. Journal of the American Chemical Society, 2004, 126(12): 4043-4049.
    [26] Chen T, Barton S C, Binyamin G, Gao Z, Zhang Y, Kim H H, Heller A. A Miniature Biofuel Cell [J]. Journal of the American Chemical Society, 2001, 123(35): 8630-8631.
    [27] Hsin Y L, Hwang K C, Yeh C T. Poly (vinylpyrrolidone)-Modified Graphite Carbon Nanofibers as Promising Supports for PtRu Catalysts in Direct Methanol Fuel Cells [J]. Journal of the American Chemical Society, 2007, 129(32): 9999-10010.
    [28] Han S S, Goddard III W A. Lithium-Doped Metal-Organic Frameworks for Reversible H2 Storage at Ambient Temperature [J]. Journal of the American Chemical Society, 2007, 129(27): 8422-8423.
    [29] Wang L, Yang F H, Yang R T, Miller M A. Effect of Surface Oxygen Groups in Carbons on Hydrogen Storage by Spillover [J]. Industrial & Engineering Chemistry Research, 2009, 48(6): 2920-2926.
    [30] Kowalczyk P, Brualla L, ?ywociński A, Bhatia S K. Single-Walled Carbon Nanotubes: Efficient Nanomaterials for Separation and On-Board Vehicle Storage of Hydrogen and Methane Mixture at Room Temperature [J]. The Journal of Physical Chemistry C, 2007, 111(13): 5250-5257.
    [31] Borgarello E, Kiwi J, Pelizzetti E, Visca M, Gr?tzel M. Photochemical cleavage of water by photocatalysis [J]. Nature, 1981, 289: 158-160.
    [32] Qiao L, Roussel C, Wan J, Kong J, Yang P, Girault H H, Liu B. MALDI In-Source Photooxidation Reactions for Online Peptide Tagging [J]. Angewandte Chemie International Edition, 2008, 47(14): 2646-2648.
    [33] Feng C, Wang Y, Jin Z, Zhang J, Zhang S, Wu Z, Zhang Z. Photoactive centers responsible for visible-light photoactivity of N-doped TiO2 [J]. New Journal of Chemistry, 2008, 32(6): 1038-1047.
    [34] Dai W, Chen X, Wang X, Liu P, Li D, Li G, Fu X. CO Preferential oxidation promoted by UV irradiation in the presence of H2 over Au/TiO2 [J]. Physical Chemistry Chemical Physics, 2008, 10(22): 3256-3262.
    [35] Naito K, Tachikawa T, Fujitsuka M, Majima T. Real-Time Single-Molecule Imaging of the Spatial and Temporal Distribution of Reactive Oxygen Species with Fluorescent Probes: Applications to TiO2 Photocatalysts [J]. The Journal of Physical Chemistry C, 2008, 112(4): 1048-1059.
    [36] Wang X, Mitchell D R G, Prince K, Atanacio A J, Caruso R A. Gold Nanoparticle Incorporation into Porous Titania Networks Using an Agarose Gel Templating Technique for Photocatalytic Applications [J]. Chemistry of Materials, 2008, 20(12): 3917-3926.
    [37] Heyduk A F, Nocera D G. Hydrogen Produced from Hydrohalic Acid Solutions by a Two-Electron Mixed-Valence Photocatalyst [J]. Science, 2001, 293: 1639-1641.
    [38] Jung H S, Lee J K, Lee J, Kang B S, Jia Q, Nastasi M, Noh J H, Cho C M, Yoon S H. Mobility Enhanced Photoactivity in Sol-Gel Grown Epitaxial Anatase TiO2 Films [J]. Langmuir, 2008, 24(6): 2695-2698.
    [39] Yao Y, Li G, Ciston S, Lueptow R M, Gray K A. Photoreactive TiO2/Carbon Nanotube Composites: Synthesis and Reactivity [J]. Environmental Science & Technology, 2008, 42(13): 4952-4957.
    [40] Paul T, Miller P L, Strathmann T J. Visible-Light-Mediated TiO2 Photocatalysis of Fluoroquinolone Antibacterial Agents [J]. Environmental Science & Technology, 2007, 41(13): 4720-4727.
    [41] Kresge C T, Leonowicz M E, Roth W J, Vartuli J C, Beck J S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism [J]. Nature, 1992, 359: 710-712.
    [42] Everett D H. IUPAC: Manual of Symbols and Terminology for Physicochemical Quantities and Units: Appendix II: Definitions, terminology and symbols in colloid and surface chemistry-part 1: Colloid and surface chemistry [J]. Pure and Applied Chemistry, 1972, 31(4): 577-638.
    [43] Huo Q, Margolese D I, Ciesla U, Demuth D G, Feng P, Gier T E, Sieger P, Firouzi A, Chmelka B F, Schüth F, Stucky G D. Organization of organic molecules with inorganic molecular species into nanocomposite biphase arrays [J]. Chemistry of Materials, 1994, 6(8): 1176-1191.
    [44] Zhao D, Feng J, Huo Q, Melosh N, Fredrickson G H, Chmelka B F, Stucky G D. Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores [J]. Science, 1998, 279: 548-552.
    [45] Zhao D, Huo Q, Feng J, Chmelka B F, Stucky G D. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures [J]. Journal of the American Chemical Society, 1998, 120(24): 6024-6036.
    [46] Tanev P T, Pinnavaia T J. A neutral templating route to mesoporous molecular sieves [J]. Science, 1995, 267: 865-867.
    [47] Pauly T R, Pinnavaia T J. Pore Size Modification of Mesoporous HMS Molecular Sieves Silicas with Wormhole Framework Structures [J]. Chemistry of Materials, 2001, 13(3): 987-993.
    [48] Bagshaw S A, Prouzet E, Pinnavaia T J. Templating of mesoporous molec ular sieves by nonionic polyethylene oxide surfactants [J]. Science, 1995, 269: 1242-1244.
    [49] Kim S S, Zheng W, Pinnavaia T J. Ultrastable Mesostructured Silica Vesicles [J]. Science, 1998, 282: 1302-1305.
    [50] Ryoo R, Kim J M, Shin C H, Lee J Y. Synthesis and hydrothermal stability of a disordered mesoporous molecular sieve [J]. Studies in Surface Science and Catalysis, 1997, 105(1): 45-52.
    [51] Sonwane C G, Bhatia S K. Characterisation of Pore Size Distribution of Mesoporous Materials from Adsorption Isotherms [J]. The Journal of Physical Chemistry B, 2000, 104(39): 9099-9110.
    [52] Yu C, Yu Y, Zhao D. Highly ordered large caged cubic mesoporous silica structures templated by triblock PEO-PBO-PEO copolymer [J]. Chemical Communications, 2000, 7: 575-576.
    [53] Yu C, Yu Y, Miao L, Zhao D. Highly ordered mesoporous silica structures templated by poly (butylene oxide) segment di- and tri-block copolymers [J]. Microporous and Mesoporous Materials, 2001, 44-45(1): 65-72.
    [54] Wan Y, Qian X, Jia N, Wang Z, Li H, Zhao D. Direct Triblock-Copolymer- Templating Synthesis of Highly Ordered Fluorinated Mesoporous Carbon [J]. Chemistry of Materials, 2008, 20(3): 1012-1018.
    [55] Manjula P, Satyanarayana L, Swarnalatha Y, Manorama S V. Raman and MASNMR studies to support the mechanism of low temperature hydrogen sensing by Pd doped mesoporous SnO2 [J]. Sensors and Actuators B: Chemical, 2009, 138(1): 28-34.
    [56] Jing W, Wang W, Wu S, Jin W, Xing W. Preparation of meso-macroporous TiO2 ceramic based on membrane jet-flow emulsification-Influences of triblock copolymers on the processes [J]. Journal of Colloid and Interface Science, 2009, 333(1): 324-328
    [57] Yang P D, Zhao D Y, Margolese D I, Chmelka B F, Stucky G D. Block copolymer templating syntheses of mesoporous metal oxides with large ordering lengths and semicrystalline framework [J]. Chemistry of Materials, 1999, 11(10): 2813-2826.
    [58] F?rster S, Antonietti M. Amphiphilic Block Copolymers in Structure-Controlled Nanomaterial Hybrids [J]. Advanced Materials, 1998, 10(3): 195-217.
    [59] Suna W A, Wahler W, Kasowski R. PbS in Polymers Frorr Molecules to Bulk Solids [J]. Journal of Chemical Physics, 1987, 87(12): 7315-7322.
    [60] Mills A, Morris S. Photomineralization of 4-chlorophenol sensitized by titanium dioxide: a study of the initial kinetics of carbon dioxide photogeneration [J]. Journal of Photochemistry and Photobiology A: Chemistry, 1993, 71(1): 75-83
    [61] Hasse S M, Weller H. Photochemisry of Colloidal Semiconductors. 20. Surface Modification and Stability of Strong Lunminescing US Particles [J]. Journal of the American Chemical Society, 1987, 109(19): 5649-5655.
    [62]王天赤,路嫔,车丕智,辛显双,周百斌.纳米材料的特性及其在催化领域的应用[J].哈尔滨商业大学学报(自然科学版). 2003, 4: 45-47.
    [63]光焕竹,郝东凯,王安齐,杨陪霞,赵春梅.纳米材料的研究和进展[J].哈尔滨商业大学学报(自然科学版), 2002, 4: 104-105.
    [64] Ekimov A I, Efros A L, Onushchenko A A. Quantum size effect in semiconductor microcrystals [J]. Solid State Communications, 1985, 56(4): 921-930.
    [65] Niklasson G A. Optical properties of square lattices of gold nanoparticles [J]. Nanostructured Materials, 1999, 11(8): 725-729.
    [66]严东生,冯瑞.材料新星:纳米材料科学[M].长沙:湖南科学技术出版社, 1997.
    [67] Landau L D, Lifshits E M. Quantum Mechanics: Non-relativistic Theory [M]. New York: Pergamon Press, 1977, 178-179.
    [68]王强,郑萍,李海燕,谢笑天.纳米材料的应用进展[J].山东化工, 2003, 5: 21-23.
    [69]刘兴芝,房大维,王鲁宁,关英寻,董志国,司伟,陈林,臧树良.纳米材料及其应用[J].辽宁大学学报(自然科学版), 2004, 1: 91-96.
    [70]郭永,巩雄,杨宏秀.纳米微粒的制备方法及其进展[J].化学通报, 1996, 3: 1-4.
    [71]张立德.我国纳米材料研究的现状[J].中国粉体技术, 2001, 7(5): 1-5.
    [72] Linsebiger A L, Lu G, Yates J T. Photocatalysis on TiO2 Surface: Principles, Mechanism and Selected Results [J]. Chemical Reviews, 1995, 95(3): 735-758.
    [73]高濂,郑珊,张青红.纳米氧化态光催化材料及应用[M].北京:化学化工出版社, 2002.
    [74] Singh P K, Kim K W, Park N G, Rhee H W. Mesoporous nanocrystalline TiO2 electrode with ionic liquid-based solid polymer electrolyte for dye-sensitized solar cell application [J]. Synthetic Metals, 2008, 158(14): 590-593.
    [75] Rühle S, Cahen D. Electron Tunneling at the TiO2/Substrate Interface Can Determine Dye-Sensitized Solar Cell Performance [J]. The Journal of Physical Chemistry B, 2004, 108(46): 17946-17951.
    [76] Yan W, Mahurin S M, Overbury S H, Dai S. Nonhydrolytic Layer-by-Layer Surface Sol-Gel Modification of Powdered Mesoporous Silica Materials with TiO2 [J]. Chemistry of Materials, 2005, 17(8): 1923-1925.
    [77] Bartl M H, Boettcher S W, Frindell K L, Stucky G D. 3-D Molecular Assembly of Function in Titania-Based Composite Material Systems [J]. Accounts of Chemical Research, 2005, 38(4): 263-271.
    [78] Liu L, Liu H, Zhao Y P, Wang Y, Duan Y, Gao G, Ge M, Chen W. Directed Synthesis of Hierarchical Nanostructured TiO2 Catalysts and their Morphology-Dependent Photocatalysis for Phenol Degradation [J]. Environmental Science & Technology, 2008, 42(7): 2342-2348.
    [79] Maeda H, Ishida E H. Water vapor adsorption and desorption of mesoporous materials derived from metakaolinite by hydrothermal treatment [J]. Ceramics International, 2009, 35(3): 987-990.
    [80] Wilson G J, Will G D, Frost R L, Montgomery S A. Efficient microwave hydrothermal preparation of nanocrystalline anatase TiO2 colloids [J]. Journal of Materials Chemistry, 2002, 12(6): 1787-1791.
    [81] Wang H W, Kuo C H, Lin H C, Kuo I T, Cheng C F. Rapid Formation of Active Mesoporous TiO2 Photocatalysts via Micelle in a Microwave Hydrothermal Process [J]. Journal of the American Ceramic Society, 2006, 89(11): 3388-3392.
    [82] Obare S O, Ito T, Meyer G J. Controlling Reduction Potentials of Semiconductor-Supported Molecular Catalysts for Environmental Remediation of Organohalide Pollutants [J]. Environmental Science & Technology, 2005, 39(16): 6266-6272.
    [83]徐如人,庞文琴等.分子筛与多孔化学[M].北京:科学出版社, 2004.
    [84] Crepaldi E L, Soler-Illia G J de A A, Grosso D, Cagnol F, Ribot F, Sanchez C.Controlled Formation of Highly Organized Mesoporous Titania Thin Films: From Mesostructured Hybrids to Mesoporous Nanoanatase TiO2 [J]. Journal of the American Chemical Society, 2003, 125(32): 9770-9786.
    [85] Shibata H, Ogura T, Mukai T, Ohkubo T, Sakai H, Abe M. Direct Synthesis of Mesoporous Titania Particles Having a Crystalline Wall [J]. Journal of the American Chemical Society, 2005, 127(47): 16396-16397.
    [86] Wu C W, Ohsuna T, Kuwabara M, Kuroda K. Formation of Highly Ordered Mesoporous Titania Films Consisting of Crystalline Nanopillars with Inverse Mesospace by Structural Transformation [J]. Journal of the American Chemical Society, 2006, 128(14): 4544-4545.
    [87] Hou K, Tian B, Li F, Bian Z, Zhao D, Huang C. Highly crystallized mesoporous TiO2 films and their applications in dye sensitized solar cells [J]. Journal of Materials Chemistry 2005, 15(24): 2414-2420.
    [88] Yang P, Zhao D, Margolese D I, Chmelka B F, Stucky G D. Generalized syntheses of large-poremesoporous metal oxides with semicrystalline frameworks [J]. Nature, 1998, 396: 152-155.
    [89] Laha S C, Ryoo R. Synthesis of thermally stable mesoporous cerium oxide with nanocrystalline frameworks using mesoporous silica templates [J]. Chemical Communications, 2003, 17: 2138-2139.
    [90] Tian B, Liu X, Yang H, Xie S, Yu C, Tu B, Zhao D. General synthesis of ordered crystallized metal oxide nanoarrays replicated by microwave-digested mesoporous silica [J]. Advanced Materials, 2003, 15(16): 1370-1374.
    [91] Wang K, Wei M, Morris M A, Zhou H, Holmes J D. Mesoporous Titania Nanotubes: Their Preparation and Application as Electrode Materials for Rechargeable Lithium Batteries [J]. Advanced Materials, 2007, 19(19): 3016-3020.
    [92] Beck J S, VartUli J C, Roth W J, Leonowicz M E, Kresge C T, Schmitt K D, Chu C T W, Olson D H, Sheppard E W, McCullen S B, Higgins J B, Schlenker J L. A New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates [J]. Journal of the American Chemical Society, 1992, 114(27): 10834-10843.
    [93] Tian B Z, Liu X Y, Tu B, Yu C Z, Fan J, Wang L M, Xie S H, Stucky G D, ZhaoD Y. Self-adjusted synthesis of ordered stable mesoporous minerals by acid-base pairs [J]. Nature Materials, 2003, 2(3): 159-163.
    [94] Monnier A, Schuth F, Huo Q, Kumar D, Margolese D I, Maxwell R S, Stucky G D, Krishnamrty M, Petroff P,Firouzi A, Janicke M, Chmelka B F. Cooperative Formation of Inorganic-Organic Interfaces in the Synthesis of Silicate Mesostructures [J]. Science, 1993, 261: 1299-1303.
    [95] Soler-illia G J D, Sanchez C, Lebeau B, Patarin J. Chemical strategies to design textured materials: From microporous and mesoporous oxides to nanonetworks and hierarchical structures [J]. Chemical Reviews, 2002, 102(11): 4093-4138.
    [96] Soler-Illia G J A A, Scolan E, Louis A, Albouy P A, Sanchez C. Design of meso-structured titanium oxo based hybrid organic-inorganic networks [J]. New Journal of Chemistry, 2001, 25(1): 156-165.
    [97] Soler-Illia G, Sanchez C. Interactions between poly (ethylene oxide)-based surfactants and transition metal alkoxides: their role in the templated construction of mesostructured hybrid organic-inorganic composites [J]. New Journal of Chemistry, 2000, 24(7): 493-499.
    [98] Chen D, Li Z, Wan Y, Tu X, Shi Y, Chen Z, Shen W, Yu C, Tu B, Zhao D. Anionic surfactant induced mesophase transformation to synthesize highly ordered large-pore mesoporous silica structures [J]. Journal of Materials Chemistry, 2006, 16(16): 1511-1519.
    [99] Liu K, Fu H, Shi K, Xiao F, Jing L, Xin B. Preparation of Large-Pore Mesoporous Nanocrystalline TiO2 Thin Films with Tailored Pore Diameters [J]. The Journal of Physical Chemistry B, 2005, 109(40): 18719-18722.
    [100] Cosnier S, Gondran C, Senillou A, Gr?tzel M, Vlachopoulos N. Mesoporous TiO2 films: New catalytic electrode fabricating amperometric biosensors based on oxidases [J]. Electroanalysis, 1997, 9(18):1387-1392.
    [101] Allain E, Besson S, Durand C, Moreau M, Gacoin T, Boilot J P. Transparent Mesoporous Nanocomposite Films for Self-Cleaning Applications [J]. Advanced Functional Materials, 2007, 17(4): 549-554.
    [102] Topoglidis E, Campbell C J, Cass A E G, Durrant J R. Nitric Oxide Biosensors Based on the Immobilization of Hemoglobin on Mesoporous Titania Electrodes [J].Electroanalysis, 2006, 18(9): 882-887.
    [103] Yu J C, Wang X, Fu X. Pore-Wall Chemistry and Photocatalytic Activity of Mesoporous Titania Molecular Sieve Films [J]. Chemistry of Materials, 2004, 16(8): 1523-1530.
    [104] Stathatos E, Petrova T, Lianos P. Study of the Efficiency of Visible-Light Photocatalytic Degradation of Basic Blue Adsorbed on Pure and Doped Mesoporous Titania Films [J]. Langmuir, 2001, 17(16): 5025-5030.
    [105] Peng T, Zhao D, Dai K, Shi W, Hirao K. Synthesis of Titanium Dioxide Nanoparticles with Mesoporous Anatase Wall and High Photocatalytic Activity [J]. The Journal of Physical Chemistry B, 2005, 109(11): 4947-4952.
    [106] Gr?tzel M. Photoelectrochemical cells [J]. Nature, 2001, 414: 338-344.
    [107] Chen D, Huang F, Cheng Y B, Caruso R A. Mesoporous Anatase TiO2 Beads with High Surface Areas and Controllable Pore Sizes: A Superior Candidate for High-Performance Dye-Sensitized Solar Cells [J]. Advanced Materials, 2009, 21: 1-5.
    [108] Zhao D, Peng T, Lu L, Cai P, Jiang P, Bian Z. Effect of Annealing Temperature on the Photoelectrochemical Properties of Dye-Sensitized Solar Cells Made with Mesoporous TiO2 Nanoparticles [J]. The Journal of Physical Chemistry C, 2008, 112(22): 8486-8494.
    [109] Lancelle-Beltran E, PrenéP, Boscher C, Belleville P, Buvat P, Lambert S, Guillet F, Boissière C, Grosso D, Sanchez C. Nanostructured Hybrid Solar Cells Based on Self-Assembled Mesoporous Titania Thin Films [J]. Chemistry of Materials, 2006, 18(26): 6152-6156.
    [110] Quintana M, Edvinsson T, Hagfeldt A, Boschloo G. Comparison of Dye-Sensitized ZnO and TiO2 Solar Cells: Studies of Charge Transport and Carrier Lifetime [J]. The Journal of Physical Chemistry C, 2007, 111(2): 1035-1041.
    [111] Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima E, Kitamura A, Shimohigoshi M, Watanabe T. Light-induced amphiphilic surfaces [J]. Nature, 1997, 388: 431-432.
    [112] Gu Z Z, Fujishima A, Sato O. Patterning of a Colloidal Crystal Film on a Modified Hydrophilic and Hydrophobic Surface [J]. Angewandte ChemieInternational Edition, 2002, 41(12): 2068-2070.
    [113] Tang J, Quan H, Ye J. Photocatalytic Properties and Photoinduced Hydrophilicity of Surface-Fluorinated TiO2 [J]. Chemistry of Materials, 2007, 19(1): 116-122.
    [114] Gao Y, Masuda Y, Koumoto K. Light-Excited Superhydrophilicity of Amorphous TiO2 Thin Films Deposited in an Aqueous Peroxotitanate Solution [J]. Langmuir, 2004, 20(8): 3188-3194.
    [115] Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima E, Kitamura A, Shimohigoshi M, Watanabe T. Photogeneration of Highly Amphiphilic TiO2 Surfaces [J]. Advanced Materials, 1998, 10(2): 135-138.
    [116] Nakajima A, Koizumi S, Watanabe T, Hashimoto K. Photoinduced Amphiphilic Surface on Polycrystalline Anatase TiO2 Thin Films [J]. Langmuir, 2000, 16(17): 7048-7050.
    [117] Miyauchi M, Nakajima A, Hashimoto K, Watanabe T. A Highly Hydrophilic Thin Film Under 1μW/cm2 UV Illumination [J]. Advanced Materials, 2000, 12(24): 1923-1927.
    [118] Sakai N, Fujishima A, Watanabe T, Hashimoto K. Quantitative Evaluation of the Photoinduced Hydrophilic Conversion Properties of TiO2 Thin Film Surfaces by the Reciprocal of Contact Angle [J]. The Journal of Physical Chemistry B, 2003, 107(4): 1028-1035.
    [119] Young T. An Essay on the Cohesion of Fluids [M]. London: Philosophical Transactions of the Royal Society, 1805, 95: 65-87.
    [120] Sekimoto K, Oguma R, Kawasaki K. Morphological stability analysis of partial wetting [J]. Annals of Physics, 1987, 176(2): 359-392.
    [121] Swain P S, Lipowsky R. Contact angles on heterogeneous surfaces: A new look at Cassie's and Wenzel's laws [J]. Langmuir, 1998, 14(23): 6772-6780.
    [122] Sakai N, Fujishima A, Watanabe T, Hashimoto K. Enhancement of the Photoinduced Hydrophilic Conversion Rate of TiO2 Film Electrode Surfaces by Anodic Polarization [J]. The Journal of Physical Chemistry B, 2001, 105(15): 3023-3026.
    [123] Sakai N, Wang R, Fujishima A, Watanabe T, Hashimoto K. Effect ofUltrasonic Treatment on Highly Hydrophilic TiO2 Surfaces [J]. Langmuir, 1998, 14(20): 5918-5920.
    [124] Ardizzone S, Bianchi C L, Cappelletti G. Growth of TiO2 nanocrystals in the presence of alkylpyridinium salts: the interplay between hydrophobic and hydrophilic interactions [J]. Surface and Interface Analysis, 2006, 38(4): 452-457.
    [125] Shibata T, Irie H, Hashimoto K. Enhancement of Photoinduced Highly Hydrophilic Conversion on TiO2 Thin Films by Introducing Tensile Stress [J]. The Journal of Physical Chemistry B, 2003, 107(39): 10696-10698.
    [126] Wang R, Sakai N, Fujishima A, Watanabe T, Hashimoto K. Studies of Surface Wettability Conversion on TiO2 Single-Crystal Surfaces [J]. The Journal of Physical Chemistry B, 1999, 103(12): 2188-2194.
    [127] Sun R D, Nakajima A, Fujishima A, Watanabe T, Hashimoto K. Photoinduced Surface Wettability Conversion of ZnO and TiO2 Thin Films [J]. The Journal of Physical Chemistry B, 2001, 105(10): 1984-1990.
    [128] Seki K, Tachiya M. Kinetics of Photoinduced Hydrophilic Conversion Processes of TiO2 Surfaces [J]. The Journal of Physical Chemistry B, 2004, 108(15): 4806-4810.
    [129] Uosaki K, T Yano, Nihonyanagi S. Interfacial Water Structure at As-Prepared and UV-Induced Hydrophilic TiO2 Surfaces Studied by Sum Frequency Generation Spectroscopy and Quartz Crystal Microbalance [J]. The Journal of Physical Chemistry B, 2004, 108(50): 19086-19088.
    [130]崔龙哲,吴桂萍,张杰,丁泰燮.亚甲基兰在AC和TiO2/AC上的吸附及催化臭氧氧化[J].水处理技术, 2008, 34(2): 67-69.
    [131]闰树旺,钟辉,周永兴.二氧化钛吸附剂的研制及从卤水中提锂[J].离子交换与吸附, 1992, 8(3): 222-228.
    [132]尹洪喜,张万忠,高恩君.纳米二氧化钛对隔离子的吸附研究[J].当代化工, 2007, 36(5): 482-487.
    [133]张雪红,唐星华,程新孙[J].物理化学学报, 2006, 22(5): 532-537.
    [134] Lee D, Omolade D, Cohen R E, Rubner M F. pH-Dependent Structure and Properties of TiO2/SiO2 Nanoparticle Multilayer Thin Films [J]. Chemistry of Materials, 2007, 19(6): 1427-1433.
    [135] Zhao W, Ma W, Chen C, Zhao J, Shuai Z. Efficient Degradation of Toxic Organic Pollutants with Ni2O3/TiO2-xBx under Visible Irradiation [J]. Journal of the American Chemical Society, 2004, 126(15): 4782-4783.
    [136] Chu S Z, Inoue S, Wada K, Li D, Haneda H, Awatsu S. Highly Porous (TiO2-SiO2-TeO2)/Al2O3/TiO2 Composite Nanostructures on Glass with Enhanced Photocatalysis Fabricated by Anodization and Sol-Gel Process [J]. The Journal of Physical Chemistry B, 2003, 107(27): 6586-6589.
    [137] Itzhaik Y, Niitsoo O, Page M, Hodes G. Sb2S3-Sensitized Nanoporous TiO2 Solar Cells [J]. The Journal of Physical Chemistry C, 2009, 113(11): 4254-4256.
    [138]陈垚翰,沈俊,张昭, Si掺杂介孔SO42-/TiO2的非模板剂法合成及表征[J].催化学报, 2008, 29(4): 356-360.
    [139] Liu R, Ren Y, Shi Y, Zhang F, Zhang L, Tu B, Zhao D. Controlled Synthesis of Ordered Mesoporous C-TiO2 Nanocomposites with Crystalline Titania Frameworks from Organic-Inorganic-Amphiphilic Coassembly [J]. Chemistry of Materials, 2008, 20(3): 1140-1146.
    [140] Sinha A K, Suzuki K. Preparation and Characterization of Novel Mesoporous Ceria-Titania [J]. The Journal of Physical Chemistry B, 2005, 109(5): 1708-1714.
    [141] Xiong C, Jr K J B. Mesoporous Molecular Sieve Derived TiO2 Nanofibers Doped with SnO2 [J]. The Journal of Physical Chemistry C, 2007, 111(28): 10359-10367.
    [142] Li H, Bian Z, Zhu J, Huo Y, Li H, Lu Y. Mesoporous Au/TiO2 Nanocomposites with Enhanced Photocatalytic Activity [J]. Journal of the American Chemical Society, 2007, 129(15): 4538-4539.
    [143] Liu B, Zeng H C. Carbon Nanotubes Supported Mesoporous Mesocrystals of Anatase TiO2 [J]. Chemistry of Materials, 2008, 20(8): 2711-2718.
    [144] Lee D W, Park S J, Ihm S K, Lee K H. One-Pot Synthesis of Pt-Nanoparticle- Embedded Mesoporous Titania/Silica and Its Remarkable Thermal Stability [J]. The Journal of Physical Chemistry C, 2007, 111(21): 7634-7638.
    [145] Zhu S, Zhou H, Hibino M, Honma I, Ichihara M. Synthesis of MnO2 nanoparticles confined in ordered mesoporous carbon using a sonochemical method [J]. Advanced Functional Materials, 2005, 15(3): 381-386.
    [146] Segura Y, Chmielarz L, Kustrowski P, Cool P, Dziembaj R, Vansant E F. Preparation and Characterization of Vanadium Oxide Deposited on Thermally Stable Mesoporous Titania [J]. The Journal of Physical Chemistry B, 2006, 110(2): 948-955.
    [147] Yoshitake H, Tatsumi T. Vanadium Oxide Incorporated into Mesoporous Titania with a BET Surface Area above 1000 m2/g: Preparation, Spectroscopic Characterization, and Catalytic Oxidation [J]. Chemistry of Materials, 2003, 15(8): 1695-1702.
    [148] Asaftei S, Walder L. Modification of Mesoporous TiO2 Electrodes with Cross-Linkable B12 Derivatives [J]. Langmuir, 2006, 22(13): 5544-5547.
    [149] Wu J M, Antonietti M, Gross S, Bauer M, Smarsly B M. Ordered Mesoporous Thin Films of Rutile TiO2 Nanocrystals Mixed with Amorphous Ta2O5 [J]. Chemical Physics Chemistry, 2008, 9(5): 748-757.
    [150] Wang D, Choi D, Yang Z, Viswanathan V V, Nie Z, Wang C, Song Y, Zhang J G, Liu J. Synthesis and Li-Ion Insertion Properties of Highly Crystalline Mesoporous Rutile TiO2 [J]. Chemistry of Materials, 2008, 20(10): 3435-3442.
    [151] Han F, Kambala V S R, Srinivasan M, Rajarathnam D, Naidu R. Tailored titanium dioxide photocatalysts for the degradation of organic dyes in wastewater treatment: A review [J]. Applied Catalysis A: General, 2009, 359(1-2): 25-40.
    [152] Li Y, Kim S J. Synthesis and Characterization of Nano titania Particles Embedded in Mesoporous Silica with Both High Photocatalytic Activity and Adsorption Capability [J]. The Journal of Physical Chemistry B, 2005, 109(25): 12309-12315.
    [153] Liu G, Chen Z, Dong C, Zhao Y, Li F, Lu G Q, Cheng H M. Visible Light Photocatalyst: Iodine-Doped Mesoporous Titania with a Bicrystalline Framework [J]. The Journal of Physical Chemistry B, 2006, 110(42): 20823-20828.
    [154] Xue M, Huang L, Wang J Q, Wang Y, Gao L, Zhu J, Zou Z G. The direct synthesis of mesoporous structured MnO2/TiO2 nanocomposite: a novel visible-light active photocatalyst with large pore size [J]. Nanotechnology, 2008, 19(18): 185604(8pp).
    [155] Tayade R J, Kulkarni R G, Jasra R V. Transition Metal Ion ImpregnatedMesoporous TiO2 for Photocatalytic Degradation of Organic Contaminants in Water [J]. Industrial & Engineering Chemistry Research, 2006, 45(15): 5231-5238.
    [156] Nowotny M K, Sheppard L R, Bak T, Nowotny J. Defect Chemistry of Titanium Dioxide. Application of Defect Engineering in Processing of TiO2-Based Photocatalysts [J]. The Journal of Physical Chemistry C, 2008, 112(14): 5275-5300.
    [157] Hoffmann M R, Martin S T, Choi W, Bahnemann D W. Environmental Applications of Semiconductor Photocatalysis [J]. Chemical Reviews, 1995, 95(1): 69-96.
    [158] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode [J]. Nature, 1972, 238: 37-38.
    [159] Bard A J, Fox M A. Artificial photosynthesis: Solar splitting of water to hydrogen and oxygen [J]. Accounts of Chemical Research, 1995, 28(3): 141-145.
    [160] Amouyal E. Photochemical production of hydrogen and oxygen from water: A review and state of the art [J]. Solar Energy Materials and Solar Cells, 1995, 38(1-4): 249-276.
    [161] Parmon V N. Photoproduction of hydrogen (an overview of modern trends) [R]. Advanced Hydrogen Energy (Hydrogen Energy Progress), 1990, 8: 801-813.
    [162] Tanaka A, Kondo J N, Domen K. Photocatalytic properties of ion-exchangeable layered oxides [J]. Critical Reviews in Surface Chemistry, 1995, 5(4): 305-326.
    [163] Turner J A. Sustainable hydrogen production [J]. Science, 2004, 305: 972-974.
    [164] Kamat P V. Meeting the Clean Energy Demand: Nanostructure Architectures for Solar Energy Conversion [J]. The Journal of Physical Chemistry C, 2007, 111(7): 2834-2860.
    [165] Grimes C A. Synthesis and application of highly ordered arrays of TiO2 nanotybes [J]. Journal of Materials Chemistry, 2007, 17(15): 1451-1457.
    [166] Tan B, Wu Y. Dye-Sensitized Solar Cells Based on Anatase TiO2 Nanoparticle/Nanowire Composites [J]. The Journal of Physical Chemistry B, 2006, 110(32): 15932-15938.
    [167] Bach U, Lupo D, Comte P, Moser J E, Weiss?rtel F, Salbeck J, Spreitzer H, Gr?tzel M. Solid-state dye-sensitized mesoporous TiO2 solar cells with highphoton-to-electron conversion efficiencies [J]. Nature, 1998, 395: 583-585.
    [168] Coakley K M, Liu Y, McGehee M D, Frindell K L, Stucky G D. Infiltration Semiconducting Polymers into Self-Assembled Mesoporous Titania Films for Photovoltaic Applications [J]. Advanced Functional Materials, 2003, 13(4): 301-306.
    [169] Liu K, Fu H, Shi K, Xin B, Jing L, Zhou W. Hydrophilicity and formation mechanism of large-pore mesoporous TiO2 thin films with tunable pore diameters [J]. Nanotechnology, 2006, 17(15): 3641-3648.
    [170] Liu K, Zhou W, Shi K, Li L, Zhang L, Zhang M, Fu H. Influence of calcination temperatures on the photocatalytic activity and photo-induced hydrophilicity of wormhole-like mesoporous TiO2 [J]. Nanotechnology, 2006, 17(5): 1363-1369.
    [171] Lee H Y, Park Y H, Ko K H. Correlation between Surface Morphology and Hydrophilic/Hydrophobic Conversion of MOCVD-TiO2 Films [J]. Langmuir, 2000, 16(18): 7289-7293.
    [172] Nakajima A, Fujishima A, Hashimoto K, Watanabe T. Preparation of Transparent Superhydrophobic Boehmite and Silica Films by Sublimation of Aluminum Acetylacetonate [J]. Advanced Materials, 1999, 11(16): 1365-1368.
    [1] Fattakhova-Rohlfing D, Wark M, Rathousky J. Ion-Permselective pH-Switchable Mesoporous Silica Thin Layers [J]. Chemistry of Materials, 2007, 19(7): 1640-1647.
    [2] Dong A, Ren N, Tang Y, Wang Y, Zhang Y, Hua W, Gao Z. General Synthesis of Mesoporous Spheres of Metal Oxides and Phosphates [J]. Journal of the American Chemical Society, 2003, 125(17): 4976-4977.
    [3] Lee B, Lu D, Kondo J N, Domen K. Three-Dimensionally Ordered Mesoporous Niobium Oxide [J]. Journal of the American Chemical Society, 2002, 124(38): 11256-11257.
    [4] Wan Y, Wang H, Zhao Q, Klingstedt M, Terasaki O, Zhao D. Ordered Mesoporous Pd/Silica-Carbon as a Highly Active Heterogeneous Catalyst for Coupling Reaction of Chlorobenzene in Aqueous Media [J]. Journal of the American Chemical Society, 2009, 131(12): 4541-4550.
    [5] Dickinson C, Zhou W, Hodgkins R P, Shi Y, Zhao D, He H. Formation Mechanism of Porous Single-Crystal Cr2O3 and Co3O4 Templated by Mesoporous Silica [J]. Chemistry of Materials, 2006, 18(13): 3088-3095.
    [6] Kubo S, Kosuge K. Salt-Induced Formation of Uniform Fiberlike SBA-15 Mesoporous Silica Particles and Application to Toluene Adsorption [J]. Langmuir, 2007, 23(23): 11761-11768.
    [7] Wang X, Yu J C, Ho C, Hou Y, Fu X. Photocatalytic Activity of a Hierarchically Macro/Mesoporous Titania [J]. Langmuir, 2005, 21(6): 2552-2559.
    [8] Smarsly B, Grosso D, Brezesinski T, Pinna N, Boissière C, Antonietti M, Sanchez C. Highly Crystalline Cubic Mesoporous TiO2 with 10-nm Pore Diameter Made with a New Block Copolymer Template [J]. Chemistry of Materials, 2004, 16(15): 2948-2952.
    [9] Liu R, Shi Y, Wan Y, Meng Y, Zhang F, Gu D, Chen Z, Tu B, Zhao D. Triconstituent Co-assembly to Ordered Mesostructured Polymer-Silica and Carbon-Silica Nanocomposites and Large-Pore Mesoporous Carbons with High Surface Areas [J]. Journal of the American Chemical Society, 2006, 128(35): 11652-11662.
    [10] Bao X Y, Zhao X S. Morphologies of Large-Pore Periodic Mesoporous Organosilicas [J]. The Journal of Physical Chemistry B, 2005, 109(21): 10727-10736.
    [11] Srinivasan M, White T. Degradation of Methylene Blue by Three-Dimensionally Ordered Macroporous Titania [J]. Environmental Science & Technology, 2007, 41(12): 4405-4409.
    [12] Yu J C, Wang X, Fu X. Pore-Wall Chemistry and Photocatalytic Activity of Mesoporous Titania Molecular Sieve Films [J]. Chemistry of Materials, 2004, 16(8): 1523-1530.
    [13] Wang K, Morris M A, Holmes J D. Preparation of Mesoporous Titania Thin Films with Remarkably High Thermal Stability [J]. Chemistry of Materials, 2005, 17(6): 1269-1271.
    [14] Kim M J, Ryoo R. Synthesis and pore size control of cubic mesoporous silica SBA-1 [J]. Chemistry of Materials, 1999, 11(2): 487-491.
    [15] Feng P Y, Bu X H, Pine D J. Control of pore sizes in mesoporous silica templated by liquid crystals in block copolymer-cosurfactant-water systems [J]. Langmuir, 2000, 16(12): 5304-5310.
    [16] Agren P, Linden M, Rosenholm J B, Schwarzenbacher R, Kriechbaum M, Amenitsch H, Laggner P, Blanchard J, Schuth F. Kinetics of cosurfactant-surfactant -silicate phase behavior. 1. Short-chain alcohols [J]. The Journal of Physical Chemistry B, 1999, 103(29): 5943-5948.
    [17] Liu K, Fu H, Shi K, Xiao F, Jing L, Xin B. Preparation of Large-Pore Mesoporous Nanocrystalline TiO2 Thin Films with Tailored Pore Diameters [J]. The Journal of Physical Chemistry B, 2005, 109(40): 18719-18722.
    [18] Zhao D, Chen C, Wang Y, Ji H, Ma W, Zang L, Zhao J. Surface Modification of TiO2 by Phosphate: Effect on Photocatalytic Activity and Mechanism Implication [J]. The Journal of Physical Chemistry C, 2008, 112(15): 5993-6001.
    [19] Chou T P, Zhang Q, Russo B, Fryxell G E, Cao G. Titania Particle Size Effect on the Overall Performance of Dye-Sensitized Solar Cells [J]. The Journal of Physical Chemistry C, 2007, 111(17): 6296-6302.
    [20] Egerton T A, Kosa S A M, Christensen P A. Photoelectrocatalytic disinfectionof E. coli suspensions by iron doped TiO2 [J]. Physical Chemistry Chemical Physics, 2006, 8: 398-406.
    [21] Sun B, Smirniotis P G, Boolchand P. Visible Light Photocatalysis with Platinized Rutile TiO2 for Aqueous Organic Oxidation [J]. Langmuir, 2005, 21(24): 11397-11403.
    [22] Halme J, Boschloo G, Hagfeldt A, Lund P. Spectral Characteristics of Light Harvesting, Electron Injection, and Steady-State Charge Collection in Pressed TiO2 Dye Solar Cells [J]. The Journal of Physical Chemistry C, 2008, 112(14): 5623-5637.
    [23] Altobello S, Argazzi R, Caramori S, Contado C, FréS D, Rubino P, ChonéC, Larramona G, Bignozzi C A. Sensitization of Nanocrystalline TiO2 with Black Absorbers Based on Os and Ru Polypyridine Complexes [J]. Journal of the American Chemical Society, 2005, 127(44): 15342-15343.
    [24] Rühle S, Cahen D. Electron Tunneling at the TiO2/Substrate Interface Can Determine Dye-Sensitized Solar Cell Performance [J]. The Journal of Physical Chemistry B, 2004, 108(46): 17946-17951.
    [25] Benk? G, Kallioinen J, Myllyperki? P, Trif F, Korppi-Tommola J E I, Yartsev A P, Sundstr?m V. Interligand Electron Transfer Determines Triplet Excited State Electron Injection in RuN3-Sensitized TiO2 Films [J]. The Journal of Physical Chemistry B, 2004, 108(9): 2862-2867.
    [26] Nelson J J, Amick T J, Elliott C M. Mass Transport of Polypyridyl Cobalt Complexes in Dye-Sensitized Solar Cells with Mesoporous TiO2 Photoanodes [J]. The Journal of Physical Chemistry C, 2008, 112(46): 18255-18263.
    [27] Zhao D, Peng T, Lu L, Cai P, Jiang P, Bian Z. Effect of Annealing Temperature on the Photoelectrochemical Properties of Dye-Sensitized Solar Cells Made with Mesoporous TiO2 Nanoparticles [J]. The Journal of Physical Chemistry C, 2008, 112(22): 8486-8494.
    [28] Chen D, Huang F, Cheng Y B, Caruso R A. Mesoporous Anatase TiO2 Beads with High Surface Areas and Controllable Pore Sizes: A Superior Candidate for High-Performance Dye-Sensitized Solar Cells [J]. Advanced Materials, 2009, 21(1): 1-5.
    [29] Chen C C, Chung H W, Chen C H, Lu H P, Lan C M, Chen S F, Luo L, Hung C S, Diau E W G. Fabrication and Characterization of Anodic Titanium Oxide Nanotube Arrays of Controlled Length for Highly Efficient Dye-Sensitized Solar Cells [J]. The Journal of Physical Chemistry C, 2008, 112(48): 19151-19157.
    [30] Jiu J, Isoda S, Wang F, Adachi M. Dye-Sensitized Solar Cells Based on a Single-Crystalline TiO2 Nanorod Film [J]. The Journal of Physical Chemistry B, 2006, 110(5): 2087-2092.
    [31] Gao Y, Nagai M, Chang T C, Shyue J J. Solution-Derived ZnO Nanowire Array Film as Photoelectrode in Dye-Sensitized Solar Cells [J]. Crystal Growth & Design, 2007, 7(12): 2467-2471.
    [32] Qu J, Gao X P, Li G R, Jiang Q W, Yan T Y. Structure Transformation and Photoelectrochemical Properties of TiO2 Nanomaterials Calcined from Titanate Nanotubes [J]. The Journal of Physical Chemistry C, 2009, 113(8): 3359-3363.
    [33] Martinson A B F, Elam J W, Liu J, Pellin M J, Marks T J, Hupp J T. Radial Electron Collection in Dye-Sensitized Solar Cells [J]. Nano Letters, 2008, 8(9): 2862-2866.
    [34] Suh D I, Lee S Y, Kim T H, Chun J M, Suh E K, Yang O B, Lee S K. The fabrication and characterization of dye-sensitized solar cells with a branched structure of ZnO nanowires [J]. Chemical Physics Letters, 2007, 442(4-6): 348-353.
    [35] Star A, Steuerman D W, Heath J R, Stoddart J F. Starched Carbon Nanotubes [J]. Angewandte Chemie International Edition, 2002, 41(14): 2508-2512.
    [36] Tasis D, Tagmatarchis N, Bianco A, Prato M. Chemistry of Carbon Nanotubes [J]. Chemical Reviews, 2006, 106(3): 1105-1136.
    [37] Balasubramanian K, Burghard M. Chemically Functionalized Carbon Nanotubes [J]. Small, 2005, 1(2): 180-192.
    [38] Kongkanand A, Kamat P V. Electron Storage in Single Wall Carbon Nanotubes. Fermi Level Equilibration in Semiconductor-SWCNT Suspensions [J]. ACS Nano, 2007, 1(1): 13-21.
    [39] Wang M, Peng L M, Wang J, Chen Q. Shaping Carbon Nanotubes and the Effects on Their Electrical and Mechanical Properties [J]. Advanced Functional Materials, 2006, 16(11): 1462-1468.
    [40] Rice P. Broadband Electrical Characterization of Multiwalled Carbon Nanotubes and Contacts [J]. Nano Letters, 2007, 7(4): 1086-1090.
    [41] Itkis M E, Borondics F, Yu A, Haddon R C. Thermal Conductivity Measurements of Semitransparent Single-Walled Carbon Nanotube Films by a Bolometric Technique [J]. Nano Letters, 2007, 7(4): 900-904.
    [42]王宝辉,王德军,崔毅. CdS超微粒子薄膜电极的光电化学特性[J].高等学校化学学报, 1995, 16(10): 1610-1613.
    [43]王德军,刘旺.表面光电压谱在化学中的应用[J].化学通报, 1989, 10: 32-37.
    [44] Sainsbury T, Fitzmaurice D. Carbon-Nanotube-Templated and Pseudorotaxane- Formation-Driven Gold Nanowire Self-Assembly [J]. Chemistry of Materials, 2004, 16(11): 2174-2179.
    [45] Kongkanand A, Domínguez R M, Kamat P V. Single Wall Carbon Nanotube Scaffolds for Photoelectrochemical Solar Cells. Capture and Transport of Photogenerated Electrons [J]. Nano Letters, 2007, 7(3): 676-680.
    [46]潘凯,刘兆阅,徐金杰,于苗,王德军,白玉白,李铁津.不同取代基卟啉衍生物敏化纳米TiO2多孔膜电极的光电性质研究[J].高等学校化学学报, 2004, 25(5): 934-937.
    [47] Yang Y, Qu L, Dai L, Kang T S, Durstock M. Electrophoresis coating of titanium oxide on aligned carbon nanotubes for controlled syntheses of photoelectronic nanomaterials [J]. Advanced Materials, 2007, 19(9): 1239-1243.
    [48] Osswald S, Flahaut E, Gogotsi Y. In Situ Raman Spectroscopy Study of Oxidation of Double- and Single-Wall Carbon Nanotubes [J]. Chemistry of Materials, 2006, 18(6): 1525-1533.
    [49] Jing L, Sun X, Shang J, Cai W, Xu Z, Du Y, Fu H. Review of surface photovoltage spectra of nano-sized semiconductor and its applications in heterogeneous photocatalysis [J]. Solar Energy Materials and Solar Cells, 2003, 79(2): 133-151.
    [50] Jing L, Fu H Wang B, Wang D, Xin B, Li S, Sun J. Effects of Sn dopant on the photoinduced charge property and photocatalytic activity of TiO2 nanoparticles [J]. Applied Catalysis B: Environmental, 2006, 62(3-4): 282-291.
    [51] Brown P, Takechi K, Kamat P V. Single-Walled Carbon Nanotube Scaffolds for Dye-Sensitized Solar Cells [J]. The Journal of Physical Chemistry C, 2008, 112(12): 4776-4782.
    [1] Iijima S. Helical microtubules of graphitic carbon [J]. Nature, 1991, 354: 56-58.
    [2] Ajayan P M. Nanotubes from carbon [J]. Chemical Reviews, 1999, 99(7): 1787-1800.
    [3] Piscanec S, Lazzeri M, Robertson J, Ferrari A C, Mauri F. Optical Phonons in Carbon Nanotubes: Kohn Anomalies, Peierls Distortions and Dynamic Effects [J]. Physical Review B, 2007, 75: 035427.
    [4] Yin Y, Vamivakas A N, Walsh A G, Cronin S B, Unlu M S, Goldberg B B, Swan A K. Optical Determination of Electron-Phonon Coupling in Carbon Nanotubes [J]. Physical Review Letters, 2007, 98: 037404.
    [5] Tasis D, Tagmatarchis N, Bianco A, Prato M. Chemistry of Carbon Nanotubes [J]. Chemical Reviews, 2006, 106(3): 1105-1136.
    [6] Alexiadis A, Kassinos S. Molecular Simulation of Water in Carbon Nanotubes [J]. Chemical Reviews, 2008, 108(12): 5014-5034.
    [7] Dai H. Carbon Nanotubes: Synthesis, Integration, and Properties [J]. Accounts of Chemical Research, 2002, 35(12): 1035-1044.
    [8] Liu J, Rinzler A G, Dai H, Hafner J H, Bradley R K, Boul P J, Lu A, Iverson T, Shelimov K, Huffman C B, Rodriguez-Macias F, Shon Y S, Lee T R, Colbert D T, Smalley R E. Fullerene Pipes [J]. Science, 1998, 280: 1253-1256.
    [9] Saini R K, Chiang I W, Peng H Q, Smalley R E. Billups W E, Hauge R H, Margrave J L. Covalent Sidewall Functionalization of Single Wall Carbon Nanotubes [J]. Journal of the American Chemical Society, 2003, 125(12): 3617-3621.
    [10] Tasis D, Tagmatarchis N, Georgakilas V, Prato M. Spectroscopic Characterization of Photolytically Generated Radical Ion Pairs in Single-Wall Carbon Nanotubes Bearing Surface-Immobilized Tetrathiafulvalenes [J]. Chemistry - A European Journal, 2003, 9(17): 4001-4008.
    [11] Aitchison T J, Ginic-Markovic M, Matisons J G, Simon G P, Fredericks P M. Purification, Cutting, and Sidewall Functionalization of Multiwalled Carbon Nanotubes Using Potassium Permanganate Solutions [J]. The Journal of PhysicalChemistry C, 2007, 111(6): 2440-2446.
    [12] Liu Y Q, Gao L, Sun J. Debundling of Single-Walled Carbon Nanotubes by Using Natural Polyelectrolytes [J]. The Journal of Physical Chemistry C, 2007, 111(3): 1223-1229.
    [13] Ajayan P M, Tour J M. Materials Science: Nanotube composites [J]. Nature, 2007, 447: 1066-1068.
    [14] Du J M, Fu L, Liu Z M, Han B X, Li Z H, Liu Y. Q, Sun Z Y, Zhu D B. Facile Route to Synthesize Multiwalled Carbon Nanotube/Zinc Sulfide Heterostructures: Optical and Electrical Properties [J]. The Journal of Physical Chemistry B, 2005, 109(26): 12772-12776.
    [15] Ge J J, Zhang D, Li Q, Hou H Q, Graham M J, Dai L M, Harris F W, Cheng S Z D. Multiwalled Carbon Nanotubes with Chemically Grafted. Polyetherimides [J]. Journal of the American Chemical Society, 2005, 127(28): 9984-9985.
    [16] Hirsch A. Functionalization of Single-Walled Carbon Nanotubes [J]. Angewandte Chemie International Edition, 2002, 41(11): 1853-1859.
    [17] Banerjee S, Hemraj-Benny T, Wong S S. Covalent surface chemistry of single-walled carbon nanotubes [J]. Advanced Materials, 2005, 17(1): 17-29.
    [18] Bahr J L, Yang J P, Kosynkin D V, Bronikowski M J, Smalley R E, Tour J M. Covalent Chemistry of Single-Walled Carbon Nanotubes [J]. Journal of the American Chemical Society, 2001, 123(27): 6536-6542.
    [19] Song L X, Bai L, Xu X M, He J, Pan S Z. Inclusion complexation, encapsulation interaction and inclusion number in cyclodextrin chemistry [J]. Coordination Chemistry Reviews, 2009, 253(9-10): 1276-1284.
    [20] Valerian T. Lipkowitz D B. Cyclodextrins: Introduction [J]. Chemical Reviews, 1998, 98(5): 1741-1742.
    [21] Hapiot F, Tilloy S, Monflier E. Cyclodextrins as Supramolecular Hosts for Organometallic Complexes [J]. Chemical Reviews, 2006, 106(3): 767-781.
    [22] Chen J, Dyer M J, Yu M F. Cyclodextrin-mediated soft cutting of single-walled carbon nanotubes [J]. Journal of the American Chemical Society, 2001, 123(25): 6201-6202.
    [23] Chambers G, Carroll C, Farrell G F, Dalton A B, McNamara M, Panhuis M I H,Byrne H J. Characterisation of the interaction betweenγ-cyclodextrin and single wall carbon nanotubes [J]. Nano Letters, 2003, 3(6): 843-846.
    [24] Na N, Hu Y P, Jin O Y, Baeyens W R G, Delanghe J R, Taes Y E C, Xie M X, Chen H Y, Yang Y P. On the use of dispersed nanoparticles modified with single layerβ-cyclodextrin as chiral selecor to enhance enantioseparation of clenbuterol with capillary electrophoresis [J]. Talanta, 2006, 69(4): 866-872.
    [25] Kang S Z, Cui Z Y, Liu L Y, Mu J. Multi-wall carbon nanotubes (MWNTs) linked with cyclodextrin (I): Properties of their composite with 4-aminopyridine [J]. Fullerenes Nanotubes and Carbon Nanostructures, 2005, 13(4): 353-362.
    [26] Ermer, O. Calculation of molecular properties using force fields. Applications in organic chemistry [J]. Structure and Bonding, 1976, 27: 161-211.
    [27] Sun H. COMPASS: An ab Initio Force-Field Optimized for Condensed-Phase Applications-Overview with Details on Alkane and Benzene Compounds [J]. The Journal of Physical Chemistry B, 1998, 102(38): 7338-7364.
    [28] Miyake K, Yasuda S, Harada A, Sumaoka J, Komiyama M, Shigekawa H. Formation Process of Cyclodextrin Necklace-Analysis of Hydrogen Bonding on a Molecular Level [J]. Journal of the American Chemical Society, 2003, 125(17): 5080-5085.
    [29] Li S, Purdy W C. Cyclodextrins and Their Applications in Analytical-Chemistry [J]. Chemical Reviews, 1992, 92(6): 1457-1470.
    [30] Rekharsky M V, Inoue Y. Complexation thermodynamics of cyclodextrin [J]. Chemical Reviews, 1998, 98(5): 1875-1917.
    [31] Connors K A. The stability of cyclodextrin complexes in solution [J]. Chemical Reviews, 1997, 97(5): 1325-1357.
    [32] Rouse J H. Polymer-Assisted Dispersion of Single-Walled Carbon Nanotubes in Alcohols and Applicability toward Carbon Nanotube/Sol-Gel Composite Formation [J]. Langmuir, 2005, 21(3): 1055-1061.
    [33] Li J Y, Yan D Y. Inclusion Complexes Formation between Cyclodextrins and Poly (1,3-dioxolane) [J]. Macromolecules, 2001, 34(6): 1542-1544.
    [34] Okumura H, Kawaguchi Y, Harada A. Preparation and Characterization of Inclusion Complexes of Poly (dimethylsiloxane)s with Cyclodextrins [J].Macromolecules, 2001, 34(18): 6338-6343.
    [35] Giordano F, Novak C, Moyano J R. Thermal analysis of cyclodextrins and their inclusion compounds [J]. Thermochimica Acta, 2001, 380(2): 123-151.
    [36] Manor P C, Saenger W. Topography of cyclodextrin inclusion complexes. III. Crystal and molecular structure of cyclohexaamylose hexahydrate, the water dimer inclusion complex [J]. Journal of the American Chemical Society, 1974, 96(11): 3630-3639.
    [37] Uekama K, Hirayama F, Irie T. Cyclodextrin Drug Carrier Systems [J]. Chemical Reviews, 1998, 98(5): 2045-2076.
    [38] Hedges A R. Industrial Applications of Cyclodextrins [J]. Chemical Reviews, 1998, 98(5): 2035-2044.
    [39] Liu Y, Liang P, Chen Y, Zhao Y L, Ding F, Yu A. Spectrophotometric Study of Fluorescence Sensing and Selective Binding of Biochemical Substrates by 2,2‘-Bridged Bis (β-cyclodextrin) and Its Water-Soluble Fullerene Conjugate [J]. The Journal of Physical Chemistry B, 2005, 109(49): 23739-23744.
    [40] Rusa C C, Luca C, Tonelli A E. Polymer-Cyclodextrin Inclusion Compounds: Toward New Aspects of Their Inclusion Mechanism [J]. Macromolecules, 2001, 34(5): 1318-1322.
    [41] Gao Y A, Li Z H, Du J M, Han B X, Li G Z, Hou W G, Shen D, Zheng L Q, Zhang G Y. Preparation and Characterization of Inclusion Complexes ofβ-Cyclodextrins with Ionic Liquid [J]. Chemistry - A European Journal, 2005, 11(20): 5875-5880.
    [42] Chan S C, Kuo S W, Chang F C. Synthesis of the Organic/Inorganic Hybrid Star Polymers and Their Inclusion Complexes with Cyclodextrins [J]. Macromolecules, 2005, 38(8): 3099-3107.
    [43] Harata K. Polymer-Cyclodextrin Inclusion Compounds: Toward New Aspects of Their Inclusion Mechanism [J]. Chemical Reviews, 1998, 98(5): 1803-1828.
    [44] Jiao H, Goh S H, Valiyaveettil S. Inclusion Complexes of Poly (4-vinylpyridine)-Dodecylbenezenesulfonic Acid Complex and Cyclodextrins [J]. Macromolecules, 2002, 35(10): 3997-4002.
    [45] Okumura H, Kawaguchi Y, Harada A. Preparation and Characterization of theInclusion Complexes of Poly (dimethylsilane)s with Cyclodextrins [J]. Macromolecules, 2003, 36(17): 6422-6429.
    [46] Gidley M J, Bociek S M. Carbon-13 CP/MAS NMR studies of amylose inclusion complexes, cyclodextrins, and the amorphous phase of starch granules: relationships between glycosidic linkage conformation and solid-state carbon-13 chemical shifts [J]. Journal of the American Chemical Society, 1988, 110(12): 3820-3829.
    [47] Jiao H, Goh S H, Valiyaveettil S, Zheng J W. Inclusion Complexes of Perfluorinated Oligomers with Cyclodextrins [J]. Macromolecules, 2003, 36(11): 4241-4243.
    [48] Li J, Ni X P, Zhou Z H, Leong K W. Preparation and Characterization of Polypseudorotaxanes Based on Block-Selected Inclusion Complexation between Poly (propylene oxide)-Poly (ethylene oxide)-Poly (propylene oxide) Triblock Copolymers andα-Cyclodextrin [J]. Journal of the American Chemical Society, 2003, 125(7): 1788-1795.
    [49] Harada A, Li J, Kamachi M. Preparation and properties of inclusion complexes of polyethylene glycol with .alpha.-cyclodextrin [J]. Macromolecules, 1993, 26(21): 5698-5703.
    [50] Rusa C C, Bullions T A, Fox J, Porbeni F E, Wang X W, Tonelli A E. Inclusion Compound Formation with a New Columnar Cyclodextrin Host [J]. Langmuir, 2002, 18(25): 10016-10023.
    [51] Schneider H J, Hacket F, Rudiger V, Ikeda H. NMR Studies of Cyclodextrins and Cyclodextrin Complexes [J]. Chemical Reviews, 1998, 98(5): 1755-1786.
    [52] Wei M, Tonelli A E. Compatiblization of Polymers via Coalescence from Their Common Cyclodextrin Inclusion Compounds [J]. Macromolecules, 2001, 34(12): 4061-4065.
    [53] Bartl M H, Boettcher S W, Frindell K L, Stucky G D. 3-D Molecular Assembly of Function in Titania-Based Composite Material Systems [J]. Accounts of Chemical Research, 2005, 38(4): 263-271.
    [54] Chen K S, Liu W H, Wang Y H, Lai C H, Chou P T, Lee G H, Chen K, Chen H Y, Chi Y, Tung F C. New Family of Ruthenium-Dye-Sensitized NanocrystallineTiO2 Solar Cells with a High Solar-Energy-Conversion Efficiency [J]. Advanced Functional Materials, 2007, 17(15): 2964-2974.
    [55] Li D, Haneda H, Hishita S, Ohashi N. Visible-Light-Driven N-F-Codoped TiO2 Photocatalysts. 2. Optical Characterization, Photocatalysis, and Potential Application to Air Purification [J]. Chemistry of Materials, 2005, 17(10): 2596-2602.
    [56] Fujishima A, Honda K. Electrochemical proteolysis of water at a semiconductor electrode [J]. Nature, 1972, 238: 37-38.
    [57] Du X, Wang Y, Mu Y, Gui L, Wang P, Tang Y. A New Highly Selective H2 Sensor Based on TiO2/PtO-Pt Dual-Layer Films [J]. Chemistry of Materials, 2002, 14(9): 3953-3957.
    [58] Gr?tzel M. Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 164(1-3): 3-14.
    [59] F?rster S, Antonietti M. Amphiphilic block copolymers in structure controlled nanomaterial hybrids [J]. Advanced Materials, 1998, 10(3): 195-198
    [60] Matijevic E. Uniform inorganic colloid dispersions: Achievements and challenges [J]. Langmuir, 1994(1), 10: 8-9.
    [61] Fendler J H, Meldrum F C. The Colloid Chemical Approach to Nanostructured Materials [J]. Advanced Materials, 1995, 7(7): 607-608.
    [62] Liu K, Zhang M, Zhou W, Li L, Wang J, Fu H. Preparation, characterization, and photo-induced hydrophilicity of nanocrystalline anatase thin films synthesized through evaporation-induced assembly [J]. Nanotechnology, 2005, 16(12): 3006-3011.
    [63] Ke W G, Tang C, Guan W, Zeng D, Deng F. Covalent Functionalization of Multiwalled Carbon Nanotubes with a Low Molecular Weight Chitosan [J]. Biomacromolecules, 2007, 8(2): 322-326.
    [64] Yan X B, Han Z J, Yang Y, Tay B K. Fabrication of Carbon Nanotube-Polyaniline Composites via Electrostatic Adsorption in Aqueous Colloids [J]. The Journal of Physical Chemistry C, 2007, 111(11): 4125-4131.
    [65] Wang W, Bando Y, Zhi C, Fu W, Wang E, Golberg D. Aqueous NoncovalentFunctionalization and Controlled Near-Surface Carbon Doping of Multiwalled Boron Nitride Nanotubes [J]. Journal of the American Chemical Society, 2008, 130(26): 8144-8145.
    [66] Guo W, Guo Y. Energy Optimum Chiralities of Multiwalled Carbon Nanotubes [J]. Journal of the American Chemical Society, 2007, 129(10): 2730-2731.
    [67] Yu Y, Yu J C, Chan C Y, Che Y K, Zhao J C, Ding L, Ge W K, Wong P K. Enhancement of adsorption and photocatalytic activity of TiO2 by using carbon nanotubes for the treatment of azo dye [J]. Applied Catalysis B: Environmental, 2005, 61(1-2): 1-11.
    [68] Jang S R, Vittal R, Kim K J. Incorporation of Functionalized Single-Wall Carbon Nanotubes in Dye-Sensitized TiO2 Solar Cells [J]. Langmuir, 2004, 20(22): 9807-9810.
    [69] Yu H, Quan X, Chen S, Zhao H. TiO2-Multiwalled Carbon Nanotube Heterojunction Arrays and Their Charge Separation Capability [J]. The Journal of Physical Chemistry C, 2007, 111(35): 12987-12991.
    [70] Yao Y, Li G, Ciston S, Lueptow R M, Gray K A. Photoreactive TiO2/Carbon Nanotube Composites: Synthesis and Reactivity [J]. Environmental Science & Technology, 2008, 42(13): 4952-4957.
    [71] Kongkanand A, Dominguez R M, Kamat P V, Single Wall Carbon Nanotube Scaffolds for Photoelectrochemical Solar Cells. Capture and Transport of Photogenerated Electrons [J]. Nano Letters, 2007, 7(3): 676-680.
    [72] Feng J, Miedaner A, Ahrenkiel P, Himmel M E, Curtis C, Ginley D. Self-Assembly of Photoactive TiO2-Cyclodextrin Wires [J]. Journal of the American Chemical Society, 2005, 127(43): 14968-14969.
    [73] Liu K, Fu H, Xie Y, Zhang L, Pan K, Zhou W. Assembly ofβ-Cyclodextrins Acting as Molecular Bricks onto Multiwall Carbon Nanotubes [J]. The Journal of Physical Chemistry C, 2008, 112(4): 951-957.
    [74] Wang P, Wang L, Ma B, Li B, Qiu Y. TiO2 Surface Modification and Characterization with Nanosized PbS in Dye-Sensitized Solar Cells [J]. The Journal of Physical Chemistry B, 2006, 110(29): 14406-14409.
    [75] Halme J, Boschloo G, Hagfeldt A, Lund P. Spectral Characteristics of LightHarvesting, Electron Injection, and Steady-State Charge Collection in Pressed TiO2 Dye Solar Cells [J]. The Journal of Physical Chemistry C, 2008, 112(14): 5623-5637.
    [76] Kamat P V, Thomas K G, Barazzouk S, Girishkumar G, Vinodgopal K, Meisel D. Self-Assembled Linear Bundles of Single Wall Carbon Nanotubes and Their Alignment and Deposition as a Film in a dc Field [J]. Journal of the American Chemical Society, 2004, 126(34): 10757-10762.
    [77] Moret M P, Zallen R, Vijay D P, Desu B S. Brookite-rich titania films made by pulsed laser deposition [J]. Thin Solid Films, 2000, 366(1-2): 8-10.
    [78] Yang Y, Qu L, Dai L, Kang T S, Durstock M. Electrophoresis Coating of Titanium Dioxide on Aligned Carbon Nanotubes for Controlled Syntheses of Photoelectronic Nanomaterials [J]. Advanced Materials, 2007, 19(9): 1239-1243.
    [79] Kim U J, Furtado C A, Liu X, Chen G, Eklund P C. Raman and IR Spectroscopy of Chemically Processed Single-Walled Carbon Nanotubes [J]. Journal of the American Chemical Society, 2005, 127(44): 15437-15445.
    [80] Osswald S, Flahaut E, Gogotsi Y. In Situ Raman Spectroscopy Study of Oxidation of Double- and Single-Wall Carbon Nanotubes [J]. Chemistry of Materials, 2006, 18(6): 1525-1533.
    [81] Bratu I, Astilean S, Ionesc C, Indrea E, Huvenne J P, Legrand P. FT-IR and X-ray spectroscopic investigations of Na-diclofenac-cyclodextrins interactions [J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 1998, 54(1): 191-196.
    [82] Wang J, Wei M, Rao G, Evans D G, Duan X. Structure and thermal decomposition of sulfatedβ-cyclodextrin intercalated in a layered double hydroxide [J]. Journal of Solid State Chemistry, 2004, 177(1): 366-371.
    [83] Wei M, Wang J, He J, Evans D G, Duan X. In situ FT-IR, in situ HT-XRD and TPDE study of thermal decomposition of sulfatedβ-cyclodextrin intercalated in layered double hydroxides [J]. Microporous and Mesoporous Materials, 2005, 78(1): 53-61.
    [84] Huang Y, Li D, Li J.β-Cyclodextrin controlled assembling nanostructures from gold nanoparticles to gold nanowires [J]. Chemical Physics Letters, 2004, 389(1-3):14-18.
    [85] Yu J C, Jiang Z T, Liu H Y, Yu J, Zhang L.β-Cyclodextrin epichlorohydrin copolymer as a solid-phase extraction adsorbent for aromatic compounds in water samples [J]. Analytica Chimica Acta, 2003, 477(1): 93-101.
    [86] Kastner J, Pichler T, Kuzmany H, Curran S, Blau W, Weldon D N, Delamesiere M, Draper S, Zandbergen H. Resonance Raman and infrared-spectroscopy of carbon nanotubes [J]. Chemical Physics Letters, 1994, 221(1-2): 53-58.
    [87] Peng J, Qu X, Wei G, Li J, Qiao J. The cutting of MWNTs using gamma radiation in the presence of dilute sulfuric acid [J]. Carbon, 2004, 42(12-13): 2741-2744.
    [88] Williams G, Seger B, Kamat P V. TiO2-Graphene Nanocomposites. UV-Assisted Photocatalytic Reduction of Graphene Oxide [J]. ACS Nano, 2008, 2(7): 1487-1491.
    [89] Yamakata A, Ishibashi T, Onishi H. Electron- and Hole-Capture Reactions on Pt/TiO2 Photocatalyst Exposed to Methanol Vapor Studied with Time-Resolved Infrared Absorption Spectroscopy [J]. The Journal of Physical Chemistry B, 2002, 106(35): 9122-9125.
    [90] Yoshihara T, Katoh R, Furube A, Tamaki Y, Murai M, Hara K, Murata S, Arakawa H, Tachiya M. Identification of Reactive Species in Photoexcited Nanocrystalline TiO2 Films by Wide-Wavelength-Range (400-2500 nm) Transient Absorption Spectroscopy [J]. The Journal of Physical Chemistry B, 2004, 108(12): 3817-3823.
    [91] Bahnemann D, Henglein A, Spanhel L. Detection of the intermediates of colloidal TiO2-catalysed photoreactions [J]. Faraday Discussions of the Chemical Society, 1984, 78: 151-163.
    [92] Bahnemann D, Henglein A, Spanhel L. Flash photolysis observation of the absorption spectra of trapped positive holes and electrons in colloidal titanium dioxide [J]. Journal of Physical Chemistry, 1984, 88(8): 709-711.
    [93] Shkrob I A, Sauer M C, Gosztola D. Efficient, Rapid Photooxidation of Chemisorbed Polyhydroxyl Alcohols and Carbohydrates by TiO2 Nanoparticles in an Aqueous Solution [J]. The Journal of Physical Chemistry B, 2004, 108(33): 12512-12517.
    [94] Rajh T, Chen L X, Lukas K, Liu T, Thurnauer M C, Tiede D M. Surface Restructuring of Nanoparticles: An Efficient Route for Ligand-Metal Oxide Crosstalk [J]. The Journal of Physical Chemistry B, 2002, 106(41): 10543-10552.
    [95] Goldstein S, Czapski G, Rabani J. Oxidation of phenol by radiolytically generated OH radicals and chemically generated SO4-. A distinction between OH transfer and hole oxidation in the photolysis of TiO2 colloid solutions [J]. Journal of Physical Chemistry, 1994, 98(26): 6586-6591.
    [96] Tachikawa T, Tojo S, Fujitsuka M, Majima T. Influences of Adsorption on TiO2 Photocatalytic One-Electron Oxidation of Aromatic Sulfides Studied by Time-Resolved Diffuse Reflectance Spectroscopy [J]. The Journal of Physical Chemistry B, 2004, 108(19): 5859-5866.
    [97] Diebold U, The surface science of titanium dioxide [J]. Surface Science Reports, 2003, 48(5-8): 53-229.
    [98] Law M, Greene L E, Johnson J C, Saykally R, Yang P. Nanowire Dye-Sensitized Solar Cells [J]. Nature Materials, 2005, 4(6): 455-459.
    [99] Mor G K, Shankar K, Paulose M, Varghese O K, Grimes C A. Use of Highly-Ordered TiO2 Nanotube Arrays in Dye-Sensitized Solar Cells [J]. Nano Letters, 2006, 6(2): 215-218.
    [100] Tan B, Wu Y. Dye-Sensitized Solar Cells Based on Anatase TiO2 Nanoparticle/Nanowire Composites [J]. The Journal of Physical Chemistry B, 2006, 110(32): 15932-15938.
    [101] Yanagida M, Yamaguchi T, Kurashige M, Hara K, Katoh R, Sugihara H, Arakawa H. Panchromatic Sensitization of Nanocrystalline TiO2 with cis-Bis(4- carboxy-2-[2‘-(4‘-carboxypyridyl)]quinoline)bis(thiocyanato-N)ruthenium(II) [J]. Inorganic Chemistry, 2003, 42(24): 7921-7931.
    [102] Brown P, Takechi K, Kamat P V. Single-Walled Carbon Nanotube Scaffolds for Dye-Sensitized Solar Cells [J]. The Journal of Physical Chemistry C, 2008, 112(12): 4776-4782.
    [1] Clifford J N, Palomares E, Nazeeruddin M K, Thampi R, Gr?tzel M, Durrant J R. Multistep Electron Transfer Processes on Dye Co-sensitized Nanocrystalline TiO2 Films [J]. Journal of the American Chemical Society, 2004, 126(18): 5670-5671.
    [2] Hara K, Miyamoto K, Abe Y, Yanagida M. Electron Transport in Coumarin-Dye-Sensitized Nanocrystalline TiO2 Electrodes [J]. The Journal of Physical Chemistry B, 2005, 109(50): 23776-23778.
    [3] Nogueira A F, Furtado L F O, Formiga A L B, Nakamura M, Araki K, Toma H E. Sensitization of TiO2 by Supramolecules Containing Zinc Porphyrins and Ruthenium-Polypyridyl Complexes [J]. Inorganic Chemistry, 2004, 43(2): 396-398.
    [4] Lee D J, Senseman S A, Sciumbato A S, Jung S C, Krutz L J. The Effect of Titanium Dioxide Alumina Beads on the Photocatalytic Degradation of Picloram in Water [J]. Journal of Agricultural and Food Chemistry, 2003, 51(9): 2659-2664.
    [5] Mills A, Crow M, Wang J, Parkin I P, Boscher N. Photocatalytic Oxidation of Deposited Sulfur and Gaseous Sulfur Dioxide by TiO2 Films [J]. The Journal of Physical Chemistry C, 2007, 111(14): 5520-5525.
    [6] Chen L C, Chou T C. Photodecolorization of Methyl Orange Using Silver Ion Modified TiO2 as Photocatalyst [J]. Industrial & Engineering Chemistry Research, 1994, 33(6): 1436-1443.
    [7] Ryu J, Choi W. Substrate-Specific Photocatalytic Activities of TiO2 and Multiactivity Test for Water Treatment Application [J]. Environmental Science & Technology, 2008, 42(1): 294-300.
    [8] Kim S, Park H, Choi W. Comparative Study of Homogeneous and Heterogeneous Photocatalytic Redox Reactions: PW12O403- vs TiO2 [J]. The Journal of Physical Chemistry B, 2004, 108(20): 6402-6411.
    [9] Zhao W, Ma W, Chen C, Zhao J, Shuai Z. Efficient Degradation of Toxic Organic Pollutants with Ni2O3/TiO2-xBx under Visible Irradiation [J]. Journal of the American Chemical Society, 2004, 126(15): 4782-4783.
    [10] Tian Y, Tatsuma T. Mechanisms and Applications of Plasmon-Induced Charge Separation at TiO2 Films Loaded with Gold Nanoparticles [J]. Journal of theAmerican Chemical Society, 2005, 127(20): 7632-7637.
    [11] Sadeghi M, Liu W, Zhang T G, Stavropoulos P, Levy B. Role of Photoinduced Charge Carrier Separation Distance in Heterogeneous Photocatalysis: Oxidative Degradation of CH3OH Vapor in Contact with Pt/TiO2 and Cofumed TiO2-Fe2O3 [J]. Journal of Physical Chemistry, 1996, 100(50): 19466-19474.
    [12] Stathatos E, Petrova T, Lianos P. Study of the Efficiency of Visible-Light Photocatalytic Degradation of Basic Blue Adsorbed on Pure and Doped Mesoporous Titania Films [J]. Langmuir, 2001, 17(16): 5025-5030.
    [13] Serpone N, Lawless D, Disdier J, Herrmann J M. Spectroscopic, Photoconductivity, and Photocatalytic Studies of TiO2 Colloids: Naked and with the Lattice Doped with Cr3+, Fe3+, and V5+ Cations [J]. Langmuir, 1994, 10(3): 643-652.
    [14] Kongkanand A, Kamat P V. Electron Storage in Single Wall Carbon Nanotubes. Fermi Level Equilibration in Semiconductor-SWCNT Suspensions [J]. ACS Nano, 2007, 1(1): 13-21.
    [15] Wang J, Liu Z, Cai R. A New Role for Fe3+ in TiO2 Hydrosol: Accelerated Photodegradation of Dyes under Visible Light [J]. Environmental Science & Technology, 2008, 42(15): 5759-5764.
    [16] Kickelbick G. Hybrid Materials: Synthesis, Characterization and Application [M]. Wiley-VCH, Weinheim, Germany, 2007.
    [17] Eder D, Windle A H. Carbon-Inorganic Hybrid Materials: The Carbon-Nanotube/TiO2 Interface [J]. Advanced Materials, 2008, 20(9): 1787-1793.
    [18] Hsu I K, Pettes M T, Bushmaker A, Aykol M, Shi L, Cronin S B. Optical Absorption and Thermal Transport of Individual Suspended Carbon Nanotube Bundles [J]. Nano Letters, 2009, 9(2): 590-594.
    [19] Plank N O V, Forrest G A, Cheung R, Alexander A J. Electronic Properties of n-Type Carbon Nanotubes Prepared by CF4 Plasma Fluorination and Amino Functionalization [J]. The Journal of Physical Chemistry B, 2005, 109(47): 22096-22101.
    [20] Dai H. Carbon Nanotubes: Synthesis, Integration, and Properties [J]. Accounts of Chemical Research, 2002, 35(12): 1035-1044.
    [21] Andrews R, Jacques D, Qian D, Rantell T. Multiwall Carbon Nanotubes:Synthesis and Application [J]. Accounts of Chemical Research, 2002, 35(12): 1008-1017.
    [22] Kongkanand A, Domínguez R M, Kamat P V. Single Wall Carbon Nanotube Scaffolds for Photoelectrochemical Solar Cells. Capture and Transport of Photogenerated Electrons [J]. Nano Letters, 2007, 7(3): 676-680.
    [23] Yao Y, Li G, Ciston S, Lueptow R M, Gray K A, Photoreactive TiO2/Carbon Nanotube Composites: Synthesis and Reactivity [J]. Environmental Science & Technology, 2008, 42(13): 4952-4957.
    [24]王宝辉,王德军,崔毅. CdS超微粒子薄膜电极的光电化学特性[J].高等学校化学学报, 1995, 16(10): 1610-1613.
    [25]王德军,刘旺.表面光电压谱在化学中的应用[J].化学通报, 1989, 10: 32-37.
    [26] Lien C F, Ho C H, Shieh C Y, Tseng C L, Lin J L. FTIR Study of Adsorption and Reactions of Ethylene Oxide on Powdered TiO2 [J]. The Journal of Physical Chemistry C, 2008, 112(22): 8365-8371.
    [27] Li H, Bian Z, Zhu J, Huo Y, Li H, Lu Y. Mesoporous Au/TiO2 Nanocomposites with Enhanced Photocatalytic Activity [J]. Journal of the American Chemical Society, 2007, 129(15): 4538-4539.
    [28] Tebby Z, Babot O, Toupance T, Park D H, Campet G, Delville M H. Low-Temperature UV-Processing of Nanocrystalline Nanoporous Thin TiO2 Films: An Original Route toward Plastic Electrochromic Systems [J]. Chemistry of Materials, 2008, 20(23): 7260-7267.
    [29] Kastner J, Pichler T, Kuzmany H, Curran S, Blau W, Weldon D N, Delamesiere M, Draper S, Zandbergen H. Resonance Raman and infrared-spectroscopy of carbon nanotubes [J]. Chemical Physics Letters, 1994, 221(1-2): 53-58.
    [30] Peng J, Qu X, Wei G, Li J, Qiao J. The cutting of MWNTs using gamma radiation in the presence of dilute sulfuric acid [J]. Carbon, 2004, 42(12-13): 2741-2744.
    [31] Kong H, Gao C, Yan D Y. Controlled Functionalization of Multiwalled Carbon Nanotubes by in Situ Atom Transfer Radical Polymerization [J]. Journal of the American Chemical Society, 2004, 126(2): 412-413.
    [32] Stuart B H. Infrared Spectroscopy: Fundamentals and Applications [M]. John Wiley & Sons, Ltd, Chichester, 2004.
    [33] Hu J P, Shi J H, Li S P, Qin Y J, Guo Z X, Song Y L, Zhu D B. Efficient Method to Functionalize Carbon Nanotubes with Thiol Groups and Fabricate Gold Nanocomposites [J]. Chemical Physics Letters, 2005, 401(4-6): 352-356.
    [34] Houston T A, Wilkinson B L, Blanchfield J T. Boric Acid Catalyzed Chemoselective Esterification ofα-Hydroxycarboxylic Acids [J]. Organic Letters, 2004, 6(5): 679-681.
    [35] Xu Y, Gu W, Gin D L. Heterogeneous Catalysis Using a Nanostructured Solid Acid Resin Based on Lyotropic Liquid Crystals [J]. Journal of the American Chemical Society, 2004, 126(6): 1616-1617.
    [36] Moret M P, Zallen R, Vijay D P, Desu B S. Brookite-rich titania films made by pulsed laser deposition [J]. Thin Solid Films, 2000, 366(1-2): 8-10.
    [37] Yang Y, Qu L, Dai L, Kang T S, Durstock M. Electrophoresis coating of titanium oxide on aligned carbon nanotubes for controlled syntheses of photoelectronic nanomaterials [J]. Advanced Materials, 2007, 19(9): 1239-1243.
    [38] Kim U J, Furtado C A, Liu X, Chen G, Eklund P C. Raman and IR Spectroscopy of Chemically Processed Single-Walled Carbon Nanotubes [J]. Journal of the American Chemical Society, 2005, 127(44): 15437-15445.
    [39] Osswald S, Flahaut E, Gogotsi Y. In Situ Raman Spectroscopy Study of Oxidation of Double- and Single-Wall Carbon Nanotubes [J]. Chemistry of Materials, 2006, 18(6): 1525-1533.
    [40] Zhang W F, He Y L, Zhang M S, Chen Q. Raman scattering study on anatase TiO2 nanocrystals [J]. Journal of Physics D: Applied Physics, 2000, 33(8): 912-916.
    [41] Parker J C, Sieger R W. Calibration of the Raman spectrum to the oxygen stoichiometry of nanophase TiO2 [J]. Applied Physics Letters, 1990, 57(9): 943-945.
    [42] Parker J C, Sieger R W. Raman microprobe study of nanophase TiO2 and oxidation-induced spectral changes [J]. Journal of Materials Research, 1990, 5(6): 1246-1252.
    [43] Zhang L W, Fu H B, Zhu Y F. Efficient TiO2 Photocatalysts from Surface Hybridization of TiO2 Particles with Graphite-like Carbon [J]. Advanced FunctionalMaterials, 2008, 18(15): 2180-2189.
    [44] Tian G, Fu H, Jing L, Xin B. Pan K. Preparation and Characterization of Stable Biphase TiO2 Photocatalyst with High Crystallinity, Large Surface Area, and Enhanced Photoactivity [J]. The Journal of Physical Chemistry C, 2008, 112(8): 3083-3089.
    [45] Liu K, Fu H, Xie Y, Zhang L, Pan K, Zhou W. Assembly ofβ-Cyclodextrins Acting as Molecular Bricks onto Multiwall Carbon Nanotubes [J]. The Journal of Physical Chemistry C, 2008, 112(4): 951-957.
    [46] Fujimoto Y, Shimojima A, Kuroda K. Interlayer Esterification of Layered Silicic Acid-Alcohol Nanostructured Materials Derived from Alkoxytrichlorosilane [J]. Langmuir, 2005, 21(16): 7513-7517.
    [47] Jing L, Sun X, Shang J, Cai W, Xu Z, Du Y, Fu H. Review of surface photovoltage spectra of nano-sized semiconductor and its applications in heterogeneous photocatalysis [J]. Solar Energy Materials and Solar Cells, 2003, 79(1): 133-151.
    [48] Jing L, Fu H, Wang B, Wang D, Xin B, Li S, Sun J. Effects of Sn dopant on the photoinduced charge property and photocatalytic activity of TiO2 nanoparticles [J]. Applied Catalysis B: Environmental, 2006, 62(3-4): 282-291.
    [49] Jing L, Li S, Song S, Xue L, Fu H. Investigation on the electron transfer between anatase and rutile in nano-sized TiO2 by means of surface photovoltage technique and its effects on the photocatalytic activity [J]. Solar Energy Materials and Solar Cells, 2008, 92(9): 1030-1036.
    [50] Brown P, Takechi K, Kamat P V. Single-Walled Carbon Nanotube Scaffolds for Dye-Sensitized Solar Cells [J]. The Journal of Physical Chemistry C, 2008, 112(12): 4776-4782.
    [51] Xin B, Ren Z, Wang P, Liu J, Jing L, Fu H. Study on the mechanisms of photoinduced carriers separation and recombination for Fe3+-TiO2 photocatalysts [J]. Applied Surface Science, 2007, 253(9): 4390-4395.
    [52] Wang L, Tian C, Wang B, Wang R, Zhou W, Fu H. Controllable synthesis of graphitic carbon nanostructures from ion-exchange resin-iron complex via solid-state pyrolysis process [J]. Chemical Communications, 2008, 42: 5411-5413.
    [53] Linsebigler A L, Lu G, Yates J T. Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results [J]. Chemical Reviews, 1995, 95(3): 735-758.
    [54] Fox M A, Dulay M T. Heterogeneous photocatalysis [J]. Chemical Reviews, 1993, 93(1): 341-357.
    [55] Bartl M H, Boettcher S W, Frindell K L, Stucky G D. 3-D Molecular Assembly of Function in Titania-Based Composite Material Systems [J]. Accounts of Chemical Research, 2005, 38(4): 263-271.
    [56] Hoffmann M R, Martin S T, Choi W Y, Bahnemann D W. Environmental Application of Semiconductor Photocatalysis [J]. Chemical Reviews, 1995, 95(1): 69-96.
    [57] Woan K, Pyrgiotakis G, Sigmund W. Photocatalytic Carbon-Nanotube-TiO2 Composites [J]. Advanced Materials, 2009, 21(1): 1-7.
    [1] Han X, Kuang Q, Jin M, Xie Z, Zheng L. Synthesis of Titania Nanosheets with a High Percentage of Exposed (001) Facets and Related Photocatalytic Properties [J]. Journal of the American Chemical Society, 2009, 131(9): 3152-3153.
    [2] Hoffmann M R, Martin S T, Choi W, Bahnemann D W. Environmental Applications of Semiconductor Photocatalysis [J]. Chemical Reviews, 1995, 95(1): 69-96.
    [3] Zhang X, Jin M, Liu Z, Tryk D A, Nishimoto S, Murakami T, Fujishima A. Superhydrophobic TiO2 Surfaces: Preparation, Photocatalytic Wettability Conversion, and Superhydrophobic-Superhydrophilic Patterning [J]. The Journal of Physical Chemistry C, 2007, 111(39): 14521-14529.
    [4] Wold A. Photocatalytic properties of titanium dioxide (TiO2) [J]. Chemistry of Materials, 1993, 5(3): 280-283.
    [5] Ogihara H, Sadakane M, Nodasaka Y, Ueda W. Shape-Controlled Synthesis of ZrO2, Al2O3, and SiO2 Nanotubes Using Carbon Nanofibers as Templates [J]. Chemistry of Materials, 2006, 18(21): 4981-4983.
    [6] Watson S M D, Coleman K S, Chakraborty A K. A New Route to the Production and Nanoscale Patterning of Highly Smooth, Ultrathin Zirconium Oxide Films [J]. ACS Nano, 2008, 2(4): 643-650.
    [7] Joo J, Yu T, Kim Y W, Park H M, Wu F, Zhang J Z, Hyeon T. Multigram Scale Synthesis and Characterization of Monodisperse Tetragonal Zirconia Nanocrystals [J]. Journal of the American Chemical Society, 2003, 125(21): 6553-6557.
    [8] Ashkenasy G, Cahen D, Cohen R, Shanzer A, Vilan A. Molecular Engineering of Semiconductor Surfaces and Devices [J]. Accounts of Chemical Research, 2002, 35(2): 121-128.
    [9] Li W, Huang H, Li H, Zhang W, Liu H. Facile Synthesis of Pure Monoclinic and Tetragonal Zirconia Nanoparticles and Their Phase Effects on the Behavior of Supported Molybdena Catalysts for Methanol-Selective Oxidation [J]. Langmuir, 2008, 24(15): 8358-8366.
    [10] Chang S, Doong R. Chemical-Composition-Dependent Metastability ofTetragonal ZrO2 in Sol-Gel-Derived Films under Different Calcination Conditions [J]. Chemistry of Materials, 2005, 17(19): 4837-4844.
    [11] Papp J, Soled S, Wold D K A. Surface Acidity and Photocatalytic Activity of TiO2, WO3/TiO2, and MoO3/TiO2 Photocatalysts [J]. Chemistry of Materials, 1994, 6(4): 496-500.
    [12] Zou X X, Li G D, Guo M Y, Li X H, Liu D P, Su J, Chen J S. Heterometal Alkoxides as Precursors for the Preparation of Porous Fe- and Mn-TiO2 Photocatalysts with High Efficiencies [J]. Chemistry - A European Journal, 2008, 14(35): 11123-11131.
    [13] Sun B, Smirniotis P G, Boolchand P. Visible Light Photocatalysis with Platinized Rutile TiO2 for Aqueous Organic Oxidation [J]. Langmuir, 2005, 21(24): 11397-11403.
    [14] Lassaletta G, Fernandez A, Espinos J P, Gonzalez-Elipe A R. Spectroscopic characterization of quantum-sized TiO2 supported on silica: influence of size and TiO2-SiO2 interface composition [J]. Journal of Physical Chemistry, 1995, 99(5): 1484-1490.
    [15] Nah Y C, Ghicov A, Kim D, Berger S, Schmuki P. TiO2-WO3 Composite Nanotubes by Alloy Anodization: Growth and Enhanced Electrochromic Properties [J]. Journal of the American Chemical Society, 2008, 130(48): 16154-16155.
    [16] Xiong C, Jr K J B. Mesoporous Molecular Sieve Derived TiO2 Nanofibers Doped with SnO2 [J]. The Journal of Physical Chemistry C, 2007, 111(28): 10359-10367.
    [17] Fu X Z, Clark L A, Yang Q, Anderson M A. Enhanced Photocatalytic Performance of Titania-Based Binary Metal Oxides: TiO2/SiO2 and TiO2/ZrO2 [J]. Environmental Science & Technology, 1996, 30(2): 647-653.
    [18] Xu J, Lind C, Wilkinson A P, Pattanaik S. X-ray Diffraction and X-ray Absorption Spectroscopy Studies of Sol-Gel-Processed Zirconium Titanates [J]. Chemistry of Materials, 2000, 12(11): 3347-3355.
    [19] Gurubasavaraj P M, Roesky H W, Sharma P M V, Oswald R B, Dolle V, Herbst-Irmer R, Pal A. Oxygen Effect in Heterobimetallic Catalysis: The Zr-O-Ti System as an Excellent Example for Olefin Polymerization [J]. Organometallics,2007, 26(14): 3346-3351.
    [20] Reddy B M, Chowdhury B, Ganesh I. Characterization of V2O5/TiO2-ZrO2 Catalysts by XPS and Other Techniques [J]. The Journal of Physical Chemistry B, 1998, 102(50): 10176-10182.
    [21] Chang S, Doong R. Characterization of Zr-Doped TiO2 Nanocrystals Prepared by a Nonhydrolytic Sol-Gel Method at High Temperatures [J]. The Journal of Physical Chemistry B, 2006, 110(42): 20808-20814.
    [22]刘克松.有序介观结构TiO2及复合体的控制合成与性能研究[D].哈尔滨:哈尔滨工程大学化工学院, 2006.
    [23] Wang X, Yu J C, Chen Y, Wu L, Fu X. ZrO2-Modified Mesoporous Nanocrystalline TiO2-xNx as Efficient Visible Light Photocatalysts [J]. Environmental Science & Technology, 2006, 40(7): 2369-2374.
    [24] Crepaldi E L, Soler-Illia G J D A, Grosso D, Sanchez M. Nanocrystallised titania and zirconia mesoporous thin films exhibiting enhanced thermal stability [J]. New Journal of Chemistry, 2003, 27(1): 9-13.
    [25] Sekulic J, Magraso A, ten Elshof J E, Blank D H A. Influence of ZrO2 addition on microstructure and liquid permeability of mesoporous TiO2 membranes [J]. Microporous and Mesoporous Materials, 2004, 72(1-3): 49-57.
    [26] Liu K, Fu H, Shi K, Xin B, Jing L, Zhou W. Hydrophilicity and formation mechanism of large-pore mesoporous TiO2 thin films with tunable pore diameters [J]. Nanotechnology, 2006, 17(15): 3641-3648.
    [27] Wang C C, Zhang Z B, Ying J Y. Photocatalytic decomposition of halogenated organics over nanocrystalline titania [J]. Nanostructured Materials, 1997, 9(1-8): 583-586.
    [28] Schattka J H, Shchukin D G, Jia J G, Antonietti M, Caruso R A. Photocatalytic Activities of Porous Titania and Titania/Zirconia Structures Formed by Using a Polymer Gel Templating Technique [J]. Chemistry of Materials, 2002, 14(12): 5103-5108.
    [29] Shchukin D G, Schattka J H, Antonietti M, Caruso R A. Photocatalytic Properties of Porous Metal Oxide Networks Formed by Nanoparticle Infiltration in a Polymer Gel Template [J]. The Journal of Physical Chemistry B, 2003, 107(4):952-957.
    [30] Wu B, Yuan R, Fu X. Structural characterization and photocatalytic activity of hollow binary ZrO2/TiO2 oxide fibers [J]. Journal of Solid State Chemistry, 2009, 182(3): 560-565.
    [31] Hirano M, Nakahara C, Ota K, Tanaike O, Inagaki M. Photoactivity and Phase Stability of ZrO2-doped Anatase-Type TiO2 Directly Formed as Nanometer-Sized Particles by Hydrolysis Under Hydrothermal Conditions [J]. Journal of Solid State Chemistry, 2003, 170(1): 39-47.
    [32] Yu J C, Lin J, Kwok R W M. Ti1-xZrxO2 Solid Solutions for the Photocatalytic Degradation of Acetone in Air [J]. The Journal of Physical Chemistry B, 1998, 102(26): 5094-5098.
    [33] Jiang N, Han D S, Park S E. Direct synthesis of mesoporous silicalite-1 supported TiO2-ZrO2 for the dehydrogenation of EB to styrene with CO2 [J]. Catalysis Today, 2009, 141(3-4): 344-348.
    [34] Dutta H, Manik S K, Pradhan S K. Phase transformation kinetic study and microstructure characterization of ball-milled m-ZrO2-10 mol% a-TiO2 by Rietveld method [J]. Journal of Applied Crystallography, 2003, 36(2): 260-268.
    [35] Feng X J, Jiang L. Design and Creation of Super-Wetting/Dewetting Surfaces [J]. Advanced Materials, 2006, 18(23): 3063-3078.
    [36] Cebeci F C, Wu Z Z, Zhai L, Cohen R E, Rubner M F. Nanoporosity-Driven Superhydrophilicity: A Means to Create Multifunctional Antifogging Coatings [J]. Langmuir, 2006, 22(6): 2856-2862.
    [37] Cassie A B D, Baxter S. Wettability of porous surfaces [J]. Transactions of the Faraday Society, 1944, 40: 546-551.
    [38] Bico J, Thiele U, Quere D, Wetting of textured surfaces [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 206(1-3): 41-46.
    [39] Bico J, Tordeux C, Quere D. Rough wetting [J]. Europhysics Letters, 2001, 55(2): 214-220.
    [40] Bico J, Marzolin C, Quere D, Pearl drops [J]. Europhysics Letters, 1999, 47(2): 220-226.
    [1] Amini M, Abbaspour K C, Berg M, Winkel L, Hug S J, Hoehn E, Yang H, Johnson C A. Statistical Modeling of Global Geogenic Arsenic Contamination in Groundwater [J]. Environmental Science & Technology, 2008, 42(10): 3669-3675.
    [2] Christen K. The arsenic threat worsens [J]. Environmental Science & Technology, 2001, 35(2): 286-291.
    [3] Chen C J, Chuang Y C, Lin T M, Wu H Y. Malignant neoplasms among residents of a blackfoot disease-endemic area in Taiwan: high-arsenic artesian well water and cancers [J]. Cancer Research, 1985, 45(11): 5895-5899.
    [4] Chen C J, Chen C W, Wu M M, Kuo T L. Cancer potential in liver, lung, bladder and kidney due to ingested inorganic arsenic in drinking water [J]. British Journal of Cancer, 1992, 66(5): 888-892.
    [5] Karagas M R, Tosteson T D, Blum J, Morris J S, Baron J A, Klaue B. Design of an epidemiologic study of drinking water arsenic exposure and skin and bladder cancer risk in a U.S. population [J]. Environmental Health Perspectives, 1998, 106(4): 1047-1050.
    [6] Wood D R, Kosnett M J, Smith M T. Cancer risks from arsenic in drinking water [J]. Environmental Health Perspectives, 1992, 97(7): 259-267.
    [7] Tseng W P. Effects and dose--response relationships of skin cancer and blackfoot disease with arsenic [J]. Environmental Health Perspectives, 1977, 19(111): 109-119.
    [8] Bowell R J. Sorption of arsenic by iron oxides and oxyhydroxides in soil [J]. Applied Geochemistry, 1994, 9(3): 279-286.
    [9] Davison R L, Natusch D F S, Wallace J R, Evans J C A. Trace elements in fly ash. Dependence of concentration on particle size [J]. Environmental Science & Technology, 1974, 8(13): 1107-1113.
    [10] Mariner P E, Holzmer F J, Jackson R E, Meinardus H W. Effects of High pH on Arsenic Mobility in a Shallow Sandy Aquifer and on Aquifer Permeability along the Adjacent Shoreline, Commencement Bay Superfund Site, Tacoma, Washington [J]. Environmental Science & Technology, 1996, 30(5): 1645-1651.
    [11] Peryea F J, Creger T L. Vertical distribution of lead and arsenic in soils contaminated with lead arsenate pesticide residues [J]. Water, Air, and Soil Pollution, 1994, 78(3-4): 297-306.
    [12] Sengupta S, McArthur J M, Sarkar A, Leng M J, Ravenscroft P, Howarth R J, Banerjee D M. Do Ponds Cause Arsenic-Pollution of Groundwater in the Bengal Basin? An Answer from West Bengal [J]. Environmental Science & Technology, 2008, 42(14): 5156-5164.
    [13] Meharg A A, Rahman M M. Arsenic Contamination of Bangladesh Paddy Field Soils: Implications for Rice Contribution to Arsenic Consumption [J]. Environmental Science & Technology, 2003, 37(2): 229-234.
    [14] Ayotte J D, Montgomery D L, Flanagan S M, Robinson K W. Arsenic in Groundwater in Eastern New England: Occurrence, Controls, and Human Health Implications [J]. Environmental Science & Technology, 2003, 37(10): 2075-2083.
    [15] Berg M, Tran H C, Nguyen T C, Pham H V, Schertenleib R, Giger W. Arsenic Contamination of Groundwater and Drinking Water in Vietnam: A Human Health Threat [J]. Environmental Science & Technology, 2001, 35(13): 2621-2626.
    [16] Sarkar S, Blaney L M, Gupta A, Ghosh D, SenGupta A K. Arsenic Removal from Groundwater and Its Safe Containment in a Rural Environment: Validation of a Sustainable Approach [J]. Environmental Science & Technology, 2008, 42(12): 4268-4273.
    [17] He G, Ying B, Liu J, Gao S, Shen S, Balakrishnan K, Jin Y, Liu F, Tang N, Shi K, Baris E, Ezzati M. Patterns of Household Concentrations of Multiple Indoor Air Pollutants in China [J]. Environmental Science & Technology, 2005, 39(4): 991-998.
    [18] Korte N E, Fernando Q. A review of arsenic (III) in groundwater [J]. Critical Reviews in Environmental Control, 1991, 21(1): 1-39.
    [19] Kim M J, Nriagu J. Oxidation of arsenite in groundwater using ozone and oxygen [J]. The Science of the Total Environment, 2000, 247(1): 71-79.
    [20] Pettine M, Campanella L, Millero F J. Arsenite oxidation by H2O2 in aqueous solutions [J]. Geochimica et Cosmochimica Acta, 1999, 63(18): 2727-2735.
    [21] Manning B A, Fendorf S E, Bostick B, Suarez D L. Arsenic (III) oxidation and arsenic (V) adsorption reactions on synthetic birnessite [J]. Environmental Science& Technology, 2002, 36(5): 976-981.
    [22] Tournassat C, Charlet L, Bosbach D, Manceau A. Arsenic (III) Oxidation by Birnessite and Precipitation of Manganese (II) Arsenate [J]. Environmental Science & Technology, 2002, 36(3): 493-500.
    [23] Sandhu S S, Nelson P. Concentration and separation of arsenic from polluted water by ion exchange [J]. Environmental Science & Technology, 1979, 13(4): 476-478.
    [24] Moore J N, Ficklin W H, Johns C. Partitioning of arsenic and metals in reducing sulfidic sediments [J]. Environmental Science & Technology, 1988, 22(4): 432-437.
    [25] Wang J W, Bejan D, Bunce N J. Removal of Arsenic from Synthetic Acid Mine Drainage by Electrochemical pH Adjustment and Coprecipitation with Iron Hydroxide [J]. Environmental Science & Technology, 2003, 37(19): 4500-4506.
    [26] Jessen S, Larsen F, Koch C B, Arvin E. Sorption and Desorption of Arsenic to Ferrihydrite in a Sand Filter [J]. Environmental Science & Technology, 2005, 39(20): 8045-8051.
    [27] Peng X, Chen A. Large-scale synthesis and characterization of TiO2-based nanostructures on titanium substrate [J]. Advanced Functional Materials, 2006, 16(10): 1355-1362.
    [28] Tamaki Y, Furube A, Murai M, Hara K, Katoh R, Tachiya M. Direct Observation of Reactive Trapped Holes in TiO2 Undergoing Photocatalytic Oxidation of Adsorbed Alcohols: Evaluation of the Reaction Rates and Yields [J]. Journal of the American Chemical Society 2006, 128(2): 416-417.
    [29] Bavykin D V, Friedrich J M, Walsh F C. Protonated titanates and TiO2 nanostructured materials: Synthesis, Properties, and Applications [J]. Advanced Materials, 2006, 18(21): 2807-2824.
    [30] Yurdakal S, Palmisano G, Loddo V, Augugliaro V, Palmisano L. Nanostructured Rutile TiO2 for Selective Photocatalytic Oxidation of Aromatic Alcohols to Aldehydes in Water [J]. Journal of the American Chemical Society, 2008, 130(5): 1568-1569.
    [31] Lee H, Choi W. Photocatalytic Oxidation of Arsenite in TiO2 Suspension:Kinetics and Mechanisms [J]. Environmental Science & Technology, 2002, 36(17): 3872-3878.
    [32] Yang H, Lin W Y, Rajeshwar K. Analytical Methods Support Document for Arsenic in Drinking Water [J]. Journal of Photochemistry and Photobiology A: Chemistry, 1999, 123(1-3): 137-143.
    [33] Bissen M, Veiillard-Baron M M, Schindelin A J, Frimmel F H. TiO2-catalyzed photooxidation of As (III) to As (V) in aqueous samples [J]. Chemosphere, 2001, 44(4): 751-757.
    [34] Jayaweera P M, Godakumbura P I, Pathiratne K A S. Titania powder modified sol-gel process for photocatalytic applications [J]. Current Science, 2003, 84(4): 541-543.
    [35] Ryu J, Choi W. Effects of TiO2 Surface Modifications on Photocatalytic Oxidation of Arsenite: The Role of Superoxides [J]. Environmental Science & Technology, 2004, 38(10): 2928-2933.
    [36] Redman A D, Macalady D L, Ahmann D. Natural Organic Matter Affects Arsenic Speciation and Sorption onto Hematite [J]. Environmental Science & Technology 2002, 36(13): 2889-2896.
    [37] Ko I, Davis A P, Kim J Y, Kim K W. Effect of contact order on the adsorption of inorganic arsenic species onto hematite in the presence of humic acid [J]. Journal of Hazardous Materials, 2007, 141(1): 53-60.
    [38] Giménez J, Martínez M, Pablo J D, Rovira M, Duro L. Arsenic sorption onto natural hematite, magnetite, and goethite [J]. Journal of Hazardous Materials, 2007, 141(3): 575-580.
    [39] Guo H, Stüben D, Berner Z. Removal of arsenic from aqueous solution by natural siderite and hematite [J]. Applied Geochemistry, 2007, 22(5): 1039-1051.
    [40] Liu K, Fu H, Shi K, Xiao F, Jing L, Xin B. Preparation of Large-Pore Mesoporous Nanocrystalline TiO2 Thin Films with Tailored Pore Diameters [J]. The Journal of Physical Chemistry B, 2005, 109(40): 18719-18722.
    [41] Smarsly B, Grosso D, Brezesinski T, Pinna N, Boissière C, Antonietti M, Sanchez C. Highly Crystalline Cubic Mesoporous TiO2 with 10-nm Pore Diameter Made with a New Block Copolymer Template [J]. Chemistry of Materials, 2004,16(15): 2948-2952.
    [42] Matsumoto Y, Ishikawa Y, Nishida M, Ii S. A New Electrochemical Method To Prepare Mesoporous Titanium (IV) Oxide Photocatalyst Fixed on Alumite Substrate [J]. The Journal of Physical Chemistry B, 2000, 104(17): 4204-4209.
    [43] Dutta P K, Ray A K, Sharma V K, Millero F J. Adsorption of Arsenate and Arsenite on Titanium Dioxide Suspensions [J]. Journal of Colloid and Interface Science, 2004, 278(2): 270-275.
    [44] Parks G A, de Bruyn P L. The Zero Point of Charge of Oxides [J]. The Journal of Physical Chemistry, 1962, 66(6): 967-973.
    [45] Fernandez-Ibanez P, Nieves F J D L, Malato S. Titanium Dioxide/Electrolyte Solution Interface: Electron Transfer Phenomena [J]. Journal of Colloid and Interface Science, 2000, 227(2): 510-516.
    [46] Dixit S, Hering J G. Effects of Arsenate Reduction and Iron Oxide Transformation on Arsenic Mobility [J]. Environmental Science & Technology, 2003, 37(18): 4182-4189.
    [47] Zhang X, Lei L. Preparation of photocatalytic Fe2O3-TiO2 coatings in one step by metal organic chemical vapor deposition [J]. Applied Surface Science, 2008, 254(8): 2406-2412.
    [48] Zhong L S, Hu J S, Liang H P, Cao A M, Song W G, Wan L J. Self-assembled 3D flowerlike iron oxide nanostructures and their application in water treatment [J]. Advanced Materials, 2006, 18(18), 2426-2431.
    [49] Dutta P K, Pehkonen S O, Sharma V K, Ray A K. Photocatalytic Oxidation of Arsenic (III): Evidence of Hydroxyl Radicals [J]. Environmental Science & Technology, 2005, 39(6): 1827-1834.
    [50] Xu T, Kamat P V, O′Shea K E. Mechanistic Evaluation of Arsenite Oxidation in TiO2 Assisted Photocatalysis [J]. The Journal of Physical Chemistry A, 2005, 109(40): 9070-9075.
    [51] Yoon S H, Lee J H. Oxidation Mechanism of As (III) in the UV/TiO2 System: Evidence for a Direct Hole Oxidation Mechanism [J]. Environmental Science & Technology, 2005, 39(24): 9695-9701.
    [52] Ferguson M A, Hoffmann M R, Hering J G. TiO2-Photocatalyzed As (III)Oxidation in Aqueous Suspensions: Reaction Kinetics and Effects of Adsorption [J]. Environmental Science & Technology, 2005, 39(6): 1880-1886.
    [53] Minero C, Mariella G, Maurino V, Vione D, Pelizzetti E. Photocatalytic Transformation of Organic Compounds in the Presence of Inorganic Ions. 2. Competitive Reactions of Phenol and Alcohols on a Titanium Dioxide-Fluoride System [J]. Langmuir, 2000, 16(23): 8964-8972.
    [54] Choi W, Hoffmann M R. Novel Photocatalytic Mechanisms for CHCl3, CHBr3, and CCl3CO2- Degradation and the Fate of Photogenerated Trihalomethyl Radicals on TiO2 [J]. Environmental Science & Technology, 1996, 31(1): 89-95.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700