氧化石墨烯和荧光纳米粒子在生物传感器方面的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近些年来,由生物学、化学、医学、电子学等多种领域互相交叉形成的生物传感器(Biosensor)越来愈受到人们的重视。它是由化学传感器衍生而来的,具备高选择性、快速分析、高灵敏度、低成本等优点。生物传感器可以快速灵敏地在生物环境中检测离子、小分子、蛋白、DNA并进行生物成像等。因此生物传感器在生命科学的研究领域中成为一个重要的研究方向。其中荧光生物传感器因其操作简单,成本低,检测速度快,灵敏度高,已被广泛应用于生物分析领域。
     随着医学发展和科学研究的不断深入,人们迫切需要一些低成本、高灵敏度、高选择性、无毒的荧光生物传感器。其中,一个非常重要的研究方向是探究在荧光生物传感器中纳米材料的使用。纳米材料是指由具有纳米量级的超微结构组成的功能材料。由于纳米材料结构上的特性,使得纳米材料具备一些特殊的性质,比如小尺寸效应和表面或界面效应。纳米材料的结合和利用会为生物传感器的发展提供一个崭新的途径。
     第一章,我们对各种纳米材料的合成和在生物传感器中的应用做了详细的介绍,并阐明了论文的研究意义和主要内容。
     第二章,我们提出一种基于单链DNA(ssDNA)与氧化石墨烯(GO)之间强相互作用和生物素与链酶亲合素(SA)特异性相互作用的新的荧光传感系统检测生物素。其中单链DNA探针的3′端修饰生物素而在5′端修饰6-羧基荧光素(FAM)。当体系中缺少SA和生物素时,生物素化的ssDNA完全被核酸外切酶I (Exo I)从3′端催化水解,从而检测到较强的荧光信号。然而,再加入SA后,由于SA的末端保护效应,Exo I则不能催化水解ssDNA,导致ssDNA吸附到GO表面,FAM的荧光被GO猝灭,产生较弱的荧光信号。若体系中加入目标生物素,由于目标生物素与生物素化的ssDNA竞争结合SA,导致体系荧光部分恢复。这个方法操作简单、灵敏度高、成本低廉。
     第三章,我们提出了一个灵敏的荧光测定方法,并通过荧光增强来检测葡萄糖的含量。羧基荧光素被标记在ssDNA上,当体系中存在葡萄糖时,葡萄糖氧化酶催化氧化葡萄糖生成过氧化氢。当有二价铁(Fe2+)共存时,通过芬顿反应生成的羟自由基(OH)会进攻FAM标记的长链ssDNA,从而导致不可逆转的DNA的氧化解离,生成短的FAM连接的DNA碎片。基于GO对标记的长短DNA猝灭能力的不同,根据荧光强度的变化可以检测葡萄糖的含量。该方法具有较高的灵敏度和选择性,此方法被成功用于血清中葡萄糖含量的检测。
     第四章,我们以3-巯基丙酸为稳定剂,通过回流加热的方法在水溶液中成功地使用一锅法制备出核壳掺杂型的Mn:ZnSe/ZnS量子点。我们优化了各种合成条件,并通过在人肝癌细胞HepG2中的细胞成像,研究了核壳掺杂型量子点Mn:ZnSe/ZnS的光稳定性,化学稳定性及其生物应用。
     第五章,我们利用双链DNA为模板合成荧光Cu纳米粒子,在此基础上设计了一种简单、灵敏、低成本且无标记的荧光检测方法用于核酸外切酶III活性的检测。在体系中dsDNA作为模板用于Cu纳米粒子的形成。核酸外切酶III能降解双链DNA,这样就会减少双链DNA模板的浓度,从而抑制了荧光Cu纳米粒子的形成。因此,通过该体系荧光强度的变化能进行核酸外切酶III活性的检测。与之前的报道相比,此方法不需要任何复杂的DNA序列设计或荧光染料的标记。同时,该方法对核酸外切酶III活性的检测表现出高的灵敏度和选择性。
In recent years, biosensor, containing various fields of biology, chemistry,medicine, electronics et al, has attracted more and more attention. It is derived fromchemical sensors, which has the advantages of high selectivity, rapid analysis, highsensitivity, low cost etc. Biosensors can quickly and sensitively detect ions, smallmolecules, proteins and DNA in biological medium, and then be used for bioimaging.It has become an important research direction in the field of life science. Because ofits simple operation, low cost, fast detection speed, high sensitivity, the fluorescentbiosensors has been widely used in the field of biological analysis.
     With the development of medicine and scientific research, people urgently needsome low cost, high sensitivity, selectivity, non-toxic fluorescent biosensor. Amongthem, a very important research direction is to explore the use of nanomaterials influorescence biosensor. Nanomaterials refer to the functional materials that arecomposed of ultrastructure in nanoscale. Due to the characteristic structure ofnanomaterials, the nanomaterials have some special properties, such as small sizeeffect and surface effect. The use of nanomaterials will provide a new way for thedevelopment of biological sensors.
     In the chapter1, we described the attractive synthesis and application of grapheneand fluorescent nanoparticle in biosensor. Finally, we provided insights into utilizationof their properities for developments of novel biotechnology and the significance andcontents of this dissertation.
     In chapter2, we established a novel fluorescence sensing system for the detectionof biotin based on the interaction between DNA with graphene oxide and a terminalprotection of biotinylated single-stranded DNA fluorescence probe by streptavidin. Inthis system, streptavidin could bind to the biotinylated DNA that protected the DNAfrom hydrolysis by Exonuclease I. The streptavidin-DNA conjugate was then absorbed to the graphene oxide resulting in the fluorescence quenched. Upon theaddition of free biotin, it would compete with the labelled biotin for the binding sitesof streptavidin and then the Exonuclease I could digest the unbound DNA probe from3′to5′termini, releasing the fluorophore from the DNA. For the weak affinitybetween the fluorophore and GO, the fluorescence was recovered. The proposedfluorescence sensing system was applied for the determination of biotin in some realsamples with satisfactory reproducibility and accuracy. This work could provide acommon platform for detecting small biomolecules based on protein-small moleculeligand binding.
     In chapter3, we propose a novel approach for turn-on fluorescence sensingdetermination of glucose. By taking advantage of the super fluorescence quenchingefficiency of GO and specific catalysis of glucose oxidase, the sensitivity andselectivity of this GO-DNA sensing platform are highly satisfying. Hydrogenperoxide (H2O2) is produced from glucose oxidase catalysis oxidation of glucose. Dueto the present of ferrous iron (Fe2+) and H2O2, hydroxyl radical (OH) is generatedthrough the Fenton reaction and attacks the FAM-labeled long ssDNA to cause anirreversible cleavage by the oxidative effect of OH, producing the FAM-linked DNAfragment. Due to the weak interaction between GO and short FAM-linked DNAfragment, a restoration of fluorescence can be recorded with the addition of glucose.Finally, the GO-DNA sensing platform is successfully applied to detect glucose inhuman serum.
     In chapter4, Mn:ZnSe/ZnS core/shell doped quantum dots (d-dots) with3-mercaptopropionic acid (MPA) as the stabilizer are successfully synthesizedthrough a simple one-pot synthesis procedure in aqueous solution. We optimize thevarious synthesis conditions. The photostability and chemical stability have beenstudied and the resulting core/shell quantum dots are used as fluorescent label inhuman osteoblast-like HepG2cell imaging.
     In chapter5, we established a simple, sensitive, low cost and label-free strategy to detect the3′-5′exonuclease activity of exonuclease III (Exo III) using double-strandDNA (dsDNA)-templated copper nanoparticles as fluorescent probe. Upon theaddition of Exo III, the Exo III can digest dsDNA probe. With the decrease of dsDNAtemplates, the formation of fluorescent Cu NPs would be inhibit. Thus, thefluorescence intensity of dsDNA-Cu NPs would decrease. Compared to the previousreports, this strategy does not need any complex DNA sequence design, fluorescencedye label, modified DNA and sophisticated experimental techniques. This strategyproposes a new method to detect3`-5`exonuclease activities.
引文
[1] LIU Y X, DONG X C, CHEN P, Biological and chemical sensors based ongraphene materials [J]. Chemical Society Reviews,2012,41:2283-2307.
    [2] NOVOSELOV K S, GEIM A K, MOROZOV S, et al., Electric field effect inatomically thin carbon films [J]. Science,2004,306:666-669.
    [3] ALLEN M J, TUNG V C, KANER R B, Honeycomb carbon: a review ofgraphene [J]. Chemical Reviews,2009,110:132-145.
    [4] RAO C, BISWAS K, SUBRAHMANYAM K, et al., Graphene, the newnanocarbon [J]. Journal Of Materials Chemistry,2009,19:2457-2469.
    [5] RAO C, MATTE H R, SUBRAHMANYAM K, et al., Unusual magneticproperties of graphene and related materials [J]. Chemical Science,2012,3:45-52.
    [6] LOH K P, BAO Q, EDA G, et al., Graphene oxide as a chemically tunableplatform for optical applications [J]. Nature Chemistry,2010,2:1015-1024.
    [7] WU S, HE Q, TAN C, et al., Graphene‐Based Electrochemical Sensors [J].Small,2013,9:1160-1172.
    [8] HE Q, WU S, YIN Z, et al., Graphene-based electronic sensors [J]. ChemicalScience,2012,3:1764-1772.
    [9] MOHANTY N, BERRY V, Graphene-based single-bacterium resolutionbiodevice and DNA transistor: interfacing graphene derivatives with nanoscaleand microscale biocomponents [J]. Nano Letters,2008,8:4469-4476.
    [10] LIU Y, DONG X, CHEN P, Biological and chemical sensors based ongraphene materials [J]. Chemical Society Reviews,2012,41:2283-2307.
    [11] STOLYAROVA E, RIM K T, RYU S, et al., High-resolution scanningtunneling microscopy imaging of mesoscopic graphene sheets on an insulatingsurface [J]. Proceedings of the National Academy of Sciences,2007,104:9209-9212.
    [12] ZHU Y, MURALI S, CAI W, et al., Graphene and graphene oxide: synthesis,properties, and applications [J]. Advanced Materials,2010,22:3906-3924.
    [13] MEYER J C, GEIM A K, KATSNELSON M, et al., The structure ofsuspended graphene sheets [J]. Nature,2007,446:60-63.
    [14] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al., Electric Field Effectin Atomically Thin Carbon Films [J]. Science,2004,306:666-669.
    [15] GEIM A K, NOVOSELOV K S, The rise of graphene [J]. Nature Materials,2007,6:183-191.
    [16] ZHANG Y, TAN Y-W, STORMER H L, et al., Experimental observation ofthe quantum Hall effect and Berry's phase in graphene [J]. Nature,2005,438:201-204.
    [17] SCHEDIN F, GEIM A, MOROZOV S, et al., Detection of individual gasmolecules adsorbed on graphene [J]. Nature Materials,2007,6:652-655.
    [18] LIN Y-M, AVOURIS P, Strong Suppression of Electrical Noise in BilayerGraphene Nanodevices [J]. Nano Letters,2008,8:2119-2125.
    [19] REINA A, JIA X, HO J, et al., Large Area, Few-Layer Graphene Films onArbitrary Substrates by Chemical Vapor Deposition [J]. Nano Letters,2008,9:30-35.
    [20] DONG X, WANG P, FANG W, et al., Growth of large-sized graphenethin-films by liquid precursor-based chemical vapor deposition underatmospheric pressure [J]. Carbon,2011,49:3672-3678.
    [21] LI X, CAI W, AN J, et al., Large-Area Synthesis of High-Quality and UniformGraphene Films on Copper Foils [J]. Science,2009,324:1312-1314.
    [22] MATTEVI C, KIM H, CHHOWALLA M, A review of chemical vapourdeposition of graphene on copper [J]. Journal Of Materials Chemistry,2011,21:3324-3334.
    [23] HASS J, HEER W A D, CONRAD E H, The growth and morphology ofepitaxial multilayer graphene [J]. Journal of Physics: Condensed Matter,2008,20:323202.
    [24] KEDZIERSKI J, PEI-LAN H, HEALEY P, et al., Epitaxial GrapheneTransistors on SiC Substrates [J]. Electron Devices, IEEE Transactions on,2008,55:2078-2085.
    [25] ZHOU S, GWEON G-H, FEDOROV A, et al., Substrate-induced bandgapopening in epitaxial graphene [J]. Nature Materials,2007,6:770-775.
    [26] BOEHM H, CLAUSS A, FISCHER G, et al., Thin carbon leaves [J]. ZNaturforsch,1962,17:150-153.
    [27] DREYER D R, PARK S, BIELAWSKI C W, et al., The chemistry of grapheneoxide [J]. Chemical Society Reviews,2010,39:228-240.
    [28] ZANGMEISTER C D, Preparation and Evaluation of Graphite Oxide Reducedat220°C [J]. Chemistry Of Materials,2010,22:5625-5629.
    [29] COTE L J, CRUZ-SILVA R, HUANG J, Flash Reduction and Patterning ofGraphite Oxide and Its Polymer Composite [J]. Journal Of The AmericanChemical Society,2009,131:11027-11032.
    [30] SHAO Y, WANG J, ENGELHARD M, et al., Facile and controllableelectrochemical reduction of graphene oxide and its applications [J]. JournalOf Materials Chemistry,2010,20:743-748.
    [31] HE Q, WU S, GAO S, et al., Transparent, Flexible, All-Reduced GrapheneOxide Thin Film Transistors [J]. Acs Nano,2011,5:5038-5044.
    [32] PUMERA M, Graphene-based nanomaterials and their electrochemistry [J].Chemical Society Reviews,2010,39:4146-4157.
    [33] HUMMERS W S, OFFEMAN R E, Preparation of Graphitic Oxide [J].Journal Of The American Chemical Society,1958,80:1339-1339.
    [34] MARCANO D C, KOSYNKIN D V, BERLIN J M, et al., Improved Synthesisof Graphene Oxide [J]. Acs Nano,2010,4:4806-4814.
    [35] EDA G, CHHOWALLA M, Chemically Derived Graphene Oxide: TowardsLarge-Area Thin-Film Electronics and Optoelectronics [J]. AdvancedMaterials,2010,22:2392-2415.
    [36] ERICKSON K, ERNI R, LEE Z, et al., Determination of the Local ChemicalStructure of Graphene Oxide and Reduced Graphene Oxide [J]. AdvancedMaterials,2010,22:4467-4472.
    [37] CHEN D, TANG L, LI J, Graphene-based materials in electrochemistry [J].Chemical Society Reviews,2010,39:3157-3180.
    [38] LU C H, YANG H H, ZHU C L, et al., A Graphene Platform for SensingBiomolecules [J]. Angewandte Chemie-international Edition,2009,48:4785-4787.
    [39] ZHANG H, LI Y, SU X, A small-molecule-linked DNA-graphene oxide-basedfluorescence-sensing system for detection of biotin [J]. AnalyticalBiochemistry,2013,442:172-177.
    [40] WEN Y, XING F, HE S, et al., A graphene-based fluorescent nanoprobe forsilver (I) ions detection by using graphene oxide and a silver-specificoligonucleotide [J]. Chemical Communications,2010,46:2596-2598.
    [41] LI M, ZHOU X, DING W, et al., Fluorescent aptamer-functionalized grapheneoxide biosensor for label-free detection of mercury(II)[J]. Biosensors andBioelectronics,2013,41:889-893.
    [42] LI M, ZHOU X, GUO S, et al., Detection of lead (II) with a “turn-on”fluorescent biosensor based on energy transfer from CdSe/ZnS quantum dotsto graphene oxide [J]. Biosensors and Bioelectronics,2013,43:69-74.
    [43] CHANG H, TANG L, WANG Y, et al., Graphene Fluorescence ResonanceEnergy Transfer Aptasensor for the Thrombin Detection [J]. AnalyticalChemistry,2010,82:2341-2346.
    [44] LIANG J, WEI R, HE S, et al., A highly sensitive and selective aptasensorbased on graphene oxide fluorescence resonance energy transfer for the rapiddetermination of oncoprotein PDGF-BB [J]. Analyst,2013,138:1726-1732.
    [45] HE Y, WANG Z-G, TANG H-W, et al., Low background signal platform forthe detection of ATP: When a molecular aptamer beacon meets graphene oxide[J]. Biosensors and Bioelectronics,2011,29:76-81.
    [46] LI F, FENG Y, ZHAO C, et al., A sensitive graphene oxide-DNA basedsensing platform for fluorescence "turn-on" detection of bleomycin [J].Chemical Communications,2012,48:127-129.
    [47] ZHANG H, GAO X, LIU S, et al., One-pot synthesis of stable water solubleMn:ZnSe/ZnS core/shell quantum dots [J]. Journal of Nanoparticle Research,2013,15:
    [48] BHATTACHARJEE A K, P REZ-CONDE J, Optical properties ofparamagnetic ion-doped semiconductor nanocrystals [J]. Physical Review B,2003,68:045303.
    [49] CUMBERLAND S L, HANIF K M, JAVIER A, et al., Inorganic Clusters asSingle-Source Precursors for Preparation of CdSe, ZnSe, and CdSe/ZnSNanomaterials [J]. Chemistry Of Materials,2002,14:1576-1584.
    [50] ERWIN S C, ZU L, HAFTEL M I, et al., Doping semiconductor nanocrystals[J]. Nature,2005,436:91-94.
    [51] HANIF K M, MEULENBERG R W, STROUSE G F, Magnetic Ordering inDoped Cd1-xCoxSe Diluted Magnetic Quantum Dots [J]. Journal Of TheAmerican Chemical Society,2002,124:11495-11502.
    [52] NORMAN T J, MAGANA D, WILSON T, et al., Optical and SurfaceStructural Properties of Mn2+-Doped ZnSe Nanoparticles [J]. The Journal ofPhysical Chemistry B,2003,107:6309-6317.
    [53] PRADHAN N, PENG X, Efficient and Color-Tunable Mn-Doped ZnSeNanocrystal Emitters: Control of Optical Performance via Greener SyntheticChemistry [J]. Journal Of The American Chemical Society,2007,129:3339-3347.
    [54] PRADHAN N, GOORSKEY D, THESSING J, et al., An Alternative of CdSeNanocrystal Emitters: Pure and Tunable Impurity Emissions in ZnSeNanocrystals [J]. Journal Of The American Chemical Society,2005,127:17586-17587.
    [55] XIE R, PENG X, Synthesis of Cu-Doped InP Nanocrystals (d-dots) with ZnSeDiffusion Barrier as Efficient and Color-Tunable NIR Emitters [J]. Journal OfThe American Chemical Society,2009,131:10645-10651.
    [56] DALPIAN G M, CHELIKOWSKY J R, Self-Purification in SemiconductorNanocrystals [J]. Physical Review Letters,2006,96:226802.
    [57] NAG A, CHAKRABORTY S, SARMA D D, To Dope Mn2+in aSemiconducting Nanocrystal [J]. Journal Of The American Chemical Society,2008,130:10605-10611.
    [58] ARCHER P I, SANTANGELO S A, GAMELIN D R, Inorganic ClusterSyntheses of TM2+-Doped Quantum Dots (CdSe, CdS, CdSe/CdS): PhysicalProperty Dependence on Dopant Locale [J]. Journal Of The AmericanChemical Society,2007,129:9808-9818.
    [59] MIKULEC F V, KUNO M, BENNATI M, et al., Organometallic Synthesis andSpectroscopic Characterization of Manganese-Doped CdSe Nanocrystals [J].Journal Of The American Chemical Society,2000,122:2532-2540.
    [60] NORRIS D J, YAO N, CHARNOCK F T, et al., High-QualityManganese-Doped ZnSe Nanocrystals [J]. Nano Letters,2000,1:3-7.
    [61] RADOVANOVIC P V, GAMELIN D R, Electronic Absorption Spectroscopyof Cobalt Ions in Diluted Magnetic Semiconductor Quantum Dots:Demonstration of an Isocrystalline Core/Shell Synthetic Method [J]. Journal ofthe American Chemical Society,2001,123:12207-12214.
    [62] DU M-H, ERWIN S C, EFROS A L, Trapped-dopant model of doping insemiconductor nanocrystals [J]. Nano Letters,2008,8:2878-2882.
    [63] ZU L, WILLS A W, KENNEDY T A, et al., Effect of Different ManganesePrecursors on the Doping Efficiency in ZnSe Nanocrystals [J]. The Journal ofPhysical Chemistry C,2010,114:21969-21975.
    [64] NAG A, SAPRA S, NAGAMANI C, et al., A Study of Mn2+Doping in CdSNanocrystals [J]. Chemistry Of Materials,2007,19:3252-3259.
    [65] VISWANATHA R, BATTAGLIA D, CURTIS M, et al., Shape control ofdoped semiconductor nanocrystals (d-dots)[J]. Nano Research,2008,1:138-144.
    [66] ZHANG W, LI Y, ZHANG H, et al., Facile synthesis of highly luminescentMn-doped ZnS nanocrystals [J]. Inorganic Chemistry,2011,50:10432-10438.
    [67] YANG Y, CHEN O, ANGERHOFER A, et al., Radial-Position-ControlledDoping in CdS/ZnS Core/Shell Nanocrystals [J]. Journal Of The AmericanChemical Society,2006,128:12428-12429.
    [68] YANG Y, CHEN O, ANGERHOFER A, et al., Radial‐Position‐ControlledDoping of CdS/ZnS Core/Shell Nanocrystals: Surface Effects and Position‐Dependent Properties [J]. Chemistry-a European Journal,2009,15:3186-3197.
    [69] SHEN H, WANG H, LI X, et al., Phosphine-free synthesis of high qualityZnSe, ZnSe/ZnS, and Cu-, Mn-doped ZnSe nanocrystals [J]. DaltonTransactions,2009,10534-10540.
    [70] ZENG R, ZHANG T, DAI G, et al., Highly Emissive, Color-Tunable,Phosphine-Free Mn:ZnSe/ZnS Core/Shell and Mn:ZnSeS Shell-AlloyedDoped Nanocrystals [J]. The Journal of Physical Chemistry C,2011,115:3005-3010.
    [71] SRIVASTAVA B B, JANA S, KARAN N S, et al., Highly luminescentMn-doped ZnS nanocrystals: gram-scale synthesis [J]. The Journal of PhysicalChemistry Letters,2010,1:1454-1458.
    [72] ZENG R, RUTHERFORD M, XIE R, et al., Synthesis of Highly EmissiveMn-Doped ZnSe Nanocrystals without Pyrophoric Reagents [J]. Chemistry OfMaterials,2010,22:2107-2113.
    [73] PRADHAN N, BATTAGLIA D M, LIU Y, et al., Efficient, Stable, Small, andWater-Soluble Doped ZnSe Nanocrystal Emitters as Non-CadmiumBiomedical Labels [J]. Nano Letters,2006,7:312-317.
    [74] ZHENG J, GAO F, WEI G, et al., Enhanced photoluminescence ofwater-soluble Mn-doped ZnS quantum dots by thiol ligand exchange [J].Chemical Physics Letters,2012,519:73-77.
    [75] ABOULAICH A, BALAN L, GHANBAJA J, et al., Aqueous route tobiocompatible ZnSe: Mn/ZnO core/shell quantum dots using1-thioglycerol asstabilizer [J]. Chemistry Of Materials,2011,23:3706-3713.
    [76] ABOULAICH A, GESZKE M, BALAN L, et al., Water-Based Route toColloidal Mn-Doped ZnSe and Core/Shell ZnSe/ZnS Quantum Dots [J].Inorganic Chemistry,2010,49:10940-10948.
    [77] BOL A A, MEIJERINK A, Luminescence Quantum Efficiency ofNanocrystalline ZnS:Mn2+.1. Surface Passivation and Mn2+Concentration[J]. The Journal of Physical Chemistry B,2001,105:10197-10202.
    [78] SUYVER J F, WUISTER S F, KELLY J J, et al., Synthesis andPhotoluminescence of Nanocrystalline ZnS:Mn2+[J]. Nano Letters,2001,1:429-433.
    [79] ZHOU W, BANEYX F, Aqueous, Protein-Driven Synthesis of TransitionMetal-Doped ZnS Immuno-Quantum Dots [J]. Acs Nano,2011,5:8013-8018.
    [80] MAKHAL A, SARKAR S, PAL S K, Protein-Mediated Synthesis ofNanosized Mn-Doped ZnS: A Multifunctional, UV-DurableBio-Nanocomposite [J]. Inorganic Chemistry,2012,51:10203-10210.
    [81] WU P, MIAO L-N, WANG H-F, et al., A Multidimensional Sensing Device forthe Discrimination of Proteins Based on Manganese-Doped ZnS QuantumDots [J]. Angewandte Chemie International Edition,2011,50:8118-8121.
    [82] YANG H, HOLLOWAY P H, Efficient and Photostable ZnS-PassivatedCdS:Mn Luminescent Nanocrystals [J]. Advanced Functional Materials,2004,14:152-156.
    [83] YANG H, HOLLOWAY P H, CUNNINGHAM G, et al., CdS: Mnnanocrystals passivated by ZnS: Synthesis and luminescent properties [J]. TheJournal of Chemical Physics,2004,121:10233-10240.
    [84] QIAN L, BERA D, HOLLOWAY P, Photoluminescence from ZnS/CdS:Mn/ZnS quantum well quantum dots [J]. Applied Physics Letters,2008,92:093103-093103-093103.
    [85] YANG H, HOLLOWAY P H, Enhanced photoluminescence fromCdS:Mn/ZnS core/shell quantum dots [J]. Applied Physics Letters,2003,82:1965-1967.
    [86] YANG H, HOLLOWAY P H, SANTRA S, Water-soluble silica-overcoatedCdS:Mn/ZnS semiconductor quantum dots [J]. The Journal of ChemicalPhysics,2004,121:7421-7426.
    [87] TRAN T, NGO D-T, MCVITIE S, et al., Optical properties of Mn-doped ZnSsemiconductor nanoclusters synthesized by a hydrothermal process [J].Optical Materials,2011,33:308-314.
    [88] GAN L M, LIU B, CHEW C H, et al., Enhanced Photoluminescence andCharacterization of Mn-Doped ZnS Nanocrystallites Synthesized inMicroemulsion [J]. Langmuir,1997,13:6427-6431.
    [89] CHIN P T K, STOUWDAM J W, JANSSEN R A J, Highly LuminescentUltranarrow Mn Doped ZnSe Nanowires [J]. Nano Letters,2009,9:745-750.
    [90] RADOVANOVIC P V, BARRELET C J, GRADEC AK S, et al., GeneralSynthesis of Manganese-Doped II VI and III V Semiconductor Nanowires[J]. Nano Letters,2005,5:1407-1411.
    [91] JIANG L-W, ZHOU J, YANG X-Z, et al., Microwave-assisted synthesis ofsurface-passivated doped ZnSe quantum dots with enhanced fluorescence [J].Chemical Physics Letters,2011,510:135-138.
    [92] XIA Y, WANG J, ZHANG Y, et al., Quantum dot based turn-on fluorescentprobes for anion sensing [J]. Nanoscale,2012,4:5954-5959.
    [93] SHANG Y, QI L, WU F-Y, Functionalized manganese-doped zinc sulfidequantum dot-based fluorescent probe for zinc ion [J]. Microchimica Acta,2012,177:333-339.
    [94] CHEN H-Q, FU J, WANG L, et al., Ultrasensitive mercury(II) ion detectionby europium(III)-doped cadmium sulfide composite nanoparticles [J]. Talanta,2010,83:139-144.
    [95] HUANG D, NIU C, WANG X, et al.,“Turn-On” Fluorescent Sensor for Hg2+Based on Single-Stranded DNA Functionalized Mn: CdS/ZnS Quantum Dotsand Gold Nanoparticles by Time-Gated Mode [J]. Analytical Chemistry,2013,85:1164-1170.
    [96] BANERJEE S, KAR S, SANTRA S, A simple strategy for quantum dotassisted selective detection of cadmium ions [J]. Chemical Communications,2008,3037-3039.
    [97] ZHANG B-H, QI L, WU F-Y, Functionalized manganese-doped zinc sulfidecore/shell quantum dots as selective fluorescent chemodosimeters for silverion [J]. Microchimica Acta,2010,170:147-153.
    [98] SALINAS Y, MARTINEZ-MANEZ R, MARCOS M D, et al., Opticalchemosensors and reagents to detect explosives [J]. Chemical Society Reviews,2012,41:1261-1296.
    [99] TU R, LIU B, WANG Z, et al., Amine-Capped ZnS Mn2+Nanocrystals forFluorescence Detection of Trace TNT Explosive [J]. Analytical Chemistry,2008,80:3458-3465.
    [100] LIU S, HU J, ZHANG H, et al., CuInS2quantum dots-based fluorescence turnoff/on probe for detection of melamine [J]. Talanta,2012,101:368-373.
    [101] MA Q, YU W, HUANG H, et al., Determination of L-tyrosine Based onLuminescence Quenching of Mn-Doped ZnSe Quantum Dots in EnzymeCatalysis System [J]. Journal Of Fluorescence,2011,21:125-131.
    [102] BANERJEE S, KAR S, PEREZ J M, et al., Quantum Dot-Based OFF/ONProbe for Detection of Glutathione [J]. The Journal of Physical Chemistry C,2009,113:9659-9663.
    [103] ZHU D, JIANG X, ZHAO C, et al., Green synthesis and potential applicationof low-toxic Mn: ZnSe/ZnS core/shell luminescent nanocrystals [J]. ChemicalCommunications,2010,46:5226-5228.
    [104] GAO X, TANG G, LI Y, et al., A novel optical nanoprobe for trypsin detectionand inhibitor screening based on Mn-doped ZnSe quantum dots [J]. AnalyticaChimica Acta,2012,743:131-136.
    [105] GAO X, ZHANG H, LI Y, et al., Mn-doped ZnSe d-dots-basedalpha-methylacyl-CoA racemase probe for human prostate cancer cell imaging[J]. Analytical And Bioanalytical Chemistry,2012,402:1871-1877.
    [106] CHANG S-Q, KANG B, DAI Y-D, et al., One-step fabrication ofbiocompatible chitosan-coated ZnS and ZnS: Mn2+quantum dots via aγ-radiation route [J]. Nanoscale Research Letters,2011,6:1-7.
    [107] JAYASREE A, SASIDHARAN S, KOYAKUTTY M, et al., Mannosylatedchitosan-zinc sulphide nanocrystals as fluorescent bioprobes for targetedcancer imaging [J]. Carbohydrate Polymers,2011,85:37-43.
    [108] MANZOOR K, JOHNY S, THOMAS D, et al., Bio-conjugated luminescentquantum dots of doped ZnS: a cyto-friendly system for targeted cancerimaging [J]. Nanotechnology,2009,20:065102.
    [109] MATHEW M E, MOHAN J C, MANZOOR K, et al., Folate conjugatedcarboxymethyl chitosan–manganese doped zinc sulphide nanoparticles fortargeted drug delivery and imaging of cancer cells [J]. Carbohydrate Polymers,2010,80:442-448.
    [110] GESZKE M, MURIAS M, BALAN L, et al., Folic acid-conjugated core/shellZnS:Mn/ZnS quantum dots as targeted probes for two photon fluorescenceimaging of cancer cells [J]. Acta Biomaterialia,2011,7:1327-1338.
    [111] YU Z, MA X, YU B, et al., Synthesis and characterization of ZnS: Mn/ZnScore/shell nanoparticles for tumor targeting and imaging in vivo [J]. JournalOf Biomaterials Applications,2013,28:232-240.
    [112] SINGH N, CHARAN S, SANJIV K, et al., Synthesis of tunable andmultifunctional Ni-doped near-infrared QDs for cancer cell targeting andcellular sorting [J]. Bioconjugate Chemistry,2012,23:421-430.
    [113] HAN B, WANG E, DNA-templated fluorescent silver nanoclusters [J].Analytical And Bioanalytical Chemistry,2012,402:129-138.
    [114] CHOI S, DICKSON R M, YU J, Developing luminescent silver nanodots forbiological applications [J]. Chemical Society Reviews,2012,41:1867-1891.
    [115] ZHENG J, NICOVICH P R, DICKSON R M, Highly fluorescent noble metalquantum dots [J]. Annual Review Of Physical Chemistry,2007,58:409.
    [116] DIEZ I, RAS R H A, Fluorescent silver nanoclusters [J]. Nanoscale,2011,3:1963-1970.
    [117] D EZ I, RAS R A, in Advanced Fluorescence Reporters in Chemistry andBiology II, ed. A. P. Demchenko, Springer Berlin Heidelberg,2010, vol.9, pp.307-332.
    [118] MUHAMMED M A H, PRADEEP T, in Advanced Fluorescence Reporters inChemistry and Biology II, ed. A. P. Demchenko, Springer Berlin Heidelberg,2010, vol.9, pp.333-353.
    [119] NEGISHI Y, TAKASUGI Y, SATO S, et al., Magic-Numbered Aun ClustersProtected by Glutathione Monolayers (n=18,21,25,28,32,39): Isolationand Spectroscopic Characterization [J]. Journal Of The American ChemicalSociety,2004,126:6518-6519.
    [120] MAITY P, XIE S, YAMAUCHI M, et al., Stabilized gold clusters: fromisolation toward controlled synthesis [J]. Nanoscale,2012,4:4027-4037.
    [121] NEGISHI Y, NOBUSADA K, TSUKUDA T, Glutathione-Protected GoldClusters Revisited: Bridging the Gap between Gold(I) Thiolate Complexesand Thiolate-Protected Gold Nanocrystals [J]. Journal Of The AmericanChemical Society,2005,127:5261-5270.
    [122] S NCHEZ-CASTILLO A, NOGUEZ C, GARZ N I L, On the Origin of theOptical Activity Displayed by Chiral-Ligand-Protected Metallic Nanoclusters[J]. Journal Of The American Chemical Society,2010,132:1504-1505.
    [123] VARNAVSKI O, RAMAKRISHNA G, KIM J, et al., Critical Size for theObservation of Quantum Confinement in Optically Excited Gold Clusters [J].Journal Of The American Chemical Society,2009,132:16-17.
    [124] SHANG L, AZADFAR N, STOCKMAR F, et al., One-Pot Synthesis ofNear-Infrared Fluorescent Gold Clusters for Cellular Fluorescence LifetimeImaging [J]. Small,2011,7:2614-2620.
    [125] ZHENG J, PETTY J T, DICKSON R M, High Quantum Yield Blue Emissionfrom Water-Soluble Au8Nanodots [J]. Journal Of The American ChemicalSociety,2003,125:7780-7781.
    [126] MUHAMMED M A H, RAMESH S, SINHA S S, et al., Two distinctfluorescent quantum clusters of gold starting from metallic nanoparticles bypH-dependent ligand etching [J]. Nano Research,2008,1:333-340.
    [127] DUAN H, NIE S, Etching Colloidal Gold Nanocrystals with Hyperbranchedand Multivalent Polymers: A New Route to Fluorescent and Water-SolubleAtomic Clusters [J]. Journal Of The American Chemical Society,2007,129:2412-2413.
    [128] XIE J, ZHENG Y, YING J Y, Protein-Directed Synthesis of HighlyFluorescent Gold Nanoclusters [J]. Journal Of The American ChemicalSociety,2009,131:888-889.
    [129] WEI H, WANG Z, YANG L, et al., Lysozyme-stabilized gold fluorescentcluster: synthesis and application as Hg2+sensor [J]. Analyst,2010,135:1406-1410.
    [130] WEN F, DONG Y, FENG L, et al., Horseradish Peroxidase FunctionalizedFluorescent Gold Nanoclusters for Hydrogen Peroxide Sensing [J]. AnalyticalChemistry,2011,83:1193-1196.
    [131] LIU C L, WU H T, HSIAO Y H, et al., Insulin‐Directed Synthesis ofFluorescent Gold Nanoclusters: Preservation of Insulin Bioactivity andVersatility in Cell Imaging [J]. Angewandte Chemie International Edition,2011,50:7056-7060.
    [132] KAWASAKI H, HAMAGUCHI K, OSAKA I, et al., ph‐DependentSynthesis of Pepsin‐Mediated Gold Nanoclusters with Blue Green and RedFluorescent Emission [J]. Advanced Functional Materials,2011,21:3508-3515.
    [133] SUN C, YANG H, YUAN Y, et al., Controlling assembly of paired goldclusters within apoferritin nanoreactor for in vivo kidney targeting andbiomedical imaging [J]. Journal Of The American Chemical Society,2011,133:8617-8624.
    [134] THOMAS A, Blue emitting gold nanoclusters templated by poly-cytosineDNA at low pH and poly-adenine DNA at neutral pH [J]. ChemicalCommunications,2012,48:6845-6847.
    [135] ZHENG J, DICKSON R M, Individual Water-SolubleDendrimer-Encapsulated Silver Nanodot Fluorescence [J]. Journal Of TheAmerican Chemical Society,2002,124:13982-13983.
    [136] SHANG L, DONG S, Facile preparation of water-soluble fluorescent silvernanoclusters using a polyelectrolyte template [J]. Chemical Communications,2008,1088-1090.
    [137] XU H, SUSLICK K S, Sonochemical Synthesis of Highly Fluorescent AgNanoclusters [J]. Acs Nano,2010,4:3209-3214.
    [138] WEN T, QU F, LI N B, et al., Polyethyleneimine-capped silver nanoclusters asa fluorescence probe for sensitive detection of hydrogen peroxide and glucose[J]. Analytica Chimica Acta,2012,749:56-62.
    [139] ZHOU T, RONG M, CAI Z, et al., Sonochemical synthesis of highlyfluorescent glutathione-stabilized Ag nanoclusters and S2-sensing [J].Nanoscale,2012,4:4103-4106.
    [140] YU J, PATEL S A, DICKSON R M, In Vitro and Intracellular Production ofPeptide-Encapsulated Fluorescent Silver Nanoclusters [J]. AngewandteChemie International Edition,2007,46:2028-2030.
    [141] NARAYANAN S S, PAL S K, Structural and functional characterization ofluminescent silver-protein nanobioconjugates [J]. The Journal of PhysicalChemistry C,2008,112:4874-4879.
    [142] JAMES YANG C, Facile synthesis of red-emitting lysozyme-stabilized Agnanoclusters [J]. Nanoscale,2012,4:5312-5315.
    [143] LIU Z, MA Q, WANG X, et al., A novel fluorescent nanosensor for detectionof heparin and heparinase based on CuInS2quantum dots [J]. Biosensors andBioelectronics,2014,54:617-622.
    [144] RITCHIE C M, JOHNSEN K R, KISER J R, et al., Ag Nanocluster FormationUsing a Cytosine Oligonucleotide Template [J]. The Journal of PhysicalChemistry C,2006,111:175-181.
    [145] PETTY J T, ZHENG J, HUD N V, et al., DNA-Templated Ag NanoclusterFormation [J]. Journal Of The American Chemical Society,2004,126:5207-5212.
    [146] LIN Z, MA Q, FEI X, et al., A novel aptamer functionalized CuInS2 quantum dots probe for daunorubicin sensing and near infraredimaging of prostate cancer cells [J]. Analytica Chimica Acta,2014,818:54-60.
    [147] ZHAO M, SUN L, CROOKS R M, Preparation of Cu Nanoclusters withinDendrimer Templates [J]. Journal Of The American Chemical Society,1998,120:4877-4878.
    [148] V ZQUEZ-V ZQUEZ C, BA OBRE-L PEZ M, MITRA A, et al., Synthesis ofSmall Atomic Copper Clusters in Microemulsions [J]. Langmuir,2009,25:8208-8216.
    [149] VILAR-VIDAL N, BLANCO M C, LO PEZ-QUINTELA M A, et al.,Electrochemical Synthesis of Very Stable Photoluminescent Copper Clusters[J]. The Journal of Physical Chemistry C,2010,114:15924-15930.
    [150] KAWASAKI H, KOSAKA Y, MYOUJIN Y, et al., Microwave-assisted polyolsynthesis of copper nanocrystals without using additional protective agents [J].Chemical Communications,2011,47:7740-7742.
    [151] WEI W, LU Y, CHEN W, et al., One-Pot Synthesis, Photoluminescence, andElectrocatalytic Properties of Subnanometer-Sized Copper Clusters [J].Journal Of The American Chemical Society,2011,133:2060-2063.
    [152] ROTARU A, DUTTA S, JENTZSCH E, et al., Selective dsDNA-TemplatedFormation of Copper Nanoparticles in Solution [J]. Angewandte ChemieInternational Edition,2010,49:5665-5667.
    [153] JIA X, LI J, HAN L, et al., DNA-hosted copper nanoclusters for fluorescentidentification of single nucleotide polymorphisms [J]. Acs Nano,2012,6:3311-3317.
    [154] LIU G, SHAO Y, PENG J, et al., Highly thymine-dependent formation offluorescent copper nanoparticles templated by ss-DNA [J]. Nanotechnology,2013,24:345502.
    [155] YAMAMOTO K, IMAOKA T, CHUN W-J, et al., Size-specific catalyticactivity of platinum clusters enhances oxygen reduction reactions [J]. NatureChemistry,2009,1:397-402.
    [156] HYOTANISHI M, ISOMURA Y, YAMAMOTO H, et al., Surfactant-freesynthesis of palladium nanoclusters for their use in catalytic cross-couplingreactions [J]. Chemical Communications,2011,47:5750-5752.
    [157] KAWASAKI H, YAMAMOTO H, FUJIMORI H, et al., Surfactant-freesolution synthesis of fluorescent platinum subnanoclusters [J]. ChemicalCommunications,2010,46:3759-3761.
    [158] GUO W, YUAN J, WANG E, Oligonucleotide-stabilized Ag nanoclusters asnovel fluorescence probes for the highly selective and sensitive detection ofthe Hg2+ion [J]. Chemical Communications,2009,3395-3397.
    [159] DENG L, ZHOU Z, LI J, et al., Fluorescent silver nanoclusters in hybridizedDNA duplexes for the turn-on detection of Hg2+ions [J]. ChemicalCommunications,2011,47:11065-11067.
    [160] CHEN J H, LIU J, FANG Z Y, et al., Random dsDNA-templated formation ofcopper nanoparticles as novel fluorescence probes for label-free lead ionsdetection [J]. Chemical Communications,2012,48:1057-1059.
    [161] ZHANG L, ZHU J, AI J, et al., Label-free G-quadruplex-specific fluorescentprobe for sensitive detection of copper (II) ion [J]. Biosensors andBioelectronics,2013,39:268-273.
    [162] LAN G-Y, HUANG C-C, CHANG H-T, Silver nanoclusters as fluorescentprobes for selective and sensitive detection of copper ions [J]. ChemicalCommunications,2010,46:1257-1259.
    [163] WU Z, WANG M, YANG J, et al., Well-Defined Nanoclusters as FluorescentNanosensors: A Case Study on Au25(SG)18[J]. Small,2012,8:2028-2035.
    [164] LIU S, LU F, ZHU J-J, Highly fluorescent Ag nanoclusters:microwave-assisted green synthesis and Cr3+sensing [J]. ChemicalCommunications,2011,47:2661-2663.
    [165] ZHANG H, LIU Q, WANG T, et al., Facile preparation ofglutathione-stabilized gold nanoclusters for selective determination ofchromium (III) and chromium (VI) in environmental water samples [J].Analytica Chimica Acta,2013,770:140-146.
    [166] ROY S, PALUI G, BANERJEE A, The as-prepared gold cluster-basedfluorescent sensor for the selective detection of AsIII ions in aqueous solution[J]. Nanoscale,2012,4:2734-2740.
    [167] ZHANG L, WEI H, LI J, et al., A carbon nanotubes based ATP apta-sensingplatform and its application in cellular assay [J]. Biosensors andBioelectronics,2010,25:1897-1901.
    [168] ZHOU Z, DU Y, DONG S, DNA–Ag nanoclusters as fluorescence probe forturn-on aptamer sensor of small molecules [J]. Biosensors and Bioelectronics,2011,28:33-37.
    [169] ZHOU Z X, DU Y, DONG S J, Double-Strand DNA-Templated Formation ofCopper Nanoparticles as Fluorescent Probe for Label-Free Aptamer Sensor [J].Analytical Chemistry,2011,83:5122-5127.
    [170] ZHANG L, ZHU J, GUO S, et al., Photoinduced Electron Transfer ofDNA/Ag Nanoclusters Modulated by G-Quadruplex/Hemin Complex for theConstruction of Versatile Biosensors [J]. Journal Of The American ChemicalSociety,2013,135:2403-2406.
    [171] TAO Y, LIN Y, REN J, et al., A dual fluorometric and colorimetric sensor fordopamine based on BSA-stabilized Aunanoclusters [J]. Biosensors andBioelectronics,2013,42:41-46.
    [172] HU Y H, WU Y M, CHEN T T, et al., Double-strand DNA-templated synthesisof copper nanoclusters as novel fluorescence probe for label-free detection ofbiothiols [J]. Analytical Methods,2013,5:3577-3581.
    [173] SHANG L, DONG S, Design of Fluorescent Assays for Cyanide andHydrogen Peroxide Based on the Inner Filter Effect of Metal Nanoparticles [J].Analytical Chemistry,2009,81:1465-1470.
    [174] SHARMA J, YEH H-C, YOO H, et al., Silver nanocluster aptamers: in situgeneration of intrinsically fluorescent recognition ligands for protein detection[J]. Chemical Communications,2011,47:2294-2296.
    [175] LI J, ZHONG X, ZHANG H, et al., Binding-Induced Fluorescence Turn-OnAssay Using Aptamer-Functionalized Silver Nanocluster DNA Probes [J].Analytical Chemistry,2012,84:5170-5174.
    [176] WOLFE M S, Intramembrane Proteolysis [J]. Chemical Reviews,2009,109:1599-1612.
    [177] WANG Y, WANG Y, ZHOU F, et al., Protein-Protected Au Clusters as a NewClass of Nanoscale Biosensor for Label-Free Fluorescence Detection ofProteases [J]. Small,2012,8:3769-3773.
    [178] LIU J-J, SONG X-R, WANG Y-W, et al., Label-free and fluorescence turn-onaptasensor for protein detection via target-induced silver nanoclustersformation [J]. Analytica Chimica Acta,2012,749:70-74.
    [179] ZHANG L L, ZHAO J J, ZHANG H, et al., Double strand DNA-templatedcopper nanoparticle as a novel fluorescence indicator for label-free detectionof polynucleotide kinase activity [J]. Biosensors&Bioelectronics,2013,44:6-9.
    [180] LAN G-Y, CHEN W-Y, CHANG H-T, Characterization and application to thedetection of single-stranded DNA binding protein of fluorescentDNA-templated copper/silver nanoclusters [J]. Analyst,2011,136:3623-3628.
    [181] LIN H, LI L, LEI C, et al., Immune-independent and label-free fluorescentassay for Cystatin C detection based on protein-stabilized Au nanoclusters [J].Biosensors and Bioelectronics,2013,41:256-261.
    [182] GUO W, YUAN J, DONG Q, et al., Highly Sequence-Dependent Formation ofFluorescent Silver Nanoclusters in Hybridized DNA Duplexes for SingleNucleotide Mutation Identification [J]. Journal Of The American ChemicalSociety,2009,132:932-934.
    [183] YEH H-C, SHARMA J, HAN J J, et al., A DNA Silver Nanocluster ProbeThat Fluoresces upon Hybridization [J]. Nano Letters,2010,10:3106-3110.
    [184] LIU X, WANG F, AIZEN R, et al., Graphene Oxide/Nucleic-Acid-StabilizedSilver Nanoclusters: Functional Hybrid Materials for Optical Aptamer Sensingand Multiplexed Analysis of Pathogenic DNAs [J]. Journal Of The AmericanChemical Society,2013,135:11832-11839.
    [185] WANG C, WANG Y, XU L, et al., A Galvanic Replacement Route to PrepareStrongly Fluorescent and Highly Stable Gold Nanodots for Cellular Imaging[J]. Small,2013,9:413-420.
    [186] WANG J-G, JANG S-S, WONG D S-H, et al., Soft-sensor development withadaptive variable selection using nonnegative garrote [J]. Control EngineeringPractice,2013,21:1157-1164.
    [187] CHEN H, LI B, REN X, et al., Multifunctional near-infrared-emittingnano-conjugates based on gold clusters for tumor imaging and therapy [J].Biomaterials,2012,33:8461-8476.
    [188] CHEN T, XU S, ZHAO T, et al., Gold Nanocluster-Conjugated AmphiphilicBlock Copolymer for Tumor-Targeted Drug Delivery [J]. Acs AppliedMaterials&Interfaces,2012,4:5766-5774.
    [189] ATTWOOD P V, WALLACE J C, Chemical and catalytic mechanisms ofcarboxyl transfer reactions in biotin-dependent enzymes [J]. Accounts OfChemical Research,2002,35:113-120.
    [190] LIVANIOU E, COSTOPOULOU D, VASSILIADOU I, et al., Analyticaltechniques for determining biotin [J]. Journal Of Chromatography A,2000,881:331-343.
    [191] BONJOUR J P, Biotin in human nutrition [J]. Annals Of The New YorkAcademy Of Sciences,1985,447:97-104.
    [192] WOLF B, FELDMAN G L, The biotin-dependent carboxylase deficiencies [J].American Journal Of Human Genetics,1982,34:699-716.
    [193] MOCK D M, QUIRK J G, MOCK N I, Marginal biotin deficiency duringnormal pregnancy [J]. American Journal Of Clinical Nutrition,2002,75:295-299.
    [194] KERGARAVAT S V, GOMEZ G A, FABIANO S N, et al., Biotindetermination in food supplements by an electrochemical magneto biosensor[J]. Talanta,2012,97:484-490.
    [195] ZERZANOVA A, ZIZKOVSKY V, KUCERA R, et al., Using of HPLCcoupled with coulometric detector for the determination of biotin inpharmaceuticals [J]. Journal Of Pharmaceutical And Biomedical Analysis,2007,45:730-735.
    [196] REYES F D, ROMERO J M F, DE CASTRO M D L, Determination of biotinin foodstuffs and pharmaceutical preparations using a biosensing system basedon the streptavidin-biotin interaction [J]. Analytica Chimica Acta,2001,436:109-117.
    [197] MARTIN H, MURRAY C, CHRISTELLER J, et al., A fluorescencepolarization assay to quantify biotin and biotin-binding proteins in whole plantextracts using Alexa-Fluor594biocytin [J]. Analytical Biochemistry,2008,381:107-112.
    [198] WU Z, ZHEN Z, JIANG J H, et al., Terminal Protection ofSmall-Molecule-Linked DNA for Sensitive Electrochemical Detection ofProtein Binding via Selective Carbon Nanotube Assembly [J]. Journal Of TheAmerican Chemical Society,2009,131:12325-12332.
    [199] CAO Y, ZHU S, YU J, et al., Protein Detection Based on SmallMolecule-Linked DNA [J]. Analytical chemistry,2012,84:4314-4320.
    [200] LU C H, YANG H H, ZHU C L, et al., A graphene platform for sensingbiomolecules [J]. Angewandte Chemie,2009,121:4879-4881.
    [201] ZHAO X-H, KONG R-M, ZHANG X-B, et al., Graphene–DNAzyme BasedBiosensor for Amplified Fluorescence “Turn-On” Detection of Pb2+with aHigh Selectivity [J]. Analytical chemistry,2011,83:5062-5066.
    [202] LIU M, ZHANG Q, ZHAO H, et al., Controllable oxidative DNAcleavage-dependent regulation of graphene/DNA interaction [J]. Chem.Commun.,2011,47:4084-4086.
    [203] LI F, FENG Y, ZHAO C, et al., A sensitive graphene oxide–DNA basedsensing platform for fluorescence “turn-on” detection of bleomycin [J]. Chem.Commun.,2011,48:127-129.
    [204] GAO Y, LI Y, ZHANG L, et al., Adsorption and removal of tetracyclineantibiotics from aqueous solution by graphene oxide [J]. Journal Of ColloidAnd Interface Science,2012,368:540-546.
    [205] ROMAN-PIZARRO V, FERNANDEZ-ROMERO J M, GOMEZ-HENS A,Gold nanoparticle-biotinylated liposome hybrids as analytical reagents forbiotin determination using a competitive assay and resonance light scatteringdetection [J]. Talanta,2012,99:538-543.
    [206] YUAN M, ZHU Y, LOU X, et al., Sensitive label-free oligonucleotide-basedmicrofluidic detection of mercury (II) ion by using exonuclease I [J].Biosensors and Bioelectronics,2012,31:330-336.
    [207] ZHAO X-H, MA Q-J, WU X-X, et al., Graphene oxide-Based Biosensor forSensitive Fluorescence Detection of DNA Based on Exonuclease III-aidedSignal Amplificatoin [J]. Analytica chimica acta,2012,
    [208] DENG T, LI J S, HUAN S Y, et al., Quartz crystal microbalance bioaffinitysensor for biotin based on mixed self-assembled monolayers and metastablemolecular complex receptor [J]. Biosensors&Bioelectronics,2006,21:1545-1552.
    [209] TANAKA S, YAMAMOTO F, SUGARWARA K, et al., Biotin ligands labeledwith daunomycin as an electrochemical probe for avidin and biotin interaction[J]. Talanta,1997,44:357-363.
    [210] HOLLER U, WACHTER F, WEHRLI C, et al., Quantification of biotin infeed, food, tablets, and premixes using HPLC-MS/MS [J]. Journal OfChromatography B-Analytical Technologies In the Biomedical And LifeSciences,2006,831:8-16.
    [211] NOJIRI S, KAMATA K, NISHIJIMA M, Fluorescence detection of biotinusing post-column derivatization with OPA in high performance liquidchromatography [J]. Journal Of Pharmaceutical And Biomedical Analysis,1998,16:1357-1362.
    [212] KIZEK R, MASARIK M, KRAMER K J, et al., An analysis of avidin, biotinand their interaction at attomole levels by voltammetric and chromatographictechniques [J]. Analytical And Bioanalytical Chemistry,2005,381:1167-1178.
    [213] SCHRAY K J, ARTZ P G, HEVEY R C, Determination of avidin and biotin byfluorescence polarization [J]. Analytical Chemistry,1988,60:853-855.
    [214] GAO Y L, GUO F, GOKAVI S, et al., Quantification of water-soluble vitaminsin milk-based infant formulae using biosensor-based assays [J]. FoodChemistry,2008,110:769-776.
    [215] BONACCORSO F, SUN Z, HASAN T, et al., Graphene photonics andoptoelectronics [J]. Nature Photonics,2010,4:611-622.
    [216] ZENG Q O, CHENG J S, TANG L H, et al., Self-AssembledGraphene-Enzyme Hierarchical Nanostructures for ElectrochemicalBiosensing [J]. Advanced Functional Materials,2010,20:3366-3372.
    [217] LI X L, ZHANG G Y, BAI X D, et al., Highly conducting graphene sheets andLangmuir-Blodgett films [J]. Nature Nanotechnology,2008,3:538-542.
    [218] SWATHI R S, SEBASTIAN K L, Resonance energy transfer from a dyemolecule to graphene [J]. Journal Of Chemical Physics,2008,129:
    [219] JUNG J H, CHEON D S, LIU F, et al., A Graphene Oxide BasedImmuno-biosensor for Pathogen Detection [J]. AngewandteChemie-international Edition,2010,49:5708-5711.
    [220] LIU Z, ROBINSON J T, SUN X M, et al., PEGylated nanographene oxide fordelivery of water-insoluble cancer drugs [J]. Journal Of The AmericanChemical Society,2008,130:10876-+.
    [221] VARGHESE N, MOGERA U, GOVINDARAJ A, et al., Binding of DNANucleobases and Nucleosides with Graphene [J]. Chemphyschem,2009,10:206-210.
    [222] LEE J, MIN D H, A simple fluorometric assay for DNA exonuclease activitybased on graphene oxide [J]. Analyst,2012,137:2024-2026.
    [223] DONG H F, GAO W C, YAN F, et al., Fluorescence Resonance EnergyTransfer between Quantum Dots and Graphene Oxide for SensingBiomolecules [J]. Analytical Chemistry,2010,82:5511-5517.
    [224] CHANG H X, TANG L H, WANG Y, et al., Graphene FluorescenceResonance Energy Transfer Aptasensor for the Thrombin Detection [J].Analytical Chemistry,2010,82:2341-2346.
    [225] WEN Y Q, XING F F, HE S J, et al., A graphene-based fluorescent nanoprobefor silver(I) ions detection by using graphene oxide and a silver-specificoligonucleotide [J]. Chemical Communications,2010,46:2596-2598.
    [226] ZHAO X H, KONG R M, ZHANG X B, et al., Graphene-DNAzyme BasedBiosensor for Amplified Fluorescence "Turn-On" Detection of Pb2+with aHigh Selectivity [J]. Analytical Chemistry,2011,83:5062-5066.
    [227] ZHANG H, LI Y, SU X G, A small-molecule-linked DNA–grapheneoxide-based fluorescence-sensing system for detection of biotin [J]. AnalyticalBiochemistry,2013,442:172-177.
    [228] WU P, HE Y, WANG H F, et al., Conjugation of Glucose Oxidase ontoMn-Doped ZnS Quantum Dots for Phosphorescent Sensing of Glucose inBiological Fluids [J]. Analytical Chemistry,2010,82:1427-1433.
    [229] LI X, ZHU Q, TONG S, et al., Self-assembled microstructure of carbonnanotubes for enzymeless glucose sensor [J]. Sensors and Actuators B:Chemical,2009,136:444-450.
    [230] QIU H, HUANG X, Effects of Pt decoration on the electrocatalytic activity ofnanoporous gold electrode toward glucose and its potential application forconstructing a nonenzymatic glucose sensor [J]. Journal Of ElectroanalyticalChemistry,2010,643:39-45.
    [231] WANG W, ZHANG L, TONG S, et al., Three-dimensional network films ofelectrospun copper oxide nanofibers for glucose determination [J]. Biosensorsand Bioelectronics,2009,25:708-714.
    [232] ODACI D, GACAL B N, GACAL B, et al., Fluorescence sensing of glucoseusing glucose oxidase modified by PVA-pyrene prepared via “click” chemistry[J]. Biomacromolecules,2009,10:2928-2934.
    [233] JIANG Y Y, ZHANG Q X, LI F H, et al., Glucose oxidase and graphenebionanocomposite bridged by ionic liquid unit for glucose biosensingapplication [J]. Sensors And Actuators B-chemical,2012,161:728-733.
    [234] TANG H, YAN F, LIN P, et al., Highly Sensitive Glucose Biosensors Based onOrganic Electrochemical Transistors Using Platinum Gate ElectrodesModified with Enzyme and Nanomaterials [J]. Advanced Functional Materials,2011,21:2264-2272.
    [235] YI Y H, DENG J H, ZHANG Y Y, et al., Label-free Si quantum dots asphotoluminescence probes for glucose detection [J]. ChemicalCommunications,2013,49:612-614.
    [236] XIA X D, LONG Y F, WANG J X, Glucose oxidase-functionalized fluorescentgold nanoclusters as probes for glucose [J]. Analytica Chimica Acta,2013,772:81-86.
    [237] CHANG Q, ZHU L, JIANG G, et al., Sensitive fluorescent probes fordetermination of hydrogen peroxide and glucose based onenzyme-immobilized magnetite/silica nanoparticles [J]. Analytical AndBioanalytical Chemistry,2009,395:2377-2385.
    [238] YANG Y, ZHOU J W, ZHANG Y S, et al., Sensitive electrochemical detectionof hydroxyl radical based on MBs-DNA-AgNPs nanocomposite [J]. SensorsAnd Actuators B-chemical,2013,182:504-509.
    [239] LIU M, ZHANG Q A, ZHAO H M, et al., Controllable oxidative DNAcleavage-dependent regulation of graphene/DNA interaction [J]. ChemicalCommunications,2011,47:4084-4086.
    [240] WANG W, LEE G J, JANG K J, et al., Real-time detection of Fe center dotEDTA/H(2)O(2)-induced DNA cleavage by linear dichroism [J]. NucleicAcids Research,2008,36:
    [241] CAO L H, YE J, TONG L L, et al., A New Route to the ConsiderableEnhancement of Glucose Oxidase (GOx) Activity: The Simple Assembly of aComplex from CdTe Quantum Dots and GOx, and Its Glucose Sensing [J].Chemistry-a European Journal,2008,14:9633-9640.
    [242] LEUNG C H, CHAN D S H, MAN B Y W, et al., Simple and ConvenientG-Quadruplex-Based Turn-On Fluorescence Assay for3'->5' ExonucleaseActivity [J]. Analytical Chemistry,2011,83:463-466.
    [243] MIRANDA-CASTRO R, MARCHAL D, LIMOGES B, et al., Homogeneouselectrochemical monitoring of exonuclease III activity and its application tonucleic acid testing by target recycling [J]. Chemical Communications,2012,48:8772-8774.
    [244] HU R, LIU Y R, KONG R M, et al., Double-strand DNA-templated formationof Copper nanoparticles as fluorescent probe for label free nuclease enzymedetection [J]. Biosensors&Bioelectronics,2013,42:31-35.
    [245] COE S, WOO W K, BAWENDI M, et al., Electroluminescence from singlemonolayers of nanocrystals in molecular organic devices [J]. Nature,2002,420:800-803.
    [246] LIM J, JUN S, JANG E, et al., Preparation of highly luminescent nanocrystalsand their application to light-emitting diodes [J]. Advanced Materials,2007,19:1927-1932.
    [247] BRUCHEZ M, JR., MORONNE M, GIN P, et al., Semiconductor nanocrystalsas fluorescent biological labels [J]. Science,1998,281:2013-2016.
    [248] CHAN W C, NIE S, Quantum dot bioconjugates for ultrasensitive nonisotopicdetection [J]. Science,1998,281:2016-2018.
    [249] MICHALET X, PINAUD F F, BENTOLILA L A, et al., Quantum dots for livecells, in vivo imaging, and diagnostics [J]. Science,2005,307:538-544.
    [250] CHAUDHURI R G, PARIA S, Core/Shell Nanoparticles: Classes, Properties,Synthesis Mechanisms, Characterization, and Applications [J]. ChemicalReviews,2012,112:2373-2433.
    [251] CHO S J, MAYSINGER D, JAIN M, et al., Long-term exposure to CdTequantum dots causes functional impairments in live cells [J]. Langmuir,2007,23:1974-1980.
    [252] SELVAN S T, TAN T T, YING J Y, Robust, non-cytotoxic, silica-coated CdSequantum dots with efficient photoluminescence [J]. Advanced Materials,2005,17:1620-1625.
    [253] PRADHAN N, GOORSKEY D, THESSING J, et al., An alternative of CdSenanocrystal emitters: Pure and tunable impurity emissions in ZnSenanocrystals [J]. Journal Of The American Chemical Society,2005,127:17586-17587.
    [254] PRADHAN N, PENG X G, Efficient and color-tunable Mn-doped ZnSenanocrystal emitters: Control of optical performance via greener syntheticchemistry [J]. Journal Of The American Chemical Society,2007,129:3339-3347.
    [255] SUYVER J F, WUISTER S F, KELLY J J, et al., Luminescence ofnanocrystalline ZnSe: Mn2+[J]. Physical Chemistry Chemical Physics,2000,2:5445-5448.
    [256] WANG C, GAO X, MA Q, et al., Aqueous synthesis of mercaptopropionicacid capped Mn2+-doped ZnSe quantum dots [J]. Journal Of MaterialsChemistry,2009,19:7016-7022.
    [257] ABOULAICH A, GESZKE M, BALAN L, et al., Water-Based Route toColloidal Mn-Doped ZnSe and Core/Shell ZnSe/ZnS Quantum Dots [J].Inorganic Chemistry,2010,49:10940-10948.
    [258] DONG B H, CAO L X, SU G, et al., Facile Synthesis of Highly LuminescentWater-Soluble ZnSe:Mn/ZnS Core/Shell Doped Nanocrystals with PureDopant Emission [J]. Journal Of Physical Chemistry C,2012,116:12258-12264.
    [259] ZHANG H, WANG L P, XIONG H M, et al., Hydrothermal synthesis forhigh-quality CdTe nanocrystals [J]. Advanced Materials,2003,15:1712-1715.
    [260] SRIVASTAVA B B, JANA S, KARAN N S, et al., Highly LuminescentMn-Doped ZnS Nanocrystals: Gram-Scale Synthesis [J]. Journal Of PhysicalChemistry Letters,2010,1:1454-1458.
    [261] FANG Z, LI Y, ZHANG H, et al., Facile Synthesis of Highly LuminescentUV-Blue-Emitting ZnSe/ZnS Core/Shell Nanocrystals in Aqueous Media [J].Journal Of Physical Chemistry C,2009,113:14145-14150.
    [262] PENG X, SCHLAMP M C, KADAVANICH A V, et al., Epitaxial Growth ofHighly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostabilityand Electronic Accessibility [J]. Journal Of The American Chemical Society,1997,119:7019–7029.
    [263] DABBOUSI B O, RODRIGUEZ-VIEJO J, MIKULEC F V, et al.,(CdSe)ZnSCore-Shell Quantum Dots: Synthesis and Characterization of a Size Series ofHighly Luminescent Nanocrystallites [J]. Journal Of Physical Chemistry B,1997,101:9463-9475.
    [264] TALAPIN D V, MEKIS I, GOTZINGER S, et al., CdSe/CdS/ZnS andCdSe/ZnSe/ZnS core-shell-shell nanocrystals [J]. Journal Of PhysicalChemistry B,2004,108:18826-18831.
    [265] XU S H, WANG C L, WANG Z Y, et al., Aqueous synthesis of internallydoped Cu:ZnSe/ZnS core-shell nanocrystals with good stability [J].Nanotechnology,2011,22:275605.
    [266] CHEN F Q, GERION D, Fluorescent CdSe/ZnS nanocrystal-peptideconjugates for long-term, nontoxic imaging and nuclear targeting in livingcells [J]. Nano Letters,2004,4:1827-1832.
    [267] WANG X Y, MA Q, LI B, et al., The preparation of CdTe nanoparticles andCdTe nanoparticle-label led microspheres for biological applications [J].Luminescence,2007,22:1-8.
    [268] NORMAN T J, MAGANA D, WILSON T, et al., Optical and surfacestructural properties of Mn2+-doped ZnSe nanoparticles [J]. Journal OfPhysical Chemistry B,2003,107:6309-6317.
    [269] SHAO P T, ZHANG Q H, LI Y G, et al., Aqueous synthesis of color-tunableand stable Mn2+-doped ZnSe quantum dots [J]. Journal Of MaterialsChemistry,2011,21:151-156.
    [270] PAULL T T, GELLERT M, The3′to5′Exonuclease Activity of Mre11Facilitates Repair of DNA Double-Strand Breaks [J]. Molecular Cell,1998,1:969-979.
    [271] SONG L P, CHAUDHURI M, KNOPF C W, et al., Contribution of the3'-to5'-exonuclease activity of herpes simplex virus type1DNA polymerase to thefidelity of DNA synthesis [J]. Journal Of Biological Chemistry,2004,279:18535-18543.
    [272] GAMMON D B, EVANS D H, The3'-to-5' Exonuclease Activity of VacciniaVirus DNA Polymerase Is Essential and Plays a Role in Promoting VirusGenetic Recombination [J]. Journal Of Virology,2009,83:4236-4250.
    [273] JIN Y H, OBERT R, BURGERS P M J, et al., The3′→5′exonuclease ofDNA polymerase δ can substitute for the5′flap endonucleaseRad27/Fen1in processing Okazaki fragments and preventing genomeinstability [J]. Proceedings of the National Academy of Sciences,2001,98:5122-5127.
    [274] YANG Y G, LINDAHL T, BARNES D E, Trex1exonuclease degrades ssDNAto prevent chronic checkpoint activation and autoimmune disease [J]. Cell,2007,131:873-886.
    [275] KAVANAGH D, SPITZER D, KOTHARI P H, et al., New roles for the majorhuman3'-5' exonuclease TREX1in human disease [J]. Cell Cycle,2008,7:1718-1725.
    [276] SHEN J-C, LOEB L A, The Werner syndrome gene: the molecular basis ofRecQ helicase-deficiency diseases [J]. Trends In Genetics,2000,16:213-220.
    [277] LEHTINEN D A, HARVEY S, MULCAHY M J, et al., The TREX1Double-stranded DNA Degradation Activity Is Defective in DominantMutations Associated with Autoimmune Disease [J]. Journal Of BiologicalChemistry,2008,283:31649-31656.
    [278] BRUCET M, QUEROL-AUD J, BERTLIK K, et al., Structural andbiochemical studies of TREX1inhibition by metals. Identification of a newactive histidine conserved in DEDDh exonucleases [J]. Protein Science,2008,17:2059-2069.
    [279] NIMONKAR A V, ZSOY A Z, GENSCHEL J, et al., Human exonuclease1and BLM helicase interact to resect DNA and initiate DNA repair [J].Proceedings of the National Academy of Sciences,2008,105:16906-16911.
    [280] WU X, CHEN J, ZHAO J X, Ultrasensitive detection of3[prime orminute]-5[prime or minute] exonuclease enzymatic activity using molecularbeacons [J]. Analyst,2014,139:1081-1087.
    [281] SHANG L, DONG S, Sensitive detection of cysteine based on fluorescentsilver clusters [J]. Biosensors and Bioelectronics,2009,24:1569-1573.
    [282] CHEN C-T, CHEN W-J, LIU C-Z, et al., Glutathione-bound gold nanoclustersfor selective-binding and detection of glutathione S-transferase-fusion proteinsfrom cell lysates [J]. Chemical Communications,2009,7515-7517.
    [283] MAKARAVA N, PARFENOV A, BASKAKOV I V, Water-Soluble HybridNanoclusters with Extra Bright and Photostable Emissions: A New Tool forBiological Imaging [J]. Biophysical Journal,2005,89:572-580.
    [284] ZHOU Z, DU Y, DONG S, Double-Strand DNA-Templated Formation ofCopper Nanoparticles as Fluorescent Probe for Label-Free Aptamer Sensor [J].Analytical Chemistry,2011,83:5122-5127.
    [285] ZHANG L L, ZHAO J J, DUAN M, et al., Inhibition of dsDNA-TemplatedCopper Nanoparticles by Pyrophosphate as a Label-Free Fluorescent Strategyfor Alkaline Phosphatase Assay [J]. Analytical Chemistry,2013,85:3797-3801.
    [286] WANG G, XU G, ZHU Y, et al., A "turn-on" carbon nanotube-Ag nanoclustersfluorescent sensor for sensitive and selective detection of Hg2+with cyclicamplification of exonuclease III activity [J]. Chemical Communications,2014,50:747-750.
    [287] ZHAO X H, MA Q J, WU X X, et al., Graphene oxide-based biosensor forsensitive fluorescence detection of DNA based on exonuclease III-aided signalamplification [J]. Analytica Chimica Acta,2012,727:67-70.
    [288] ANDRUSHCHENKO V, VAN DE SANDE J H, WIESER H, Vibrationalcircular dichroism and IR absorption of DNA complexes with Cu2+ions [J].Biopolymers,2003,72:374-390.
    [289] JIA X F, LI J, HAN L, et al., DNA-Hosted Copper Nanoclusters forFluorescent Identification of Single Nucleotide Polymorphisms [J]. Acs Nano,2012,6:3311-3317.
    [290] MONSON C F, WOOLLEY A T, DNA-templated construction of coppernanowires [J]. Nano Letters,2003,3:359-363.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700