氧化锌纳米结构薄膜的微结构及光电特性调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化锌(ZnO)具有优异的光电性能,在紫外蓝光光电子器件、透明电子器件、自旋电子器件和压电及热电传感器等领域有着重要的研究价值,目前已成为学术界研究的一个焦点。虽然对氧化锌的研究已经有了相当长的历史,但ZnO材料的一些光学电学性能及其调控机理并未完全清楚,这些问题包括p型ZnO问题、ZnO的施主受主缺陷的辨认问题、ZnO在可见光区的发光中心问题及ZnO分级结构的可控制备问题等等。寻找这些问题的答案对于增强、扩展ZnO材料在器件上的应用以及器件功能的实用化来说至关重要。鉴于此,本论文主要在以下几个方面做了一些工作:
     (一)采用磁控溅射法制备了Mo掺杂的氧化锌(MZO)薄膜,研究了不同的掺杂量对ZnO薄膜的微结构、电学、光学及发光性能的影响,研究了退火对薄膜导电性能、发光性能的影响。结果表明,MZO薄膜为多晶颗粒膜,掺钼影响薄膜的表面粗糙度;退火后薄膜的多晶颗粒尺寸变大数倍。MZO’薄膜均为六方纤锌矿结构,且沿c轴择优生长。MZO薄膜的平均晶粒尺寸及薄膜内的应力均呈现随Mo掺杂量的增大而先增大后减小的趋势,MZO:2%薄膜具有最大的平均晶粒尺寸和内应力。退火可以使MZO薄膜的晶粒尺寸明显增大,同时使薄膜中的应力释放。XPS结果显示Mo在ZnO薄膜中呈+6价,显示Mo6+原子在溅射过程中其自身的化合态保持不变。MZO:2%薄膜的Zn2p3/2结合能峰中出现位于1022.0eV的子峰(对应于Zni),说明适量Mo掺杂可以促进Zni原子的生成。Mo掺杂对薄膜的光学透过率和光学带隙影响不大。MZO薄膜的电阻率随Mo掺杂量的增大呈先减小后增大的趋势,说明适量Mo掺杂可以降低MZO薄膜的电阻率。这应该归因于少量的钼掺杂刺激了Zni缺陷或Zni-X复合缺陷的生成,使薄膜中的Zni缺陷浓度增大,从而使载流子浓度增大。退火导致薄膜的电阻率急剧增大。这应该是由于薄膜中Zni缺陷浓度的降低和薄膜表面的氧吸附这两方面的原因导致的。未退火的MZO薄膜的光致发光谱中存在一个极弱的位于380nm处的ZnO本征发光峰和一个稍强的蓝光发光峰。退火使薄膜的光致发光强度快速增强,这应该是由于退火导致薄膜晶粒尺寸增大所导致的。退火还导致位于380和412nm位置处的发光峰逐渐被增强的位于400nm处的发光峰所掩盖,在525nm位置处也逐渐出现另一个新生成的绿光发光峰。在800℃下退火1小时后,MZO薄膜光致发光谱的发光峰位置基本一致,但MZO薄膜的发光强度几乎是未掺杂ZnO薄膜的发光强度的近10倍,说明在退火过程中MZO薄膜更容易生成发光缺陷(Vzn和Ozn缺陷)。
     (二)采用水热法分别制备了掺铝、掺镧和掺钇的ZnO纳米结构薄膜,并研究了每种样品的微结构、光学特性及低温发光特性。结果表明,掺铝氧化锌(AZO)纳米结构薄膜由六方纤锌矿结构的ZnO纳米锥构成,掺铝对薄膜的表面形貌和光学透过率没有明显影响。薄膜的光致发光谱存在两个比较宽的发光峰,P1峰和P2峰。随着掺杂量的增大,P1峰的绝对光强度及其对P2峰的相对光强度都迅速增大,并在掺杂浓度达到10%时达到最大值。在10-297K温度下的低温光致发光谱显示,P1峰受温度变化产生的改变不明显,但P2峰的发光强度随温度的升高呈现快速的淬灭。这种温度淬灭应该是由于当温度升高时,发光中心的晶格弛豫增强,无辐射跃迁几率增大,从而使发光效率降低所导致的。对于掺镧氧化锌(LZO)纳米结构薄膜,随着镧掺杂量的增大,ZnO纳米锥的平均直径和薄膜的(002)衍射峰的强度均增大。在紫光到绿光范围内,LZO薄膜的透过率比AZO薄膜的明显低很多。LZO薄膜在室温下紫外发光很弱,而在500-800nm内的可见光发光很强。随着镧掺杂量的增大,可见光区发光峰的强度也在逐渐增大,当掺杂浓度达到8%时,样品发光峰的强度是未掺杂ZnO薄膜的2.5倍左右。紫外发光峰强度随着掺杂量的增大没有明显变化。LZO薄膜的可见光区发光也呈现与AZO薄膜类似的温度淬灭现象,同时其紫外发光峰的峰位在升温过程中有红移现象,这种峰位的移动应该是由于温度升高时晶格常数增大所导致的。掺钇氧化锌(YZO)薄膜的微结构及光学透过率对不同钇掺杂量的变化情况与LZO薄膜的类似。室温下YZO薄膜在500-800nm范围内有较强的光致发光,但钇掺杂对发光谱的强度和峰位无明显影响,这一特点与AZO、YZO薄膜均不同。
     (三)采用化学浴沉积法在ZnO薄膜表面沉积了不同尺寸和密度的CdS量子点,研究了CdS-ZnO纳米异质结构薄膜的微结构、光学、光催化特性,具体结果如下。在ZnO表面,CdS量子点的尺寸和密度随着化学浴沉积次数的增大而越来越大;沉积4次得到的CdS-ZnO-4Ts样品表面的CdS量子点粒径均匀,分布较密。CdS量子点修饰导致薄膜吸收系数增大很多。CdS量子点修饰对ZnO发光的影响不明显。CdS-ZnO-4Ts薄膜在120分钟内对甲基橙溶液的降解率可达到96%,而纯的ZnO薄膜在120分钟的时间内只降解了35%的甲基橙,说明CdS量子点修饰可以明显增强ZnO薄膜的光催化效果。
     (四)采用电沉积法和阳极氧化法制备了ZnO纳米结构,具体结果如下。采用电沉积法制备的ZnO纳米结构呈现对电解液较为敏感的变化,当溶剂中的乙醇和水的比例为1:3时,为简单纳米片结构;当此比例为1:1时,制备出由纳米片一级一级生长所构成的“米”字形纳米分级结构;当此比例为3:1时,分级结构呈类似“雪花状”结构。电解液中所含乙醇比例越大,所得样品光致发光谱中红光区域的强度越小,蓝光区域的强度越大。采用阳极氧化法制备的ZnO多孔膜的表面形貌呈现随氧化电压的增大而改变的规律。当氧化电压为20V时,可制备出一种类似四方形管的突起状结构,这种结构的成因尚在进一步研究中。
Owing to its excellent opto-electronic properties, ZnO has some important applications in optoelectronic devices, transparent electronics, spintronic devices, piezo electric devices, thermoelectric sensor, etc. It has gradually become a study focus in Ⅱ-Ⅵ semiconductor. Although ZnO has been studied for a long time, some issues of its properties and the regulation of its microstructure and performance are not fully understood. These issues include the preparation of p-type ZnO semiconductor, the identification of the donor and accept defects for the instinctive defects of ZnO, the origins of the emissions in the visible region and the controllable synthesis of ZnO nano-hierarchical structure. The comprehension of these issues will enhance and extend the application of ZnO materials in functional devices and facilitate the practicality of the ZnO-based devices. For this reason, we give attention to ZnO and have carried out many researches about a few of the above issues. The research works and main conclusions are described as follows.
     (1) The molybdenum doped ZnO (MZO) films were deposited by radio frequency magnetron sputtering. The MZO films are composed of polycrystalline grains with the wurtzite structure. Mo-doping influences the grain size and roughness of the MZO films, and leads to a compressive stress in the MZO films. The grain size increases several times greater after the annealing process. XPS reveals that there is only Mo6+no Mo5+or Mo4+, in the MZO films. This indicates that the valence of Mo6+is not easily changed during the sputtering process. Mo doping introduces two effects on Zn2p3/2XPS spectra. One is the decrease of the binding energy of Zn2p3/2electron, the other is the emergence of a smaller peak at1022.0eV (related to Zni)in Zn2p3/2XPS spectrum. This illustrates that Mo doping can promote the generation of the Zni defects. Mo doping has little effects on the transmittance and the optical bandgap of the MZO films. The resistance of the MZO films firstly increases then decreases with the increase of the Mo doping concentration. The resistivity of MZO films reaches the minimum when the Mo doping concentration is2wt.%. This means that doping suitable amount Mo atoms can reduce the resistance of the MZO films. It's supposed that the proper Mo doping can stimulate the formation of the Zn; defects and prompt the conductivity of the MZO films. Annealing in air causes a significant increase in the resistivity of the MZO films, which can be attributed to the adsorption of oxygen atoms and the concentration change of the donor defects Zni and its complexes defects in the annealing process. There are one weak UV emission peak at380nm and one stronger blue emission peak in the photoluminescence (PL) spectra of the as-prepared MZO films. The PL spectral intensity of the annealed MZO films is much higher than that of the unannealed film. Such an enhancement should be induced by the increase of the grain size which affects the quantum efficiency of PL significantly. With the annealing temperature rising from600to800℃, the emission peaks located at380and412nm are covered by an emerging emission peak located at400rim, and a new emission peak located at525nm appeared. The spectral intensity of the annealed MZO films is about ten times higher than that of the annealed ZnO film, but the position of the emission peaks (at400and525nm) is almost the same. It's supposed that in the annealing process Mo-doping benefits the forming of the Vzn and Ozn defects which are the origins of the emissions at400and525nm respectively.
     (Ⅱ) The Al doped, La doped and Y doped ZnO nanostructure films were prepared by the hydrothermal method. The Al doped ZnO (AZO) nanostructure films are constructed by the nanopyramids with the wurtzite structure. Al doping has. little effect on the surface morphology and the light transmittance of the AZO films. There are two broad emission peaks, a UV-violet emission peak (PI) and a green-red emission peak (P2), in the PL spectra of the AZO films. At room temperature, with the increase of the Al doping concentration, the intensity of the PI peak increased sharply and reached the maximum when the doping concentration is10%; the relative intensity among the components of the green-red emission peak also changed with the increase of the Al doping concentration. The temperature dependent PL spectra show that the P2peak quenched when the temperature rose from10to297K, but the PI peak almost doesn't change with the increase of sample temperature. It's supposed that the fluorescence quenching of the green-red emission peak is attributed to the increased probability of the nonradiative exciton recombination caused by the multiphonon emission. The La doped ZnO (LZO) films have the similar microstructure with the AZO films. The diameter of the LZO nanopyramids and the intensity of the (002) XRD diffraction peak of the LZO films increase with the increase of the La doping concentration. The transmittance of the LZO films is much smaller than that of the AZO films. At room temperature the UV emission of the LZO films is very weak, but the emissions in the range of500-800nm is very strong. With the increase of La doping concentration, the intensity of the emissions in the visible region increases and reaches the maximum when La doping concentration is8%. Doping has little effect on the UV emissions. When the sample temperature rising from10to294K, the emissions in the visible region quench quickly, and the UV emission peak appears red shift which should be attributed to the increase of the lattice constant. The Y doped ZnO (YZO) films have similar properties in microstructure and light transmittance. At room temperature the YZO films have strong emissions in the visible region, but Y doping has little effect on the PL spectral intensity and the emissions'peak position. This is different with that of the AZO or LZO films.
     (Ⅲ) The CdS quantum dots (CdS QDs) were deposited on the surface of the ZnO nanostructure films by chemical bath deposition. The size and the density increase with the increase of the deposition cycles. After four deposition cycles (this sample was marked as CdS-ZnO-4Ts), the CdS QDs have uniform size and large density. The CdS QDs lead to an increase of the absorption coefficient of the ZnO films, but have little effect on the PL spectra of the ZnO films. The sample CdS-ZnO-4Ts has a good photocatalytic performance, its degradation rate of methyl orange solution during120minutes reaches96%, while that of the pure ZnO films is just35%. This suggests that the surface modification of ZnO films by CdS QDs is benefit for its photocatalytic performance.
     (IV) The ZnO nanostructure films were synthesized by electro-deposition and anodic oxidation. In the electro-deposition process, the volume ratio of alcohol to deionized water in the electrolyte is an important factor in the growth process of ZnO nanostructure. The different ZnO nanostructures, that is, ZnO nanosheets,"*"-like ZnO nanostructures, snowflakes-like ZnO hierarchical structure were synthesized while the ratio is1:3,1:1and3:1, respectively. The higher the ratio is, the more complicated the nanostructures are. The PL spectra of these samples show that when the ratio become higher, the emission in red light region become weaker and the emission in blue light region become stronger. The porous ZnO films were prepared by anodic oxidation. Its surface morphology has certain relation with the anodizing voltage. When the anodizing voltage is20V, the nano-square-tubes were achieved. Its growth mechanism will be studied further.
引文
[1]Wahab R., Ansari S. G., Kim Y. S., et al. Low temperature solution synthesis and characterization of ZnO nano-flowers [J]. Mater Res Bull,2007,42(9):1640-8.
    [2]Coleman V. A., Jagadish C. Basic properties and applications of ZnO [M]. Zinc Oxide handbook. Elsevier.2006
    [3]Jiang M. M., Zhao B., Chen H. Y., et al. Plasmon-enhanced ultraviolet photoluminescence from the hybrid plasmonic Fabry-Perot microcavity of Ag/ZnO microwires [J]. Nanoscale, 2014,6(3):1354-61.
    [4]Biroju R. K., Giri P. K., Dhara S., et al. Graphene-assisted controlled growth of highly aligned ZnO nanorods and nanoribbons:Growth mechanism and photoluminescence properties [J]. ACS Appl Mater Interfaces,2014,6(1):377-87.
    [5]Zheng F. B., Zhang C. W., Wang P. J., et al. The electronic and magnetic properties with intrinsic defects in ZnO nanosheets:First-principles prediction [J]. Curr Appl Phys,2013, 13(4):799-802.
    [6]Song K. S., Yu X. C., Hu D. D., et al. Photocatalytic degradation of ammonia nitrogen in aquaculture wastewater by using nano-ZnO [M]. Progress in Environmental Science and Engineering, Pts 1-4.2013:564-8.
    [7]Djurisic A. B., Choy W. C. H., Roy V. a. L., et al. Photoluminescence and electron paramagnetic resonance of ZnO tetrapod structure [J]. Adv Funct Mater,2004,14(9): 856-64.
    [8]Yalishev V. S., Yuldashev S. U., Igamberdiev K. T., et al. Near-band-edge photoluminescence from ZnO film:Negative thermal quenching and role of adsorbed oxygen [J]. J Korean Phys Soc,2014,64(1):1-5.
    [9]Dulub O., Boatner L. A., Diebold U. STM study of the geometric and electronic structure of ZnO(0001)-Zn, (000-1)-O, (10-10), and (11-20) surfaces [J]. Surf Sci,2002,519:201-17.
    [10]Meyer B. K.., Alves H., Hofmann D. M., et al. Bound exciton and donor-acceptor pair recombinations in ZnO [J]. Phys Status Solidi B,2004,241(2):231-60.
    [11]Ozgur U., Alivov Y. I., Liu C., et al. A comprehensive review of ZnO materials and devices [J]. J Appl Phys,2005,98(4):041301.
    [12]Alvarez-Quintana J., Martinez E., Perez-Tijerina E., et al. Temperature dependent thermal conductivity of polycrystalline ZnO films [J]. J Appl Phys,2010,107(6):063713.
    [13]Bojesen E. D., Sondergaard M., Christensen M., et al. Particle size effects on the thermal conductivity of ZnO [M]. Hatzikraniotis E.9th European Conference on Thermoelectrics. 2012:335-8.
    [14]Huang Z. X., Tang Z. A., Yu J., et al. Thermal conductivity of nanoscale polycrystalline ZnO thin films [J]. Physica B,2011,406(4):818-23.
    [15]Wang F. H., Huang C. C., Yang C.F., et al. Optical and electrical properties of the different magnetron sputter power 300 degrees C deposited Ga2O3-ZnO thin films and applications in p-i-n alpha-Si:H thin-film solar cells [J]. Int J Photoenergy,2013:270389.
    [16]Saurdi I., Mamat M. H., Rusop M. Electrical and structural properties of ZnO/TiO2 nanocomposite thin films by RF magnetron co-sputtering [M]. Nanosynthesis and Nanodevice.2013:206-12.
    [17]Kim H. R., Jin S. B., Wen L., et al. Structural and electrical properties of ZnO films deposited with low-temperature facing targets magnetron sputtering (FTS) system with changes in H2 and O2 flow rate [J]. J Nanosci Nanotechnol,2013,13(11):7745-50.
    [18]Hsu C. H., He Y. D. Electrical Properties of ZnO-Doped Nd(Co1/2Tii/2)O.3 Thin Films Prepared by RF Magnetron Sputtering [J]. Jpn J Appl Phys,2013,52(1):Olac01.
    [19]Pearton S. J., Norton D. P., Ip K., et al. Recent progress in processing and properties of ZnO [J]. Prog Mater Sci,2005,50(3):293-340.
    [20]Look D. C., Claflin B., Alivov Y. I., et al. The future of ZnO light emitters [J]. Phys Status Solidi A-Appl Mat,2004,201(10):2203-12.
    [21]Tsuji T., Terai Y., Bin Kamarudin M. H., et al. Photoluminescence properties of Sm-doped ZnO grown by sputtering-assisted metalorganic chemical vapor deposition [J]. J Non-Cryst Solids,2012,358(17):2443-5.
    [22]Lv J. G., Huang K., Chen X. M., et al. Optical constants of Na-doped ZnO thin films by sol-gel method [J]. Opt Commun,2011,284(12):2905-8.
    [23]Yoshikawa H., Adachi S. Optical Constants of ZnO [J]. Jpn J Appl Phys,1997,36:6237-43.
    [24]Prunici P., Hamelmann F. U., Beyer W., et al. Modelling of infrared optical constants for polycrystalline low pressure chemical vapour deposition ZnO:B films [J]. J Appl Phys,2013, 113(12):123104.
    [25]Mhamdi A., Ouni B., Amlouk A., et al. Study of nickel doping effects on structural, electrical and optical properties of sprayed ZnO semiconductor layers [J]. J Alloy Compd, 2014,582:810-22.
    [26]张跃.一维氧化锌纳米材料[M].北京;科学出版社.2010:351-60.
    [27]Xu L. H., Zheng G. G., Lai M., et al. Annealing impact on the structural and photoluminescence properties of ZnO thin films on Ag substrates [J]. J Alloy Compd,2014, 583:560-5.
    [28]Saito G., Nakasugi Y., Yamashita T., et al. Solution plasma synthesis of ZnO flowers and their photoluminescence properties [J]. Appl Surf Sci,2014,290:419-24.
    [29]Xu L. H., Shi L. X., Li X. Y. Preparation of nanocone ZnO thin film and its aging effect of photoluminescence [J]. Appl Surf Sci,2009,255(11):5957-60.
    [30]Jiang S., Ren Z. H., Gong S. Y., et al. Tunable photoluminescence properties of well-aligned ZnO nanorod array by oxygen plasma post-treatment [J]. Appl Surf Sci,2014,289:252-6.
    [31]Zou Y. S., Yang H., Wang H. P., et al. Microstructure, optical and photoluminescence properties of Ga-doped ZnO films prepared by pulsed laser deposition [J]. Physica B,2013, 414:7-11.
    [32]Zhang D. Y., Ushita H., Wang P. P., et al. Photoluminescence modulation of ZnO via coupling with the surface plasmon resonance of gold nanoparticles [J]. Appl Phys Lett, 2013,103(9):093114.
    [33]Biethan J. P., Sirkeli V. P., Considine L., et al. Photoluminescence study of ZnO nanostructures grown on silicon by MOCVD [J]. Mater Sci Eng B-Adv Funct Solid-State Mater,2012,177(8):594-9.
    [34]Zhang A. Q., Zhang L., Sui L., et al. Morphology-controllable synthesis of ZnO nano-/microstructures by a solvothermal process in ethanol solution [J]. Cryst Res Technol, 2013,48(11):947-55.
    [35]Zang C. H., Tang C. J., Wang B., et al. Acceptor related photoluminescence and field emission of ZnO:P nanostructures [J]. Mater Chem Phys,2013,140(1):330-4.
    [36]Yi F., Huang Y. H., Zhang Z., et al. Photoluminescence and highly selective photoresponse of ZnO nanorod arrays [J]. Opt Mater,2013,35(8):1532-7.
    [37]Yang A. L., Yang Y, Zhang Z. Z., et al. Photoluminescence and defect evolution of nano-ZnO thin films at low temperature annealing [J]. Sci China-Technol Sci,2013,56(1): 25-31.
    [38]Wu C. X., Zhou M., Zhang S. G., et al. Temperature-dependent photoluminescence of nanostructured ZnO [J]. Nanosci Nanotechnol Lett,2013,5(2):174-7.
    [39]Water W., Jhao R. Y. Effect of seed layer structure on surface morphology and photoluminescence property of ZnO nanorods grown on LiNbO3 substrate [J]. Integr Ferroelectr,2013,143(1):116-21.
    [40]Wang F. X., Cai X. L., Yan D. W., et al. Fabrication and photoluminescence of caltrop-like ZnO nanostructures on silicon substrate [J]. Mater Lett,2013,112:133-5.
    [4]] Zeng J. L., Zhang X. W., Tan J. Z. Y, et al. Full-color photoluminescence of ZnO nanorod arrays based on annealing processes [J]. J Lumines,2013,135:201-5.
    [42]Sokol A. A., French S. A., Bromley S. T., et al. Point defects in ZnO [J]. Faraday Discussions,2007,134:267-82.
    [43]Mccluskey M. D., Jokela S. J. Defects in ZnO [J]. J Appl Phys,2009,106(7):071101.
    [44]Erhart P., Albe K., Klein A. First-principles study of intrinsic point defects in ZnO:Role of band structure, volume relaxation, and finite-size effects [J]. Phys Rev B,2006,73(20): 205203.
    [45]Janotti A., Van De Walle C. G. Native point defects in ZnO [J]. Phys Rev B,2007,76(16): 165202.
    [46]Oba F., Togo A., Tanaka I., et al. Defect energetics in ZnO:A hybrid Hartree-Fock density functional study [J]. Phys Rev B,2008,77(24):245202.
    [47]Oba F., Choi M., Togo A., et al. Point defects in ZnO:an approach from first principles [J]. Sci Technol Adv Mat,2011,12(3):034302.
    [48]Akbar S., Hasanain S. K., Abbas M., et al. Defect induced ferromagnetism in carbon-doped ZnO thin films [J]. Solid State Commun,2011,151(1):17-20.
    [49]Hernandez-Fenollosa M. A., Damonte L. C, Mari B. Defects in electron irradiated ZnO single crystals [J]. Superlattices Microstruct,2005,38(4-6):336-43.
    [50]Merz T. A., Doutt D. R., Bolton T., et al. Nanostructure growth-induced defect formation and band bending at ZnO surfaces [J]. Surf Sci,2011,605(9-10):L20-L3.
    [51]Djurisic A. B., Leung Y. H., Tam K. H., et al. Defect emissions in ZnO nanostructures [J]. Nanotechnology,2007,18(9):095702.
    [52]Tay Y. Y., Tan T. T., Liang M. H., et al. Specific defects, surface band bending and characteristic green emissions of ZnO [J]. Phys Chem Chem Phys,2010,12(23):6008-13.
    [53]Bayan S., Mohanta D. Interplay of native defect-related photoluminescence response of ZnO nanosticks subjected to 80 keV Ar ion irradiation [J]. Radiat Eff Defects Solids,2011, 166(11):884-93.
    [54]Zhang L. Y., Yin L. W., Wang C. X., et al. Origin of visible photoluminescence of ZnO quantum dots:Defect-dependent and size-dependent [J]. J Phys Chem C,2010,114(21): 9651-8.
    [55]Lin C. C., Hsiao C. S., Chen S. Y., et al. Ultraviolet emission in ZnO films controlled by point defects [J]. J Electrochem Soc,2004,151(5):G285-G8.
    [56]Gong Y. Y., Andelman T., Neumark G. F., et al. Origin of defect-related green emission from ZnO nanoparticles:effect of surface modification [J]. Nanoscale Res Lett,2007,2(6): 297-302.
    [57]Bin Kwon Y., Shin S. W., Lee H. K., et al. Formation of ZnO thin films consisting of nano-prisms and nano-rods with a high aspect ratio by a hydrothermal technique at 60 degrees C[J].Curr Appl Phys,2011,11(1):S197-S201.
    [58]Cheng J. H., Xu S., Ding C. H. Uniform nano/micron-sized ZnO spheres with controllable diameter [M], Functional Materials and Nanotechnology.2012:268-71.
    [59]Zhao Y., Yan Y. K., Kumar A., et al. Thermal conductivity of self-assembled nano-structured ZnO bulk ceramics [J]. J Appl Phys,2012,112(3):034313.
    [60]Luo Q. P., Lei B. X., Yu X. Y., et al. Hiearchical ZnO rod-in-tube nano-architecture arrays produced via a two-step hydrothermal and ultrasonication process [J]. J Mater Chem,2011, 21(24):8709-14.
    [61]Wang X. D., Summers C. J., Wang Z. L. Large-scale hexagonal-patterned growth of aligned ZnO nanorods for nano-optoelectronics and nanosensor arrays [J]. Nano Letters,2004,4(3): 423-6.
    [62]Kumar S., Gupta V, Sreenivas K. Synthesis of photoconducting ZnO nano-needles using an unbalanced magnetron sputtered ZnO/Zn/ZnO multilayer structure [J]. Nanotechnology, 2005,16(8):1167-71.
    [63]Wu Y. P., Zhang X. H., Xu F. C., et al. A hierarchical lattice structure and formation mechanism of ZnO nano-tetrapods [J]. Nanotechnology,2009,20(32):325709.
    [64]Perng D. C., Chen J. W., Kao T. T., et al. Cu2O growth characteristics on an array of ZnO nanorods for the nano-structured solar cells [J]. Surf Coat Technol,2013,231:261-6.
    [65]Li Z. M., Xu F. Q., Zhang W. H. Synthesis and crystallography of some novel ZnO nano-and micro-crystals and structures [M]. Semiconductor Photonics:Nano-Structured Materials and Devices.2008:141-9.
    [66]Seo S. H., Kang H. C. Self-assembled ZnO hexagonal nano-disks grown by radio-frequency magnetron sputtering [J]. Mater Lett,2013,94:34-7.
    [67]Zeng J. H., Jin B. B., Wang Y. F. Facet enhanced photocatalytic effect with uniform single-crystalline zinc oxide nanodisks [J]. Chem Phys Lett,2009,472(1-3):90-5.
    [68]Cheng J. P., Zhang X. B., Luo Z. Q. Oriented growth of ZnO nanostructures on Si and Al substrates [J]. Surf Coat Technol,2008,202(19):4681-6.
    [69]Zhang H. J., Wu R. F., Chen Z. W, et al. Self-assembly fabrication of 3D flower-like ZnO hierarchical nanostructures and their gas sensing properties [J]. Crystengcomm,2012,14(5): 1775-82.
    [70]Xing Z. J., Geng B. Y, Li X. L., et al. Self-assembly fabrication of 3D porous quasi-flower-like ZnO nanostrip clusters for photodegradation of an organic dye with high performance [J]. Crystengcomm,2011,13(6):2137-42.
    [71]Feng J. J., Liao Q. C., Wang A. J., et al. Mannite supported hydrothermal synthesis of hollow flower-like ZnO structures for photocatalytic applications [J]. Crystengcomm,2011, 13(12):4202-10.
    [72]Zhao F. H., Zheng J. G., Yang X. F., et al. Complex ZnO nanotree arrays with tunable top, stem and branch structures [J]. Nanoscale,2010,2(9):1674-83.
    [73]Kumar R., Kumar G., Umar A. ZnO nano-mushrooms for photocatalytic degradation of methyl orange [J]. Mater Lett,2013,97:100-3.
    [74]Kim S. H., Kim D. G., Lee B. H., et al. SPR properties of 2D ZnO nano-holes fabricated by laser interference lithography [J]. Electronics Letters,2013,49(8):551
    [75]Dong L. H., Tang S. S., Zhu J. Y., et al. From one nanobelt precursor to different ZnO nano/micro structures:porous nanobelts self-standing film and microtubes [J]. Crystengcomm,2013,15(46):9916-22.
    [76]Qi K. Z., Yang J. Q., Fu J. Q., et al. Morphology-controllable ZnO rings:Ionic liquid-assisted hydrothermal synthesis, growth mechanism and photoluminescence properties [J]. Crystengcomm,2013,15(34):6729-35.
    [77]Venkatesh P. S., Dong C. L., Chen C. L., et al. Local electronic structure of ZnO nanorods grown by radio frequency magnetron sputtering [J]. Mater Lett,2014,116:206-8.
    [78].Lee J., Hui K. N., Hui K. S., et al. Low resistivity of Ni-Al co-doped ZnO thin films deposited by DC magnetron sputtering at low sputtering power [J]. Appl Surf Sci,2014,293: 55-61.
    [79]Cho W. M., Lin Y. J., Liu C. J., et al. Luminescence behavior and compensation effect of N-doped ZnO films deposited by rf magnetron sputtering under various gas-flow ratios of O-2/N-2 [J]. J Lumines,2014,145:884-7.
    [80]Chen H. G., Hung S. P. Epitaxial growth of Sb-doped nonpolar a-plane ZnO thin films on r-plane sapphire substrates by RF magnetron sputtering [J]. J Alloy Compd,2014,586: S339-S42.
    [81]Zhu G Y., Li J. T., Shi Z. L., et al. Ultraviolet electroluminescence from n-ZnO/i-MgO/p(+)-GaN heterojunction light-emitting diodes fabricated by RF-magnetron sputtering [J]. Appl Phys B-Lasers Opt,2012,109(2):195-9.
    [82]Zhu D. L., Xiang H. F., Cao P. J., et al. Influence of H2 introduction on properties in Al-doped ZnO thin films prepared by RF magnetron sputtering at room temperature [J]. J Mater Sci-Mater Electron,2013,24(6):1966-9.
    [83]Singh T., Lehnen T., Leuning T., et al. Thickness dependence of optoelectronic properties in ALD grown ZnO thin films [J]. Appl Surf Sci,2014,289:27-32.
    [84]Yuan N. Y., Wang S. Y, Tan C. B., et al. The influence of deposition temperature on growth mode, optical and mechanical properties of ZnO films prepared by the ALD method [J]. J Cryst Growth,2013,366:43-6.
    [85]Tynell T., Okazaki R., Terasaki I., et al. Electron doping of ALD-grown ZnO thin films through Al and P substitutions [J]. J Mater Sci,2013,48(7):2806-11.
    [86]Lee Y. L., Chen S. F., Ho C. L., et al. Effects of Oxygen Plasma Post-Treatment on Ga-Doped ZnO Films Grown by Thermal-Mode ALD [J]. Ecs J Solid State Sci & Tech, 2013,2(7):P316-P20.
    [87]Chang Y. F., Liao C. L., Ho C. L., et al. Effects of Passivation Layer and Post-Annealing on Ga-Doped ZnO Films Grown by ALD [J]. Ecs J Solid State Sci & Tech,2013,2(6): N140-N4.
    [88]Alkis S., Tekcan B., Nayfeh A., et al. UV/vis range photodetectors based on thin film ALD grown ZnO/Si heterojunction diodes [J]. J Opt,2013,15(10):105002.
    [89]Quemener V., Alnes M., Vines L., et al. The work function of n-ZnQ deduced from heterojunctions with Si prepared by ALD [J]. J Phys D Appl Phys,2012,45(31):315101.
    [90]Yen C. Y, Jian S. R., Chen G. J., et al. Influence of annealing temperature on the structural, optical and mechanical properties of ALD-derived ZnO thin films [J]. Appl Surf Sci,2011, 257(17):7900-5.
    [91]Sartel C., Haneche N., Jomard F., et al. Surface morphology and photoluminescence studies of Sb-doped ZnO layers grown using MOCVD [J]. Phys Status Solidi B,2010,247(7): 1687-90.
    [92]Han N., Hu P., Zuo A., et al. Photoluminescence investigation on the gas sensing property of ZnO nanorods prepared by plasma-enhanced CVD method [J]. Sensor Actuat B-Chem, 2010,145(1):114-9.
    [93]Li X. P., Zhang B. L., Guan H. S., et al. Photoluminescence and X-ray photoelectron spectroscopy of p-type phosphorus-doped ZnO films prepared by MOCVD [J]. Chin Phys Lett,2009,26(9):098101.
    [94]Bhattacharjee R., Hung I. M. Effect of different concentration Li-doping on the morphology, defect and photovoltaic performance of Li-ZnO nanofibers in the dye-sensitized solar cells [J]. Mater Chem Phys,2014,143(2):693-701.
    [95]Li F. H., Liu H., Yu L. X. Preparation, photoluminescence and photocatalytic properties of ZnO:Eu3+ nanocrystals [J]. J Nanosci Nanotechnol,2013,13(7):5115-8.
    [96]Rai P., Kjm S. G., Yu Y. T. Microwave assisted synthesis of flower-like ZnO and effect of annealing atmosphere on its photoluminescence property [J]. J Mater Sci-Mater Electron, 2012,23(2):344-8.
    [97]Koc P., Tekmen S., Baltakesmez A., et al. Stimulated electroluminescence emission from n-ZnO/p-GaAs:Zn heterojunctions fabricated by electro-deposition [J]. AIP Adv,2013, 3(12):122107.
    [98]Li B. B., Philipose U., De Souza C. F., et al. Role of electro-deposition parameters on preparing tailored dimension vertically-aligned ZnO nanowires [J]. J Electrochem Soc,2011, 158(5):D282-D5.
    [99]Min S. K., Oh C. H., Lee G. J., et al. Nonlinear optical properties of ZnO nanorods prepared by using the electro-deposition method [J]. J Korean Phys Soc,2009,55(3):1005-8.
    [100]Ren X., Jiang C. H., Li D. D., et al. Fabrication of ZnO nanotubes with ultrathin wall by electro deposition method [J]. Mater Lett,2008,62(17-18):3114-6."
    [101]Ogata K. I., Shingubara S., Yorozu H., et al. Electroplating of ZnO nanowires using nanohole arrays of anodized aluminum oxide and effects of thermal annealing [M]. Zinc Oxide and Related Materials.2007:379-84.
    [102]Kitova S., Kazakov R., Danev G. Structural properties of ZnO layers deposited on glass substrates by PECVD [J]. Vacuum,2012,356:012024.
    [103]Haniff M., Abd Wahid K. A., Lee W. Y., et al. A Study of Catalyst-based ZnO Nanowires Growth by PECVD [M].201210th IEEE International Conference on Semiconductor Electronics (ICSE),2012:18-21.
    [104]Zhao D. L., Mourey D. A., Jackson T. N. Low-Temperature Pulsed-PECVD ZnO Thin-Film Transistors [J]. J Electron Mater,2010,39(5):554-8.
    [105]Kitova S., Danev G. Influence of the processing conditions on the structural properties of ZnO layers obtained by PECVD [J]. J Alloy Compd,2010,253:012031.
    [106]Sun J., Mourey D. A., Zhao D. L., et al. ZnO thin film, device, and circuit fabrication using low-temperature PECVD processes [J]. J Electron Mater,2008,37(5):755-9:
    [107]Choi S. Y., Kang M. J., Park T. J., et al. Electrical and optical properties of ZnO films deposited by ECR-PECVD [J]. Phys Status Solidi A-Appl Mat,2006,203(10):R73-R5.
    [108]Cieniek B., Stefaniuk I., Virt I. EPR study of ZnO:Co thin films grown by the PLD method [J]. Nukleonika,2013,58(3):359-63.
    [109]Aravind A., Jayaraj M. K., Kumar M., et al. The dependence of structural and optical properties of PLD grown ZnO films on ablation parameters [J]. Appl Surf Sci,2013,286: 54-60.
    [110]Lotin A. A., Novodvorsky O. A., Zuev D. A., et al. Optical pumped stimulated emission in ZnO-based quantum wells grown by PLD [M]. Nanoengineering:Fabrication, Properties, Optics, and Devices Ix.2012:846301.
    [1]张跃.一维氧化锌纳米材料[M].北京;科学出版社.2010:103-5.
    [2]孙大明,孙兆奇.金属陶瓷薄膜及其在光电子技术中的应用[M].北京;科学出版社.2004:27-32.
    [3]杨邦朝,王文生.薄膜物理与技术[M].成都;电子科技大学出版社.2006:60-104.
    [4]Ahn C. H., Kim Y. Y., Kang S. W., et al. Dependency of oxygen partial pressure on the characteristics of ZnO films grown by radio frequency magnetron sputtering [J]. J Mater Sci-Mater Electron,2008,19(8-9):744-8.
    [5]Bai S. N., Tseng T. Y. Electrical and optical properties of ZnO:Al thin films grown by magnetron sputtering [J]. J Mater Sci-Mater Electron,2009,20(3):253-6.
    [6]Angelats-Silva L, Tomar M. S., Perales-Perez O., et al. Growth conditions effect on the structure and optical properties of ZnO thin films synthesized by rf magnetron sputtering [M]. Thin-Film Compound Semiconductor Voltaics-2009.2010:375-80.
    [7]Avril L., Guaino P., Maseri F., et al. Correlation between the electrical and structural properties of aluminium-doped ZnO thin films obtained by direct current magnetron sputtering [J].15th International Conference on Thin Films (lctf-15),2013,417:012011.
    [8]Bakhori S. K. M., Ng S. S., Ahmad M. A., et al. Photoluminescence characterization of ZnO thin films grown by RF-sputtering [M]. Malaysia Annual Physics Conference 2010. Melville; Amer Inst Physics.2011:245-7.
    [9]Shi S. W., He G., Zhang M., et al. Microstructural, optical and electrical properties of molybdenum doped ZnO films deposited by magnetron sputtering [J]. Sci Adv Mater,2012, 4(2):193-8.
    [10]Ann L. C., Mahmud S., Bakhori S. K. M. Effects of Annealing treatment on photoluminescence and structural properties of ZnO nanostructures [M]. Solid State Science and Technology Xxvi. Stafa-Zurich; Trans Tech Publications Ltd.2012:184-8.
    [11]Choppali U., Gorman B. P. Effect of annealing on room temperature photoluminescence of polymeric precursor derived ZnO thin films on sapphire substrates [J]. Opt Mater,2008, 31(2):143-8.
    [12]Cui L., Zhang H. Y., Wang G. G., et al. Effect of annealing temperature and annealing atmosphere on the structure and optical properties of ZnO thin films on sapphire (0001) substrates by magnetron sputtering [J]. Appl Surf Sci,2012,258(7):2479-85.
    [13]Hinoki T., Kyuhara C., Agura H., et al. Effect of organic-buffer-layer on electrical property and environmental reliability of Ga-doped ZnO films prepared by RF plasma assisted DC magnetron sputtering on plastic substrate [J]. Thin Solid Films,2010,519(5):1525-9.
    [14]Hoon J. W., Chan K. Y., Krishnasamy J., et al. Direct current magnetron sputter-deposited ZnO thin films [J]. Appl Surf Sci,2011,257(7):2508-15.
    [15]Lin Y. C., Chen C. C., Lai W. Y. Mechanical properti es of ZnO:Mo transparent conducting oxide thin film prepared by sputtering [J]. Chinese J Phys,2013,51(3):619-27.
    [16]Swapna R., Ashok M., Muralidharan G., et al. Microstructural, electrical and optical properties of ZnO:Mo thin films with various thickness by spray pyrolysis [J]. J Anal Appl Pyrol,2013,102:68-75.
    [17]Cui M. L., Wu X. M., Zhuge L. J., et al. Effects of annealing temperature on the structure and photoluminescence properties of ZnO films [J]. Vacuum,2007,81(7):899-903.
    [18]Daniel G. P., Justinvictor V. B., Nair P. B., et al. Effect of annealing temperature on the structural and optical properties of ZnO thin films prepared by RF magnetron sputtering [J]. Physica B,2010,405(7):1782-6.
    [19]Francis T. K., Ueda A., Aga R., et al. Annealing effects on the photoluminescence and morphology of ZnO nanowires [J]. Phys Status Solidi C,2006,3(10):3573-6.
    [20]Lin Y. C., Wang B. L., Yen W. T., et al. Surface textured molybdenum doped zinc oxide thin films prepared for thin film solar cells using pulsed direct current magnetron sputtering [J]. Thin Solid Films,2011,519(16):5571-6.
    [21]Kim Y. Y., Kong B. H., Cho H. K. Influence of growth temperature on the characteristics of Ga-doped ZnO thin films deposited by magnetron sputtering [J]. Jpn J Appl Phys,2009, 48(8):08hk04.
    [22]Ku D. Y., Kim Y. H., Lee K. S., et al. Effect of fluorine doping on the properties of ZnO films deposited by radio frequency magnetron sputtering [J]. J Electroceram,2009,23(2-4): 415-21.
    [23]Lee K. H., Cho N. I., Yun E. J., et al. Characterization of ZnO thin films grown on various substrates by RF magnetron sputtering [J]. Appl Surf Sci,2010,256(13):4241-5.
    [24]Look D. C., Farlow G. C., Reunchan P., et al. Evidence for native-defect donors in n-type ZnO [J]. Phys Rev Lett,2005,95(22):225502.
    [25]Look D. C., Leedy K. D., Thomson D. B., et al. Defects in highly conductive ZnO for transparent electrodes and plasmonics [J]. J Appl Phys,2014,115(1):012002.
    [26]Lin Y. C., Wang B. L., Yen W. T., et al. Effect of process conditions on the optoelectronic characteristics of ZnO:Mo thin films prepared by pulsed direct current magnetron sputtering [J]. Thin Solid Films,2010,518(17):4928-34.
    [27]Coleman V. A., Jagadish C. Basic properties and applications of ZnO [M]. Zinc Oxide handbook. Elsevier.2006,20-36.
    [28]Mccluskey M. D., Jokela S. J. Defects in ZnO [J]. J Appl Phys,2009,106(7):071101.
    [29]Selim F. A., Weber M. H., Solodovnikov D., et al. Nature of native defects in ZnO [J]. Phys Rev Lett,2007,99(8):085502.
    [30]Oba F., Choi M., Togo A., et al. Point defects in ZnO:an approach from first principles [J]. Sci Technol Adv Mat,2011,12(3):034302.
    [31]Bouderbala M., Hamzaoui S., Adnane M., et al. Annealing effect on properties of transparent and conducting ZnO thin films [J]. Thin Solid Films,2009,517(5):1572-6.
    [32]Schmidt O., Kiesel P., Van De Walle C. G., et al. Effects of an electrically conducting layer at the zinc oxide surface [J]. Jpn J Appl Phys 1,2005,44(10):7271-4.
    [33]Brauer G., Anwand W., Skorupa W., et al. Defects in virgin and N-implanted ZnO single crystals studied by positron annihilation, Hall effect, and deep-level transient spectroscopy [J]. Phys Rev B,2006,74(4):045208.
    [34]Erhart P., Albe K., Klein A. First-principles study of intrinsic point defects in ZnO:Role of band structure, volume relaxation, and finite-size effects [J]. Phys Rev B,2006,73(20): 205203.
    [35]Djurisic A. B., Leung Y. H. Optical properties of ZnO nanostructures [J]. Small,2006, 2(8-9):944-61.
    [36]Janotti A., Van De Walle C. G. Native point defects in ZnO [J]. Phys Rev B,2007,76(16): 165202.
    [37]Pengshou X., Yuming S., Chaoshu S., et al. Electronic structure of ZnO and its defects [J]. Sci China Ser A-Math,2001,44(9):1174-81.
    [38]Zeng H. B., Duan G. T., Li Y., et al. Blue luminescence of ZnO nanoparticles based on non-equilibrium processes:Defect origins and emission controls [J]. Adv Funct Mater,2010, 20(4):561-72.
    [39]Shi S. W., Li J. L., Wang X., et al. Effect of molybdenum doping and annealing on photoluminescence of sputtering derived zinc oxide films [J]. Funct Mater Lett,2013,6(3): 1350024.
    [40]Zou Y. M., Wang Y. X., Chen Z., et al. Enhanced green photoluminescence from ZnO films prepared by TFA-MOD method [J]. Mater Lett,2005,59(24-25):3042-5.
    [41]Inoue Y, Okamoto M., Morimoto J. Enhancement of green photoluminescence from ZnO: Pr powders [J]. J Mater Res,2006,21(6):1476-83.
    [42]Abrarov S. M., Kang T. W., Yuldashev S. U., et al. Observation of green photoluminescence suppression in ZnO nanocrystals embedded into porous opal [J]. J Korean Phys Soc,2004, 45:S577-S80.
    [1]Das S., Bhattacharjee K., Maitra S., et al. Effect of oxygen partial pressure on the photoluminescence properties of sol-gel synthesized nano-structured ZnO thin films [J], Thin Solid Films,2014,550:65-70.
    [2]Zhao D., Zhang X. X., Dong H. B., et al. Surface modification effect on photoluminescence of individual ZnO nanorods with different diameters [J]. Nanoscale,2013,5(10):4443-8.
    [3]张跃.一维氧化锌纳米材料[M].北京;科学出版社.2010:105-11.
    [4]李群.纳米材料的制备与应用技术[M].北京;化学工业出版社.2008:26.
    [5]Yang Y. H., Chen X. Y, Feng Y., et al. Physical mechanism of blue-shift of UV luminescence of a single pencil-like ZnO nanowire [J]. Nano Letters,2007,7(12):3879-83.
    [6]Meyer B. K., Alves H., Hofmann D. M, et al. Bound exciton and donor-acceptor pair recombinations in ZnO [J]. Phys Status Solidi B,2004,241(2):231-60.
    [7]Meyer B. K., Lautenschlager S., Graubner S., et al. Photoluminescence investigations on a native donor in ZnO [M]. Progress in Semiconductor Materials V-Novel Materials and Electronic and Optoelectronic Applications.2006:339-43.
    [8]Wang X. J., Zeng X. B., Huang D. Q., et al. The properties of Al doped ZnO thin films deposited on various substrate materials by RF magnetron sputtering [J]. J Mater Sci-Mater Electron,2012,23(8):1580-6.
    [9]Elmas S., Korkmaz S. Deposition of Al doped ZnO thin films on the different substrates with radio frequency magnetron sputtering [J]. J Non-Cryst Solids,2013,359:69-72.
    [10]Xu Z. Q., Deng H., Xie J., et a. Influence of annealing on microstructure and photoluminescence properties of Al-doped ZnO films [J]. J Rare Earth,2006,24:68-71.
    [11]Chong X. Y., Li L. X., Yan X. L., et al. Synthesis, characterization and room temperature photoluminescence properties of Al doped ZnO nanorods [J]. Physica E,2012,44(7-8): 1399-405.
    [12]Yongseon Kim, Kang S. Effect of particle size on photoluminescence emission intensity in ZnO [J]. Acta Mater,2011,59:3024-31.
    [13]Wu K. Y., Sun Z. Q., Cui J. B. Unique Approach toward ZnO Growth with Tunable Properties:Influence of Methanol in an Electrochemical Process [J]. Cryst Growth Des, 2012,12:2864-71.
    [14]Liu Y. M., Wang T., Sun X., et al. Structural and photoluminescent properties of Ni doped ZnO nanorod arrays prepared by hydrothermal method [J]. Appl Surf Sci,2011,257(15): 6540-5.
    [15]Zeng J. L., Zhang X. W., Tan J. Z. Y, et al. Full-color photoluminescence of ZnO nanorod arrays based on annealing processes [J]. J Lumines,2013,135:201-5.
    [16]Wang F. X., Cai X. L., Yan D. W., et al. Fabrication and photoluminescence of caltrop-like ZnO nanostructures on silicon substrate [J]. Mater Lett,2013,112:133-5.
    [17]Khan F., Ameen S., Song M. W., et al. Influence of excitation wavelength on photoluminescence spectra of Al doped ZnO films [J]. J Lumines,2013,134:160-4.
    [18]Zhang Y., Lin B. X., Sun X. K., et at. Temperature-dependent photoluminescence of nanocrystalline ZnO thin films grown on Si (100) substrates by the sol-gel process [J]. Appl Phys Lett,2005,86(13):131910.
    [19]徐叙瑢,苏勉曾.发光学与发光材料[M].北京;化学工业出版社.2004:72-139.
    [20]Wang P., Fan L. B., Shi L. X., et al. Temperature dependent photoluminescence of ZnO nanorods synthesized by hydrothennal method [M]. Emerging Focus on Advanced Materials, Pts 1 and 2. Stafa-Zurich; Trans Tech Publications Ltd.2011:1242-6.
    [21]Misra P., Sharma T. K., Kukreja L. M. Temperature dependent photoluminescence processes in ZnO thin films grown on sapphire by pulsed laser deposition [J]. Curr Appl Phys,2009, 9(1):179-83.
    [22]Shan C. X., Liu Z., Hark S. K. Temperature dependent photoluminescence study on phosphorus doped ZnO nanowires [J]. Appl Phys Lett,2008,92(7):073103.
    [23]Hwang Y., Um Y., Cho S. Temperature dependence of the band-edge photoluminescence of Mn-doped ZnO ceramics [J]. J Korean Phys Soc,2008,53(1):392-5.
    [24]Yalishev V. S., Yuldashev S. U., Igamberdiev K. T., et al. Near-band-edge photoluminescence from ZnO film:Negative thermal quenching and role of adsorbed oxygen [J]. J Korean Phys Soc,2014,64(1):1-5.
    [25]Jiang M. M., Zhao B., Chen H. Y., et al. Plasmon-enhanced ultraviolet photoluminescence from the hybrid plasmonic Fabry-Perot microcavity of Ag/ZnO microwires [J]. Nanoscale, 2014,6(3):1354-61.
    [26].Tang K., Gu S. L., Ye J. D., et al. Temperature-dependent photoluminescence of ZnO films codoped with tellurium and nitrogen [J]. J Appl Phys,2012,112(10):103534.
    [27]Sentosa D., Liu B., Wong L. M., et al. Temperature dependent photoluminescence studies of ZnO thin film grown on (111) YSZ substrate [J]. J Cryst Growth,2011,319(1):8-12.
    [28]Peng D. Y., Chen X. G., Wang Y., et al. Temperature dependent photoluminescence properties of needle-like ZnO nanostructures deposited on carbon nanotubes [J]. Appl Phys A-Mater Sci Process,2011,105(2):463-8.
    [29]Wang D. D., Yang J. H., Cao J., et al. Synthesis and Photoluminescence of Eu-doped ZnO Nanosheets [J]. Chem Res Chin Univ,2011,27(2):174-6.
    [30]Zhang X. H., Yan X. Q., Zhao J., et al. Structure and photoluminescence of S-doped ZnO nanorod arrays [J]. Mater Lett,2009,63(3-4):444-6.
    [31]Shukla S. K., Agorku E. S., Mittal H., et al. Synthesis, characterization and photoluminescence properties of Ce3+-doped ZnO-nanophosphors [J]. Chem Pap,2014, 68(2):217-22.
    [32]Smith J., Akbari-Sharbaf A., Ward M. J., et al. Luminescence properties of defects in nanocrystalline ZnO [J]. J Appl Phys,2013,113(9):093104.
    [33]Nam G., Park H., Yoon H., et al. Studies on temperature-and excitation-power-dependent photoluminescence of ZnO thin film grown by plasma-assisted molecular beam epitaxy [J]. Curr Appl Phys,2013,13:S168-S71.
    [1]Vasa P., Singh B. P., Ayyub P. Coherence properties of the photoluminescence from CdS-ZnO nanocomposite thin films [J]. J Phys-Condens Matter,2005,17(1):189-97.
    [2]Lan C. Y., Gong J. F., Liu C. M. Synthesis and photoluminescence properties of comb-like CdS nanobelt/ZnO nanorod heterostructures [J]. Appl Surf Sci,2012,261:385-9.
    [3]Shirakata S. Photoluminescence characterization of photovoltaic effect in ZnO/CdS/Cu (In,Ga)Se-2 heterostructure [J]. Phys Status Solidi A-Appl Mat,2013,210(7):1322-7.
    [4]Ayyub P., Vasa P., Taneja P., et al. Photoluminescence enhancement in nanocomposite thin films of CdS-ZnO [J]. J Appl Phys,2005,97(10):104310.
    [5]华中师范大学等编.分析化学(上册)[M].北京;高等教育出版社.2005:277-84.
    [6]Peralta M. D. R., Pal U., Zeferino R. S. Photoluminescence quenching and enhanced photocatalytic activity of Au-decorated ZnO nanorods fabricated through microwave-assisted chemical synthesis [J]. ACS Appl Mater Interfaces,2012,4(9):4807-16.
    [7]Pei Z. X., Ding L. Y., Hu J., et al. Defect and its dominance in ZnO films:A new insight into the role of defect over photocatalytic activity [J]. Appl Catal B-Environ,2013, 142:736-43.
    [8]Zhang Y. Y., Mu J. One-pot synthesis, photoluminescence, and photocatalysis of Ag/ZnO composites [J]. J Colloid Interf Sci,2007,309(2):478-84.
    [9]Bohle D. S., Spina C. J. Cationic and anionic surface binding sites on nanocrystalline zinc oxide:surface influence on photoluminescence and photocatalysis [J]. J Am Chem Soc, 2009,131(12):4397-404.
    [10]Macias-Montero M., Borras A., Saghi Z., et al. Superhydrophobic supported Ag-NPs@ZnO-nanorods with photoactivity in the visible range [J]. J Mater Chem,2012, 22(4):1341-6.
    [11]Daneshvar N., Salari D., Khataee A. R. Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2 [J]. J Photoch Photobio A,2004,162(2-3): 317-22.
    [1]Lincot D. Solution growth of functional zinc oxide films and nanostructures [J]. Mrs Bulletin,2010,35(10):778-89.
    [2]Gao Y. F., Nagai M., Masuda Y., et al. Electrochemical deposition of ZnO film and its photoluminescence properties [J]. J Cryst Growth,2006,286(2):445-50.
    [3]Peulon S., Lincot D. Cathodic electrodeposition from aqueous solution of dense or open-structured zinc oxide films [J]. Adv Mater,1996,8(2):166-70.
    [4]Yoshida T., Komatsu D., Shimokawa N., et al. Mechanism of cathodic electrodeposition of zinc oxide thin films from aqueous zinc nitrate baths [J]. Thin Solid Films,2004,451:166-9.
    [5]Koc P., Tekmen S., Baltakesmez A., et al. Stimulated electroluminescence emission from n-ZnO/p-GaAs:Zn heterojunctions fabricated by electro-deposition [J]. AIP Adv,2013, 3(12):122107.
    [6]Ren X., Jiang C. H., Li D. D., et al. Fabrication of ZnO nanotubes with ultrathin wall by electro deposition method [J]. Mater Lett,2008,62(17-18):3114-6.
    [7]Pauporte T., Lincot D. Hydrogen peroxide oxygen precursor for zinc oxide electrodeposition 11-Mechanistic aspects [J]. J Electroanal Chem,2001,517(1-2):54-62.
    [8]曹春斌.阳极氧化TiO2纳米管阵列的制备、生长机理及光催化应用研究[D].合肥;安徽大学,2011.
    [9]Cao C. B., Zhang G. S., Song X. P., et al. Layer-by-Layer Growth Mechanism of TiO2 Nanotube Arrays [J]. J Electrochem Soc,2011,158(1):E8-E11.
    [10]Cao C. B., Li J. L., Wang X., et al. Current characterization and growth mechanism of anodic titania nanotube arrays [J]. J Mater Res,2011,26(3):437-42.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700