纳米多孔金属材料在气相催化方面的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,利用脱合金法制备的纳米多孔金属材料因其独特的多孔结构、特殊的性能,而被广泛应用于催化、电子、光学、药物输送等领域。进一步拓宽脱合金法,合成新型纳米多孔金属材料,研究它们结构和发展它们的应用对纳米材料和工业应用领域都有非常重要的意义。本论文以脱合金法为手段,制备了多种纳米多孔金属材料,对材料的结构、形貌进行表征,研究了材料的形成机理,并系统研究了这些材料在CO催化氧化、富氢体系下CO选择性氧化、醇类的气相选择性催化氧化、甲酸的电氧化等领域的催化特性。主要研究内容如下:
     1、纳米多孔金高效催化活性起源的探索:金的固有属性和残留杂质的结合
     脱合金化法得到的纳米多孔金对于很多典型的金基催化反应具有异常的催化活性,但目前研究结果发现其他因素可以影响这种独特的催化活性,其中金固有属性和残留杂质的影响是该领域国际讨论的热点问题。本章中我们利用AuAg\AuAl、AuCu的脱合金化得到三种典型的纳米多孔金,将合成的材料用于CO氧化反应的研究。另外我们引入AuAl基的三元合金体系,利用AuAgAl的脱合金化制备一系列不同含银量的纳米多孔金。理论分析表明,这种具有小孔隙率和大曲率的独特纳米多孔结构包含高密度的位于角、边上的低配位的Au原子。纳米多孔金高效催化活性主要源自于金的固有属性,残留杂质也会对催化活性有所贡献,但是残留杂质不是必须存在的。
     2、纳米多孔金低温时催化富氢体系下一氧化碳选择性氧化
     低温时将脱合金化得到的纳米多孔金用于富氢体系下一氧化碳选择性氧化。通过改变反应温度、添加CO2/H2O、改变残留银含量等反应参数系统的表征材料的催化性能。结果证实纳米多孔金是一种高效的催化富氢体系下一氧化碳选择性氧化反应的催化剂,尤其是在低温下具有高转化率和选择性。在反应气空速为120,000mL h-1g-1cat.,温度200C情况下,多孔金催化一氧化碳选择性氧化的转化频率为4.1×10-2s-1,混合气出口处CO的浓度被降为2ppm以下,并且这种高效的催化活性可以保持24h以上。多孔金中残留银的存在看起来不会对多孔金催化一氧化碳选择性氧化反应的固有属性产生有利的影响,但是对于多孔金的结构稳定性和表观催化活性有促进作用。这些结果表明纳米多孔金可被应用于燃料电池中氢气的纯化过程。
     3、脱合金法制备纳米多孔铂基合金及其催化性能研究
     利用PtCoAl的脱合金化制备纳米多孔铂钴合金(NP-PtCo),将合成的材料应用于一氧化碳氧化和富氢体系下一氧化碳选择性氧化。NP-PtCo的结构有趣,由几百纳米左右的分层纳米阵列组成,将图像放大之后发现,每个纳米阵列都是由孔壁/孔尺寸在3nm以下的三维双连续网状结构构成。NP-PtCo这种有趣的纳米多孔结构的形成有利于反应物和产物的扩散,利于催化反应的进行。NP-PtCo表现出高效的催化一氧化碳氧化反应的活性和稳定性,稳定性的提高与材料表面形成的Co氧化物种层和具有低扩散速率的Pt掺杂有关。动力学研究表明该过程具有较低的表观活化能(31.6kJ mol-1),反应遵循Langmuir-Hinshelwood机理。
     另外,我们利用脱合金化法制备了一系列低Pt载量的三维纳米多孔AuPt合金(NP-AuPt),该方法可以得到高度分散的、稳定的Pt原子。X-射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)和X射线电子能谱(XPS)用于表征合成材料的结构和表面组成。与商业Pt/C相比,这种低Pt载量的NP-AuPt具有高效的甲酸电催化氧化性能,包括较高的电流密度和较好的稳定性。高效的催化性能归因于孔状结构、单原子效应、电子性能和集团效应。该类材料有望应用于直接甲酸燃料电池。
     4、纳米多孔金银合金选择性氧化甲醇和乙醇
     纳米多孔金和纳米多孔银作为新型的纳米材料,对很多反应有异常的催化活性。最近的研究指出当多孔金中残留的银含量在很低的浓度时,残留银对于一氧化碳氧化反应起到决定性作用。本章中我们利用AuAgAl脱合金化制备出一系列的纳米多孔金银合金(NP-AuAg),包括低Ag载量的样品(Au99.5Ag0.5,Au99Ag1, Au98Ag2,Au95Ag5)、低Au载量的样品(Ag99.5Au0.5,Ag99Au1,Ag98Au2,Ag95Au5)、 Au20Ag80和Au50Ag50,将制备的样品应用于甲醇和乙醇的气相选择性氧化反应。低Ag载量的NP-AuAg催化甲醇气相选择性氧化过程中,转化率、选择性和转化频率随着Ag含量的增加而降低,不过该样品催化乙醇气相选择性氧化过程中这些参数随着Ag含量的增加而升高。在所有样品催化反应过程中,催化活性均随着Au/Ag比例的不同而改变,当Au/Ag的比例为1:4时,样品的催化活性最高。
Recently, nanoporous metal prepared by dealloying is sought for promising applications in catalysis, electronics, optic and drug delivery, due to its unique porous structure and property. Extending the facile method to prepare novel nanoporous material, further investigating its structure, and exploring its applications are very important to nanomaterial and industry field. Here we fabricate several nanoporous materials based on the dealloying process. The structure and possible formation mechanism are also investigated. Moreover, we explore their applications for the CO oxidation, preferential CO oxidation, gas-phase selective oxidation of alcohols, and electrooxidation of formic acid. The main informations are as follows:
     1. Insights into the reactivity of dealloyed nanoporous gold:combining the intrinsic activity of gold and residual impurity
     Dealloyed nanoporous gold (NPG) has been found to possess remarkable catalytic activity for some of the typical gold-catalyzed reactions. It is suggested that there may be several effects contributing to the special catalytic properties. To date, no consistent picture regarding effects related to the intrinsic catalytic activity of gold and residual elements has arisen, so the debate still continues. In this work, we choose three typical NPG catalysts fabricated by dealloying of AuAg, AuCu, and AuAl alloy to investigate the catalytic activity of gold by using CO oxidation as the model reaction. Moreover, we first introduce AuAl-based ternary alloy to prepare NPG with different amounts of Ag content by dealloying of AuAgAl alloys. Theoretical analysis indicates that such unique nanostructure of NPG films, a smaller nanopore size with a closer interligament distance and large local curvature, possess a high concentration of low-coordination gold atoms (such as corner and step sites). Our data suggest that the most important effect is related to the intrinsic catalytic activity of gold. Residual impurity may also contribute to the special catalytic properties, but is not mandatory for catalytic reactions.
     2. Nanoporous gold as an active low temperature catalyst toward CO oxidation in hydrogen-rich stream.
     Preferential CO oxidation (PROX) was investigated by using dealloyed nanoporous gold (NPG) catalyst under ambient conditions. Systematic investigations were carried out to characterize its catalytic performance by varying reaction parameters such as temperature and co-existence of CO2and H2O, which revealed that NPG was a highly active and selective catalyst for PROX, especially at low temperature. At20℃, the exit CO concentration could be reduced to less than2ppm with a turnover frequency of4.1×10-2s-1at a space velocity of120,000mL h-1g-1cat. and its high activity could retain for more than24hours. The presence of residual Ag species in the structure did not seem to improve the intrinsic activity of NPG for PROX; however, they contributed to the stabilization of the NPG structure and apparent catalytic activity. These results indicated that NPG might be readily applicable for hydrogen purification in fuel cell applications.
     3. Preparation of nanoporous platinum-based bimetallic nanocomposites by dealloying ternary alloys and research on their catalytic and electrocatalytic activity.
     Nanoporous PtCo (NP-PtCo) alloy was synthesized by dealloying a ternary PtCoAl alloy and applied in CO oxidation (COOX) and preferential CO oxidation (PROX). This interesting structure consists of layered nano-array around hundreds of nanometers, in which the array was composed of a three-dimensional bicontinuous network structure with a ligament/pore size down to3nm. NP-PtCo exhibited superior activity for COOX with good structure durability. The formed nanoporous structure facilitated the diffusion of the reactants and products, making contributions for the improved activity. This improvement of stability was related to the formation of a surface oxidized Co species layer and small surface diffusivity of Pt. Kinetic studies indicated that this reaction proceeded through Langmuir-Hinshelwood mechanism with low apparent activation energy (31.6kJ mol-1).
     Dealloying method is employed to fabricate three-dimensional nanoporous AuPt (NP-AuPt) alloys with low content of Pt, which favor the high dispersion of Pt atoms. The as-prepared alloys were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The NP-AuPt alloys composed of low Pt content show superior electrocatalytic activity and long stability toward the electrooxidation of formic acid in the acidic solution in comparison to the commercial Pt/C catalyst, due to the porous structure, the single-atom effect, the electronic property, and the assembly effect. This material can find potential applications in direct formic acid fuel cells.
     4. Gas-phase selective oxidation of methanol and ethanol over nanoporous AuAg alloys.
     Both nanoporous gold and nanoporous silver are interesting catalytic materials, because of their remarkable catalytic activities towards some reactions. Recent reports point to the crucial role of residual silver in very small concentrations in CO oxidation. Here we prepared a series of nanoporous AuAg alloys (NP-AuAg) prepared by dealloying of AuAgAl alloys, including NP-AuAg alloys with low content of Ag (Au99.5Ago.5, Au99Agi, Au98Ag2, Au95Ag5), with low content of Au (Ag99.5Auo.5, Ag99Au1, Ag98Au2, Ag95Au5), Au20Ag80, and Au50Ag50, which were applied in gas-phase selective oxidation of methanol and ethanol. In details, as for the catalytic oxidation of methanol on samples with low content of Ag, the conversion, selectivity and TOF decrease with the increase of Ag contents, however the catalytic activity of ethanol on the same samples exhibit contrary tendency. The activity varies with the Au/Ag molar ratios and attains the best activity when Au/Ag is1:4.
引文
[1]W. C. Ackerman, J. Changming, C.-C. Cho, B. E. Gnade, G C. Johnston, D. M. Smith, Porous dielectric material with improved pore surface properties for electronics applications. U.S. Patent 6140252.
    [2]B. V. Harbuzaru, A. Corma, F. Rey, P. Atienzar, J. Jorda, H. Garcia, D. Ananias, L. D. Carlos, J. Rocha, Metal-organic nanoporous structures with anisotropic photoluminescence and magnetic properties and their use as sensors. Angew. Chem. Int. Ed.2008,47,1080-1083.
    [3]张文彦,正平,方明,纳米孔结构金属多孔材料研究进展,稀有金属材料与工程2008,37,1129-1133.
    [4]H.P.蒂吉斯切,B.克雷兹特,多孔泡沫金属.北京:学工业出版社2005.
    [5]C. X. Xu, X. X. Xu, J. X. Su, Y. Ding, Research on unsupported nanoporous gold catalyst for CO oxidation. J. Catal.2007,252,243-248.
    [6]L. Y. Chen, L. Zhang, T. Fujita, M. W. Chen, Surface-enhanced raman scattering of silver@nanoporous copper core-shell composites synthesized by an in situ sacrificial template approach. J. Phys. Chem. C2009,113,14195-14199.
    [7]T. Okada, J. Suehiro, Synthesis of nano-structured materials by laser-ablation and their application to sensors. Applied Surface Science 2007,253,7840-7847.
    [8]D. Losic, S. Simovic, Self-ordered nanopore and nanotube platforms for drug delivery applications. Expert Opin Drug Deliv.2009,6,1363-1381.
    [9]K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol, T. Siemieniewska, Reporting physisorption data for gas solid systems with special reference to the determination of surface-area and porosity (recommendations 1984). Pure Appl. Chem.1985,57,603-619.
    [10]D.W. Breck, Zeolite molecular sieves,1984, Krieger Publishing Company.
    [11]R. Szoztak, Molecular sieves:Principles of synthesis and identification,1989, Van Nostrand Reinhold Catalytic Series.
    [12]C.T. Kresge, M. E. Leonowicz, W. J. Roth, J. C.Vartuli, J. S.Beck, Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 1992,159,710-712.
    [13]A. P. Li, F. Mullar, A. Birner, K. Nielsch, U. Gosele, Hexagonal pore arrays with a 50-420nm interpore distance formed by self-organization in anodic alumina, J. Appl. Phys.1998,84,6023-6026.
    [14]D. R. Rolison, Catalytic nanoarchitectures-The importance of nothing and the unimportance of periodicity, Science 2003,299,1698-1701.
    [15]K.Ishizaki, Porous materials:process technology and applications,1998, Kluwer Academic Publishing Company.
    [16]K. Robbie, J. C. Sit, M. J. Brett. Advanced techniques for glancing angle deposition. J.Vae. Sei. Technol. B 1998,16,1115-1122.
    [17]K. Robbie, G Beydaghyan, T. Brown, C. Dean, J. Adams, C. Buzea, Ultrahigh vacuum glancing angle deposition system for thin films with controlled three-dimensional nanoscale strueture. Rev. Sei. Instrum.2004,75,1089-1097.
    [18]D.G. Shchukin, R. A Caruso, Template synthesis of porous gold microspheres, Chem. Commun.2003,1478-1479.
    [19]H. Zhang, A. I. Cooper, New approaches to the synthesis of macroporous metals, J. Mater. Chem.2005,15,2157-2159.
    [20]R. Seshadri, F. C. Meldrum, Bioskeletons as templates for ordered macroporous structures, Adv. Mater.2000,12,1149-1151.
    [21]F. C. Meldrum, R. Seshadri, porous gold structures through templating by echinoid skeletal plates. Chem. Commun.2000,29-30.
    [22]O. D. Velev, P. M. Tessier, A. M. Lenhoff, E. W. Kaler, A class of porous metallic nanostructures, Nature 1999,401,548-548.
    [23]K. M. Kulinowski, P. Jiang, H. Vaswani, V. L. Colvin, Porous metals from colloidal templates, Adv. Mater.2000,12,833-838.
    [24]L. Pu, X. Bao, J. Zou, D. Feng, Individual alumina nanotubes, Angew. Chem. Int. Ed.2001,40,1490-1493.
    [25]S. Chu, K. Wada, S. Inoue, S. Todoroki, Fabrication of oxide nanostructures on glass by aluminum anodization and sol-gel process, Surf. Coat. Technol.2003, 169-170,190-194.
    [26]Y. X. Lu, Q. F. Wang, J. Q. Sun, J. C. Shen, Selective dissolution of the silver component in colloidal Au and Ag multilayers:A facile way to prepare nanoporous gold film materials. Langmuir 2005,21,5179-5184.
    [27]T. Karabacak, G. C. Wang, T. M. Lu, Quasi-periodic nanostructures grown by oblique angle deposition. J. Appl. Phys.2003,94,7723-7728.
    [28]T. Karabacak, J. P. Singh, Y. P. Zhao, G. C. Wang, T. M. Lu, Scaling during shadowing growth of isolated nanocolunms. Phys. Rev. B 2003,68,125408.
    [29]K. Robbie, L. J. Friedrieh, S. K. Dew, T. Smy, M. J. Brett, Fabrication of thin films with highly porous microstructures. J. Vae. Sei. Teehnol. A 1995,13, 1032-1035.
    [30]K. D. Harris, D. Viek, E. J. Gonzalez, T. Smy, K. Robbie, M. J. Brett, Porous thin films for thermal barrier coatings. Surf. Coat. Teeh.2001,138,185-191.
    [31]P. R. Swann, Mechanism of corrosion tunneling with special reference to Cu3Au. Corrosion 1969,25,147-150.
    [32]A. J. Forty, Corrosion micromorphology of noble metal alloys and depletion gilding. Nature 1979,282,597-598.
    [33]H. W. Pickering, Characteristic features of alloys polarization curves. Corrosion science 1983,23,1107-1120.
    [34]R. C. Newman, K. Sieradzki, Metallic corrosion. Science 1994,263,1708-1709.
    [35]R. Morrish, K. Dorame, A. J. Muscat, Formation of nanoporous Au by dealloying AuCu thin films in HNO3. Scripta Mater.2011,64,856-859.
    [36]J. R. Hayes, A. M. Hodge, J. Biener, A. V. Hamza, K. Sieradzki, Monolithic nanoporous copper by dealloying Mn-Cu. J. Mater. Res.2006,21,2611-2616.
    [37]H. Ji, X. G. Wang, C. C. Zhao, C. Zhang, J. L. Xu, Z. H. Zhang, Formation, control and functionalization of nanoporous silver through changing dealloying media and elemental doping. CrystEngComm 2011,13,2617-2628.
    [38]A. A. Pavlic, H. Adkins, Preparation of a Raney nickel catalyst. J. Am. Chem. Soc. 1946,68,1471.
    [39]M. Stratmann, M. Rohwerder, A pore view of corrosion. Nature 2001,410, 420-421.
    [40]C. X. Xu, J. X. Su, X. X. Xu, P. P. Liu, H. J. Zhao, F. Tian, Y. Ding, Low temperature CO oxidation over unsupported nanoporous gold. J. Am. Chem. Soc. 2007,129,42-43.
    [41]X. M. Zhang, Y. Ding, Unsupported nanoporous gold for heterogeneous catalysis. Catal. Sci. Technol.2013,3,2862-2868.
    [42]V. Zielasek, B. Jurgens, C. Schulz, J. Biener, M. M. Biener, A. V. Hamza, M. Baumer, Gold catalysts:nanoporous gold foams. Angew. Chem. Int. Ed.2006,45, 8241-8244.
    [43]A. Wittstock, B. Neumann, A. Schaefer, K. Dumbuya, C. Kubel, M. M. Biener, V. Zielasek, H.-P. Steinruck, J. M. Gottfried, J. Biener, A. Hamza, M. Baumer, Nanoporous Au:An unsupported pure gold catalyst? J. Phys. Chem. C 2009,113, 5593-5600.
    [44]C. X. Xu, X. X. Xu, J. X. Su, Y. Ding, Research on unsupported nanoporous gold catalyst for CO oxidation. J. Catal.2007,252,243-248.
    [45]A. Wittstock, V. Zielasek, J. Biener, C. M. Friend, M. Baumer, Nanoporous gold catalysts for selective gas-phase oxidative coupling of methanol at low temperature. Science 2010,327,319-322.
    [46]A. Abad, P. Concepcion, A. Corma, H. Garcia, A collaborative effect between gold and a support induces the selective oxidation of alcohols. Angew. Chem. Int. Ed.2005,44,4066-4069.
    [47]H. M. Yin, C. Q. Zhou, C. X. Xu, P. P. Liu, X. H. Xu, Y. Ding, Aerobic oxidation of D-glucose on support-free nanoporous gold. J. Phys. Chem. C 2008,112, 9673-9678.
    [48]N. Asao, Y. Ishikawa, N. Hatakeyama, Menggenbateer, Y. Yamamoto, M. W. Chen, W. Zhang, A. Inoue, Nanostructured materials as catalysts: Nanoporous-Gold-Catalyzed oxidation of organosilanes with water. Angew. Chem. Int. Ed.2010,49,10093-10095.
    [49]M. Yan, T. N. Jin, Q. Chen, H. E. Ho, T. Fujita, L. Y. Chen, M. Bao, M. W. Chen, N. Asao, Y. Yamamoto, Unsupported nanoporous gold catalyst for highly selective hydrogenation of quinolines. Org. Lett.2013,15,1484-1487.
    [50]J. T. Zhang, P. P. Liu, H. Y. Ma, Y. Ding, Nanostructured porous gold for methanol electro-oxidation. J. Phys. Chem. C2007,111,10382-10388.
    [51]P. P. Liu, X. B. Ge, R. Y. Wang, H. Y. Ma, Y. Ding, Facile fabrication of ultrathin Pt overlayers onto nanoporous metal membranes via repeated Cu UPD and in situ redox replacement reaction. Langmuir 2009,25,561-567.
    [52]R. Y. Wang, C. Wang, W. B. Cai, Y. Ding, Ultralow-platinum-loading high performance nanoporous electrocatalysts with nanoengineered surface structures. Adv. Mater.2010,22,1845-1848.
    [53]J. P. Wang, D. F. Thomas, A. C. Chen, Nonenzymatic electrochemical glucose sensor based on nanoporous PtPb networks. Anal. Chem.2008,80,997-1004.
    [54]Z. N. Liu, L. H. Huang, L. L. Zhang, H. Y. Ma, Y. Ding, Electrocatalytic oxidation of D-glucose at nanoporous Au and Au-Ag alloy electrodes in alkaline aqueous solutions. Electrochim. Acta.2009,54,7286-7293.
    [55]Y. Ding, M. W. Chen, J. Erlebacher, Metallic mesoporous nanocomposites for electrocatalysis. J. Am. Chem. Soc.2004,126,6876-6877.
    [56]R. Zeis, A. Mathur, G. Fritz, Platinum-plated nanoporous gold:An efficient, low Pt loading electrocatalyst for PEM fuel cells. J. Power Sources 2007,165,65-72.
    [57]S. O. Kucheyev, J. R. Hayes, J. Biener, T. Huser, C. E. Talley, A. V. Hamza, Surface-enhanced Raman scatteirng on nanoporous Au. Appl. Phys. Lett.2006,89, 053102.
    [58]L. H. Qian, X. Q. Yan, T. Fujita, M. W. Chen, Ultrafine nanoporous gold by low-temperature dealloying and kinetics of nanopore formation. Appl. Phys. Lett. 2007,90,153120.
    [59]L. H. Qian, X. Q. Yan, T. Fujita, A. Inoue, M. W. Chen, Surface enhanced Raman scattering of nanoporous gold:Smaller pore sizes stronger enhancements. Appl. Phys. Lett.2007,90,153120.
    [60]D. Candusso, F. Harel, A. Bernardinis, X. Francois, M. C. Pera, D. Hissel, P. Schott, G. Coquery, J. M. Kauffmann, Characterisation and modelling of a 5kW PEMFC for transportation applications. Int. J. Hydrogen Energy 2006,31, 1019-1030.
    [61]M. Arita, Technical issues of fuel cell systems for automotive application. Fuel Cells 2002,2,10-14.
    [62]W. Sugimoto, H. Iwata, K. Yokoshima, Y. Murakami, Y. Takasu, Proton and electron conductivity in hydrous ruthenium oxides evaluated by electrochemical impedance spectroscopy:the origin of large capacitance. J. Phys. Chem. B 2005, 109,7330-7338.
    [63]S. Alayoglu, A. U. Nilekar, M. Mavrikakis, B. Eichhorn, Ru-Pt core-shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen. Nat. Mater.2008,7,333-338.
    [64]A.U. Nilekar, S. Alayoglu, B. Eichhorn, M. Mavrikakis, Preferential CO oxidation in hydrogen:Reactivity of core-shell nanoparticles. J. Am. Chem. Soc. 2010,132,7418-7428.
    [65]沈跃.深冷分离法和加膜分离法的空气分离装置.低温与特气1997,2,26-27.
    [66]魏玺群,陈健.变压吸附气体分离技术的应用和发展.低温与特气2002,20,1-5.
    [67]J. Shu, B. P. A. Grandjean, A. Van Neste, S. Kaliaguine, Catalytic palladium-based membrane reactors:A review. Can. J. Chem. Eng.1991,69, 1036-1060.
    [68]孙德栋,张启修.UF处理生活污水过程中的膜污染和膜清洗研究.膜群学与技术.2004,24,32-35.
    [69]D. L. Trimm, Minimisation of carbon monoxide in a hydrogen stream for fuel cell application. Appl. Catal. A:Gen.2005,296,1-11.
    [70]E. D. Park, D. Lee, H. C. Lee, Recent progress in selective CO removal in a H2-rich stream. Catal. Today'2009,139,280-290.
    [71]M. Nagai, K. Matsuda, Low-temperature water-gas shift reaction over cobalt-molybdenum carbide catalyst. J. Catal.2006,238,489-496.
    [72]W. Ruettinger, O. Ilinich, R. J. Farrauto, A new generation of water gas shift catalysts for fuel cell applications. J. Power Sources 2003,118,61-65.
    [73]M. Nagai, A. M. Zahidul, K. Matsuda, Nano-structured nickel-molybdenum carbide catalyst for low-temperature water-gas shift reaction. Appl. Catal. A:Gen. 2006,313,137-145.
    [74]F. Fischer, H. Tropsch, P. Dilthey, The reduction of carbon monoxide to methane in the presence of various metals. Brennstoff-Chemie,1925,6,265-271.
    [75]S. Takenaka, T. Shimizu, K. Otsuka, Complete removal of carbon monoxide in hydrogen-rich gas stream through methanation over supported metal catalysts. Int. J. Hydrogen Energ.2004,29,1065-1073.
    [76]M. Echigo, T. Tabata, CO removal from reformed gas by catalytic methanation for polymer electrolyte fuel cell applications. J. Chem. Eng. Jpn.2004,37,75-81.
    [77]B. S. Baker, J. Huebler, H. R. Linden, J. Meek, Process for selective removal by methanation of carbon monoxide from a mixture of gases containing carbon dioxide. U.S. Patent 1971,3615,164.
    [78]H. Van Doesburg, W. A. De Jong, Transient behaviour of an adiabatic fixed-bed methanator-II:Methanation of mixtures of carbon monoxide and carbon dioxide. Chem. Eng. Sci.1976,31,53-58.
    [79]R. A. Dagle, Y. Wang, G. G. Xia, J. J. Strohm, J. Holladay, D. R. Palo, Selective CO methanation catalysts for fuel processing applications. Appl. Catal. A:Gen. 2007,326,213-218.
    [80]M. Kramer, M. Duisberg, K. Stowe, W. F. Maier, Highly selective CO methanation catalysts for the purification of hydrogen-rich gas mixtures. J. Catal. 2007,251,410-422.
    [81]T. Shodiya, O. Schmidt, W. Peng, N. Hotz, Novel nano-scale Au/a-Fe2O3 catalyst for the preferential oxidation of CO in biofuel reformate gas. J. Catal.2013,300, 63-69.
    [82]S. Kandoi, A. A. Gokhale, L. C. Grabow, J. A. Dumesic, M. Mavrikakis, Why Au and Cu are more selective than Pt for preferential oxidation of CO at low temperature. Catal. Lett.2004,93,93-100.
    [83]T. Sanchez, R. M. Ueda, K. Tanaka, M. Haruta, Selective oxidation of CO in hydrogen over gold supported on manganese oxides. J. Catal.1997,168, 125-127.
    [84]R. J. H. Grisel, B. E. Nieuwenhuys, Selective oxidation of CO, over supported Au catalysts. J. Catal.2001,199,48-59.
    [85]R. J. H. Grisel, C. J. Weststrate, A. Goossens, M. W. J. Craje, A. M. van der Kraan, B. E. Nieuwenhuys, Oxidation of CO over Au/MOx/Al2O3 multi-component catalysts in a hydrogen-rich environment. Catal. Today 2002, 72,123-132.
    [86]J. Fonseca, S. Royer, N. Bion, L. Pirault-Roy, M. C. Rangel, D. Duprez, F. Epron, Preferential CO oxidation over nanosized gold catalysts supported on ceria and amorphous ceria-alumina. Appl. Catal. B:Environ.2012,128,10-20.
    [87]G. Panzera, V. Modafferi, S. Candamano, A. Donato, F. Frusteri, P. L. Antonucci, CO selective oxidation on ceria-supported Au catalysts for fuel cell application. J. Power Sources 2004,135,177-183.
    [88]P. Landon, J. Ferguson, B. E. Solsona, T. Garcia, S. Al-Sayari, A.F. Carley, A.A. Herzing, C. J. Kiely, M. Makkee, J.A. Moulijn, A. Overweg, S.E. Golunski, G.J. Hutchings, Selective oxidation of CO in the presence of H2, H2O and CO2 utilising Au/α-Fe2O3 catalysts for use in fuel cells. J. Mater. Chem.2006,16, 199-208.
    [89]Y.-W. Yu, W.-S. Lee, C.-P. Yang, B.-Z. Wan, Low-temperature preferential oxidation of CO in a hydrogen rich stream (PROX) over Au/TiO2: Thermodynamic study and effect of gold-colloid pH adjustment time on catalytic activity. J. Chin. Inst. Chem. Eng.2007,38,151-160.
    [90]C. Galletti, S. Fiorot, S. Specchia, G. Saracco, V. Specchia, Catalytic performance of Au-TiO2 catalysts prepared by deposition-precipitation for CO preferential oxidation in H2-rich gases. Chem. Eng. J.2007,134,45-50.
    [91]S. Kandoi, A. A. Gokhale, L.C. Grabow, J. A. Dumesic, M. Mavrikakis, Why Au and Cu are more selective than Pt for preferential oxidation of CO at low temperature. Catal. Lett.2004,93,93-100.
    [92]Y. B. Tu, M. Meng, Z. S. Sun, L. J. Zhang, T. Ding, T. Y. Zhang, CO preferential oxidation over Au/MnOx-CeO2 catalysts prepared with ultrasonic assistance: Effect of calcination temperature. Fuel Process. Technol.2012,93,78-84.
    [93]Y.-W. Chen, D.-S. Lee, H.-J. Chen, Preferential oxidation of CO in H2 stream on Au/ZnO-TiO2 catalysts. Int. J. Hydrogen Energy 2012,37,15140-15155.
    [94]Y.-W. Chen, H.-J. Chen, D.-S. Lee, Au/Co3O4-TiO2 catalysts for preferential oxidation of CO in H2 stream. J. Mol. Catal. A:Chem.2012,363-364,470-480.
    [95]Y. H. Wang, J. L. Zhu, J. C. Zhang, L. F. Song, J. Y. Hu, S. L. Ong, W. J. Ng, Selective oxidation of CO in hydrogen-rich mixtures and kinetics investigation on platinum-gold supported on zinc oxide catalyst. J. Power Sources 2006,155, 440-446.
    [96]T. Tabakova, V. Idakiev, K. Tenchev, F. Boccuzzi, M. Manzoli, A. Chiorino, Pure hydrogen production on a new gold-thoria catalyst for fuel cell applications. Appl. Catal. B:Environ.2006,63,94-103.
    [97]Z. H. Wang, H. Q. Zhu, Z. F. Qin, F. X. Liang, G F. Wang, J. G Wang, Deactivation of a Au/CeO2-Co3O4 catalyst during CO preferential oxidation in H2-rich stream. J. Catal.2009,264,154-162.
    [98]S. Zhou, Z. Yuan, S. Wang, Selective CO oxidation with real methanol reformate over monolithic Pt group catalysts:PEMFC applications. Int. J. Hydrogen Energ. 2006,31,924-933.
    [99]H. Igarashi, H. Uchida, M. Suzuki, Y. Sasaki, M. Watanabe, Removal of carbon monoxide from hydrogen-rich fuel by selective oxidation over platinum catalyst supported over zeolite. Appl. Catal. A:Gen.1997,159,159-169.
    [100]A. Fukuoka, J. Kimura, T. Oshio, Y. Sakamoto, M. Ichikawa, Preferential oxidation of carbon monoxide catalyzed by platinum nanoparticles in mesoporous silica. J. Am. Chem. Soc.2007,129,10120-10125.
    [101]I. H. Son, M. Shamsuzzoha, A. M. Lane, Promotion of Pt/γ-Al2O3 by new pretreatment for low-temperature preferential oxidation of CO in H2 for PEM fuel cells. J. Catal.2002,210,460-465.
    [102]G. Uysal, A. N. Akin, Z. I. Onsan, R. Yildmma, Preferential CO oxidation over Pt-SnO2/Al2O3 in hydrogen rich streams containing CO2 and H2O (CO removal from H2 with PROX). Catal. Lett.2006,111,173-176.
    [103]X. Shi, K.-I. Tanaka, H. He, M. Shou, W. Xu, X. Zhang, The mechanism for the selective oxidation of CO enhanced by H2O on a novel PROC catalyst. Catal. Lett.2008,120,210-214.
    [104]E. Simsek, S. Ozkara, A. E. Aksoylu, Z. I. Onsan, Preferential CO oxidation over activated carbon supported catalysts in H2-rich gas streams containing CO2 and H2O. Appl. Catal. A:Gen.2007,316,169-174.
    [105]J. L. Ayastuy, M. P. Gonzalez-Marcos, J. R. Gonzalez-Velasco, M. A. Gutierrez-Ortiz, MnOx/Pt/Al2O3 catalysts for CO oxidation in H2-rich streams. Appl. Catal. B:Environ.2007,70,532-541.
    [106]D.I. Potemkin, E.Yu. Filatov, A.V. Zadesenets, P.V. Snytnikov, Yu.V. Shubin, V.A. Sobyanin, Preferential CO oxidation over bimetallic Pt-Co catalysts prepared via double complex salt decomposition. Chem. Eng. J.2012,207-208, 683-689.
    [107]R. Mu, Q. Fu, H. Xu, H. Zhang, Y. Huang, Z. Jiang, S. Zhang, D. Tian, X. Bao, Synergetic effect of surface and subsurface Ni species at Pt-Ni bimetallic catalysts for CO oxidation. J. Am. Chem. Soc.2011,133,1978-1986.
    [108]S. Guerrero, J. T. Miller, E. E. Wolf, Activity and selectivity control by niobium for the preferential oxidation of CO on Pt supported catalysts. Appl. Catal. A:Gen.2007,328,27-34.
    [109]M. Kuriyama, H. Tanaka, S.-I. Ito, T. Kubota, T. Miyao, S. Naito, K. Tomishige, K. Kunimori, Promoting mechanism of potassium in preferential CO oxidation on Pt/Al2O3. J. Catal.2007,252,39-48.
    [110]S. H. Zhou, K. Mcllwrath, G Jackson, B. Eichhorn, Enhanced CO tolerance for hydrogen activation in Au-Pt dendritic heteroaggregate nanostructures. J. Am. Chem. Soc.2006,128,1780-1781.
    [111]S. H. Oh, R. M. Sinkevitch, Carbon monoxide removal from hydrogen-rich fuel cell feedstreams by selective catalytic oxidation. J. Catal.1993,142, 254-262.
    [112]S. Y. Chin, O. S. Alexeev, M. D. Amiridis, Preferential oxidation of CO under excess H2 conditions over Ru catalysts. Appl. Catal. A:Gen.2005,286,157-166.
    [113]M. Echigo, N. Shinke, S. Takami, S. Higashiguchi, K. Hirai, T. Tabata, Development of residential PEFC cogeneration systems:Ru catalyst for CO preferential oxidation in reformed gas. Catal. Today 2003,84,209-215.
    [114]C. Galletti, S. Fiorot, S. Specchia, G Saracco, V. Specchia, Activity of rhodium-based catalysts for CO preferential oxidation in H2-rich gases. Top. Catal.2007,45,15-19.
    [115]Y. Huanga, A. Wang, X. Wang, T. Zhang, Preferential oxidation of CO under excess H2 conditions over iridium catalysts. Int. J. Hydrogen Energ.2007,32, 3880-3886.
    [116]W. Zhang, A. Wang, L. Li, X. Wang, T. Zhang, Promoting role of Fe in the preferential oxidation of CO over Ir/Al2O3. Catal. Lett.2008,121,319-323.
    [117]Y. Teng, H. Sakurai, A. Ueda, T. Kobaysahi, Oxidative removal of CO contained in hydrogen by using metal oxide catalysts. Int. J. Hydrogen Energ. 1999,24,355-358.
    [118]C. M. Bae, J. B. Ko, D. H. Kim, Selective catalytic oxidation of carbon monoxide with carbon dioxide, water vapor and excess hydrogen on CuO-CeO2 mixed oxide catalysts. Catal. Commun.2005,6,507-511.
    [119]J. Muzart, Chromium-catalyzed oxidations in organic synthesis. Chem. Rev. 1992,92,113-140.
    [120]M. Uchiyama, Y. Kimura, A. Ohta, Stereoselective total syntheses of (±)-arthrinone and related natural compounds. Tetrahedron Lett.2000,41, 10013-10017.
    [121]W. P. Griffith, Ruthenium oxo complexes as organic oxidants. Chem. Soc. Rev.1992,21,179-185.
    [122]J. Muzart, Chromium-catalyzed oxidations in organic synthesis. Chem. Rev. 1992,92,113-140.
    [123]E. J. Corey, J. W. Suggs, Pyridinium chlorochromate. An efficient reagent for oxidation of primary and secondary alcohols to carbonyl compounds. Tetrahedron Lett.1975,16,2647-2650.
    [124]M. Hasan, M. Musawir, P. N. Davey, I. V. Kozhevnikov, Oxidation of primary alcohols to aldehydes with oxygen catalysed by tetra-n-propylammonium perruthenate. J. Mol. Catal. A:Chem.2002,180,77-84.
    [125]A. C. Dengel, A. M. El-Hendawy, W. P. Griffith, Studies on transition-metal oxo and nitrido complexes. Part 11. New oxo complexes of ruthenium as aerobically assisted oxidants, and the X-ray crystal structure of [Ru2O6 (py) 4]-3.5 H2O. J. Chem. Soc. Dalton Trans.1990,737-742.
    [126]D. R. Jensen, M. J. Sehultz, J. A. Mueller, M. S. Sigman, Defined complex for palladium-catalyzed aerobic oxidation of alcohols:Design, synthesis, and mechanistic considerations. Angew. Chem.2003,115,3940-3943.
    [127]K. M. Choi, T. Akita, T. Mizugaki, K. Ebitani, K. Kaneda, Highly selective oxidation of allylic alcohols catalysed by monodispersed 8-shell Pd nanoclusters in the presence of molecular oxygen. New J. Chem.2003,27,324-328.
    [128]S. F. J. Hackett, R. M. Brydson, M. H. Gass, I. Harvey, A. D. Newman, K. Wilson, A. F. Lee, High-activity, single-site mesoporous Pd/Al2O3 catalysts for selective aerobic oxidation of allylic alcohols. Angew. Chem. Int. Ed.2007,119, 8747-8750.
    [129]L. Prati, M. Rossi, Gold on carbon as a new catalyst for selective liquid phase oxidation of diols.J. Catal.1998,176,552-560.
    [130]A. Abad, A. Corma, H. Garcia, Supported gold nanoparticles for aerobic, solventless oxidation of allylic alcohols. Pure Appl. Chem.2007,79,1847-1854.
    [131]A. N. Pestryakov, V. V. Lunin, Physicochemical study of active sites of metal catalysts for alcohol partial oxidation. J. Mol. Catal. A:Chem.2000,158, 325-329.
    [132]K. M. Kosuda, A. Wittstock, C. M. Friend, M. Baumer, Oxygen-mediated coupling of alcohols over nanoporous gold catalysts at ambient pressures. Angew. Chem. Int. Ed.2012,51,1698-1701.
    [133]Z. W. Li, J. L. Xu, X. H. Gu, K. Wang, W. H. Wang, X. M. Zhang, Z. H. Zhang, Y. Ding, Selective gas-phase oxidation of alcohols over nanoporous silver. ChemCatChem 2013,5,1705-1708.
    [134]B. J. Xu, X. Y. Liu, J. Haubrich, R. J. Madix, C. M. Friend, Selectivity control in gold-mediated esterification of methanol. Angew. Chem.2009,121, 4270-4273.
    [135]X. Y. Liu, B. J. Xu, J. Haubrich, R. J. Madix, C. M. Friend, Surface-mediated self-coupling of ethanol on gold. J. Am. Chem. Soc.2009,131,5757-5759.
    [136]B. J. Xu, R. J. Madix, C. M. Friend, Achieving optimum selectivity in oxygen assisted alcohol cross-coupling on gold. J. Am. Chem. Soc.2010,132, 16571-16580.
    [1]N. Guillou, Q. M. Gao, P. M. Forster, J.-S. Chang, M. Nogues, S.-E. Park, G. Ferey, A. K. Cheetham, Nickel(II) phosphate VSB-5:A magnetic nanoporous hydrogenation catalyst with 24-ring tunnels. Angew. Chem. Int. Ed.2001,40, 2831-2834.
    [2]B. V. Harbuzaru, A. Corma, F. Rey, P. Atienzar, J. Jorda, H. Garcia, D. Ananias, L. D. Carlos, J. Rocha, Metal-organic nanoporous structures with anisotropic photoluminescence and magnetic properties and their use as sensors. Angew. Chem. Int. Ed.2008,47,1080-1083.
    [3]W. C. Ackerman, J. Changming, C.-C. Cho, B. E. Gnade, G. C. Johnston, D. M. Smith, Porous dielectric material with improved pore surface properties for electronics applications. U.S. Patent 6140252.
    [4]D. Losic, S. Simovic, Self-ordered nanopore and nanotube platforms for drug delivery applications. Expert Opin Drug Deliv.2009,6,1363-1381.
    [5]C. X. Xu, X. X. Xu, J. X. Su, Y. Ding, Research on unsupported nanoporous gold catalyst for CO oxidation. J. Catal.2007,252,243-248.
    [6]K. M. Kosuda, A. Wittstock, C. M. Friend, M. Baumer, Oxygen-mediated coupling of alcohols over nanoporous gold catalysts at ambient pressures. Angew. Chem. Int. Ed.2012,51,1698-1701.
    [7]M. Yan, T. N. Jin, Q. Chen, H. E. Ho, T. Fujita, L. Y. Chen, M. Bao, M. W. Chen, N. Asao, Y. Yamamoto, Unsupported nanoporous gold catalyst for highly selective hydrogenation of quinolines. Org. Lett.2013,15,1484-1487.
    [8]H. M. Yin, C. Q. Zhou, C. X. Xu, P. P. Liu, X. H. Xu, Y. Ding, Aerobic oxidation of D-glucose on support-free nanoporous gold. J. Phys. Chem. C 2008,112, 9673-9678.
    [9]J. Erlebacher, M. J. Aziz, A. Karma, N. Dimitrov, K. Sieradzki, Evolution of nanoporosity in dealloying. Nature 2001,410,450-453.
    [10]Y. Ding, Y. J. Kim, J. Erlebacher, Nanoporous gold leaf:"Ancient technology" Adv. Mater.2004,16,1897-1900.
    [11]S. Parida, D. Kramer, C. A. Volkert, H. Rosner, J. Erlebacher, J. Weissmuller, Volume change during the formation of nanoporous gold by dealloying. Phys. Rev. Lett.2006,97,035504.
    [12]T. Fujita, P.F. Guan, K. McKenna, X.Y. Lang, A. Hirata, L. Zhang, T. Tokunaga, S. Arai, Y. Yamamoto, N. Tanaka, Y. Shikawa, N. Asao, Y. Yamamoto, J. Erlebacher, M.W. Chen, Atomic origins of the high catalytic activity of nanoporous gold. Nat. Mater.2012,11,775-780.
    [13]A. Wittstock, V. Zielasek, J. Biener, C. M. Friend, M. Baumer, Nanoporous gold catalysts for selective gas-phase oxidative coupling of methanol at low temperature. Science 2010,327,319-322.
    [14]A. Wittstock, B. Neumann, A. Schaefer, K. Dumbuya, C. Kubel, M. M. Biener, V. Zielasek, H.-P. Steinruck, J. M. Gottfried, J. Biener, A. Hamza, M. Baumer, Nanoporous Au:An unsupported pure gold catalyst? J. Phys. Chem. C 2009,113, 5593-5600.
    [15]C. Y. Tai, J. L. Chang, J. F. Lee, T. S. Chan, J. M. Zen, Preparation and characterization of an AuCu3 alloy electrode for electrocatalytic applications. Electrochim. Acta.2011,56,3115-3121.
    [16]S. Kameoka, A. P. Tsai, Oxidation behavior and catalytic property of intermetallic compound AuCu. Catal. Today 2008,132,88-92.
    [17]Z. H. Zhang, Y. Wang, Z. Qi, W. H. Zhang, J. Y. Qin, J. Frenzel, Generalized fabrication of nanoporous metals (Au, Pd, Pt, Ag, and Cu) through chemical dealloying. J. Phys. Chem. C2009,113,12629-12636.
    [18]Q. Zhang, X. G. Wang, Z. Qi, Y. Wang, Z. H. Zhanga, A benign route to fabricate nanoporous gold through electrochemical dealloying of Al-Au alloys in a neutral solution. Electrochim. Acta.2009,54,6190-6198.
    [19]M. Haruta, New generation of gold catalysts:Nanoporous foams and tubes-Is unsupported gold catalytically active? Chem. Phys. Chem.2007,8,1911-1913.
    [20]T. Deronzier, F. Morfin, L. Massin, M. Lomello, J.-L. Rousset, Pure nanoporous gold powder:synthesis and catalytic properties. Chem. Mater.2011,23, 5287-5289.
    [21]C. X. Xu, J. X. Su, X. X. Xu, P. P. Liu, H. J. Zhao, F. Tian, Y. Ding, Low temperature CO oxidation over unsupported nanoporous gold. J. Am. Chem. Soc. 2007,129,42-43.
    [22]M. M. Schubert, S. Hackenberg, A. C. van Veen, M. Muhler, V. Plzak, R. J. Behm, CO oxidation over supported gold catalysts-"inert" and "active" support materials and their role for the oxygen supply during reaction. J. Catal.2001,97, 113-122.
    [23]S. Arrii, F. Morfin, A. J. Renouprez, J. L. Rousset, Oxidation of CO on gold supported catalysts prepared by laser vaporization:direct evidence of support contribution. J. Am. Chem. Soc.2004,126,1199-1205.
    [24]D. Widmann, Y. Liu, F. Schuth, R. J. Behm, Support effects in the Au-catalyzed CO oxidation-Correlation between activity, oxygen storage capacity, and support reducibility. J. Catal.2010,276,292-305.
    [25]D. Q. Han, C. Q. Zhou, H. M. Yin, D. J. Zhang, X. H. Xu, Reactivity of the alkaline pretreated nanoporous gold for the CO oxidation. Catal. Lett.2011,141, 1026-1031.
    [26]D. Q. Han, T. T. Xu, J. X. Su, X. X. Xu. Y. Ding, Gas-phase selective oxidation of benzyl alcohol to benzaldehyde with molecular oxygen over unsupported nanoporous gold. ChemCatChem.2010,2,383-386.
    [27]B. Hvolb(?)k, T. V. W. Janssens, B. S. Clausen, H. Falsig, C. H. Christensen, J. K. Nerskov, Catalytic activity of Au nanoparticles. Nano Today 2007,2,14-18.
    [28]T. Fujita, L. H. Qian, K. Inoke, J. Erlebacher, M. W. Chen, Three-dimensional morphology of nanoporous gold. Appl. Phys. Lett.2008,92,251902.
    [29]T. Hashimoto, H. Jinnai, Y. Nishikawa, T. Koga,'Sponge-like' structures in polymer blends:visualization, physic-mathematical analysis, and universality. Macromol. Symp.2002,190,9-22.
    [30]C. T. Campbell, S. C. Parker, D. E. Starr, The effect of size-dependent nanoparticle energetics on catalyst sintering. Science 2002,298,811-814.
    [31]N. Lopez, T. V. W. Janssens, B. S. Clausen, Y. Xu, M. Mavrikakis, T. Bligaard, J. K. Norskov, On the origin of the catalytic activity of gold nanoparticles for low-temperature CO oxidation. J. Catal 2004,223,232-235.
    [32]T. V. W. Janssens, A. Carlsson, A. Puig-Molina, B. S. Clausen, Relation between nanoscale Au particle structure and activity for CO oxidation on supported gold catalysts. J. Catal.2006,240,108-113.
    [33]D. Widmann, R. J. Behm, Active oxygen on a Au/TiO2 catalyst:Formation, stability, and CO oxidation activity. Angew. Chem. Int. Ed.2011,50, 10241-10245.
    [34]Z. Zhong, J. Ho, J. Teo, S. Shen, A. Gedanken, Synthesis of porous α-Fe2O3 nanorods and deposition of very small gold particles in the pores for catalytic oxidation of CO. Chem. Mater.2007,19,4776-4782.
    [35]Q. Li, Y. Zhang, G Chen, J. Fan, H. Lan, Y. Yang, Ultra-low-gold loading Au/CeO2 catalysts for ambient temperature CO oxidation:Effect of preparation conditions on surface composition and activity. J. Catal.2010,273,167-176.
    [36]X. W. Xie, Y. Li, Z. Q. Liu, M. Haruta, W. J. Shen, Low-temperature oxidation of CO catalysed by Co3O4 nanorods. Nature 2009,458,746-749.
    [37]L. V. Moskaleva, S. Rohe, A. Wittstock, V. Zielasek, T. Kliiner, K. M. Neyman, M. Baumer, Silver residues as a possible key to a remarkable oxidative catalytic activity of nanoporous gold. Phys. Chem. Chem. Phys.2011,13,4529-4539.
    [38]S. Rohe, K. Frank, A. Schaefer, A. Wittstock, V. Zielasek, A. Rosenauer, M. Baumer, CO oxidation on nanoporous gold:a combined TPD and XPS study of active catalysts. Surf. Sci.2013,609,109-112.
    [1]D. I. Potemkin, E.Yu. Filatov, A. V. Zadesenets, P. V. Snytnikov, Yu. V. Shubin, V. A. Sobyanin, Preferential CO oxidation over bimetallic Pt-Co catalysts prepared via double complex salt decomposition. Chem. Eng. J.2012, 207-208,683-689.
    [2]S. Alayoglu, A. U. Nilekar, M. Mavrikakis, B. Eichhorn, Ru-Pt core-shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen. Nat. Mater.2008,7,333-338.
    [3]E. D. Park, D. Lee, H. C. Lee, Recent progress in selective CO removal in a H2-rich stream. Catal. Today 2009,139,280-290.
    [4]A.U. Nilekar, S. Alayoglu, B. Eichhorn, M. Mavrikakis, Preferential CO oxidation in hydrogen:Reactivity of core-shell nanoparticles. J. Am. Chem. Soc.2010,132,7418-7428.
    [5]P. Naknam, A. Luengnaruemitchai, S. Wongkasemjit, Au/ZnO and Au/ZnO-Fe2O3 prepared by deposition-precipitation and their activity in the preferential oxidation of CO. Energy Fuels 2009,23,5084-5091.
    [6]Y.-B. Tu, J.-Y. Luo, M. Meng, G. Wang, J.-J. He, Ultrasonic-assisted synthesis of highly active catalyst Au/MnOx-CeO2 used for the preferential oxidation of CO in H2-rich stream. Int. J. Hydrogen Energy 2009,34, 3743-3754.
    [7]T. Shodiya, O. Schmidt, W. Peng, N. Hotz, Novel nano-scale Au/α-Fe2O3 catalyst for the preferential oxidation of CO in biofuel reformate gas. J. Catal. 2013,300,63-69.
    [8]K. Liu, A.Q. Wang, T. Zhang, Recent advances in preferential oxidation of CO reaction over platinum group metal catalysts. ACS Catal.2012,2, 1165-1178.
    [9]J. Xu, X.-C. Xu, L. Ouyang, X.-J. Yang, W. Mao, J.j. Su, Y.-F. Han, Mechanistic study of preferential CO oxidation on a Pt/NaY zeolite catalyst. J. Catal.2012,287,114-123.
    [10]S. Varghese, M.G. Cutrufello, E. Rombi, C. Cannas, R. Monaci, I. Ferino, CO oxidation and preferential oxidation of CO in the presence of hydrogen over SBA-15-templated CuO-Co3O4 catalysts. Appl. Catal. A:Gen.2012,443-444, 161-170.
    [11]D. Gamarra, A. Lopez Camara, M. Monte, S.B. Rasmussen, L.E. Chinchilla, A.B. Hungria, G. Munuera, N. Gyorffy, Z. Schay, V.C. Corberan, J.C. Conesa, A. Martinez-Arias, Preferential oxidation of CO in excess H2 over Cu0/CeO2 catalysts:Characterization and performance as a function of the exposed face present in the CeO2 support. Appl. Catal. B:Environ.2013,130-131,224-238.
    [12]Z H. Wang, H.Q. Zhu, Z.F. Qin, F.X. Liang, G.F. Wang, J.G. Wang, Deactivation of a Au/CeO2-Co3O4 catalyst during CO preferential oxidation in H2-rich stream.J. Catal.2009,264,154-162.
    [13]C.H. Kim, L.T. Thompson, Deactivation of Au/CeOx water gas shift catalysts. J. Catal.2005,230,66-74.
    [14]E. Quinet, L. Piccolo, H. Daly, F.C. Meunier, F. Morfin, A. Valcarcel, F. Diehl, P. Avenier, V. Caps, J.-L. Rousset, H2-induced promotion of CO oxidation over unsupported gold. Catal. Today 2008,138,43-49.
    [15]Y. Ding, M.W. Chen, Nanoporous metalsfor catalytic and optical applications. MRS Bull.2009,34,569-576.
    [16]X.M. Zhang, Y. Ding, Unsupported nanoporous gold for heterogeneous catalysis. Catal. Sci. Technol.2013,3,2862-2868
    [17]N. Asao, Y. Ishikawa, N. Hatakeyama, Menggenbateer, Y. Yamamoto, M.W. Chen, W. Zhang, A. Inoue, Nanostructured materials as catalysts: Nanoporous-gold-catalyzed oxidation of organosilanes with water. Angew. Chem. Int. Ed.2010,49,10093-10095.
    [18]F. Yu, S. Ahl, A. M. Caminade, J. P. Majoral, W. Knoll, J. Erlebacher, Simultaneous excitation of propagating and localized surface plasmon resonance in nanoporous gold membranes. Anal. Chem.2006,78,7346-7350.
    [19]K. C. Hu, D. X. Lan, X. M. Li, S. S. Zhang, Electrochemical DNA biosensor based on nanoporous gold electrode and multifunctional encoded DNA-Au bio bar codes. Anal. Chem.2008,80,9124-9130.
    [20]Q. Wei, Y. F. Zhao, C. X. Xu, D. Wu, Y. Y. Cai, J. He, H. Li, B. Du, M.H. Yang, Nanoporous gold film based immunosensor for label-free detection of cancer biomarker. Biosens. Bioelectron.2011,26,3714-3718.
    [21]X. B. Ge, R. Y. Wang, P. P. Liu, Y. Ding, Platinum-decorated nanoporous gold leaf for methanol electrooxidation. Chem. Mater.2007,19,5827-5829.
    [22]J.T. Zhang, P.P. Liu, H.Y. Ma, Y. Ding, Nanostructured porous gold for methanol electro-oxidation. J. Phys. Chem. C2007,111,10382-10388.
    [23]Z. N. Liu, J. G. Du, C. C. Qiu, L. H. Huang, H. Y. Ma, D. Z. Shen, Y. Ding, Electrochemical sensor for detection of p-nitrophenol based on nanoporous gold. Electrochem. Commun.2009,11,1365-1368.
    [24]V. Zielasek, B. Jurgens, C. Schulz, J. Biener, M. M. Biener, A. V. Hamza, M. Baumer, Gold catalysts:Nanoporous gold foams. Angew. Chem. Int. Ed.2006, j 45,8241-8244.
    [25]C.X. Xu, J.X. Su, X.X. Xu, P.P. Liu, H.J. Zhao, F. Tian, Y. Ding, Low temperature CO oxidation over unsupported nanoporous gold. J. Am. Chem. Soc.2007,129,42-43.
    [26]A. Wittstock, V. Zielasek, J. Biener, C. M. Friend, M. Baumer, Nanoporous gold catalysts for selective gas-phase oxidative coupling of methanol at low temperature. Science 2010,327,319-322.
    [27]K. M. Kosuda, A. Wittstock, C. M. Friend, M. Baumer, Oxygen-mediated coupling of alcohols over nanoporous gold catalysts at ambient pressures. Angew. Chem. Int. Ed.2012,51,1698-1701.
    [28]D. Q. Han, T. T. Xu, J. X. Su, X. H. Xu. Y. Ding, Gas-phase selective oxidation of benzyl alcohol to benzaldehyde with molecular oxygen over unsupported nanoporous gold. ChemCatChem.2010,2,383-386.
    [29]P. Landon, J. Ferguson, B. E. Solsona, T. Garcia, A. F. Carley, A. A. Herzing, C. J. Kiely, S. E. Golunskic, G. J. Hutchings, Selective oxidation of CO in the presence of H2, H2O and CO2 via gold for use in fuel cells. Chem. Comm. 2005,3385-3387.
    [30]G. R. Bamwenda, S. Tsubota, T. Nakamura, M. Haruta, The influence of the preparation methods on the catalytic activity of platinum and gold supported on TiO2 for CO oxidation. Catal. Lett.1997,44,83-87.
    [31]S. Kandoi, A.A. Gokhale, L.C. Grabow, J.A. Dumesic, M. Mavrikakis, Why Au and Cu are more selective than Pt for preferential oxidation of CO at low temperature. Catal. Lett.2004,93,93-100.
    [32]J. Fonseca, S. Royer, N. Bion, L. Pirault-Roy, M. C. Rangel, D. Duprez, F. Epron, Preferential CO oxidation over nanosized gold catalysts supported on ceria and amorphous ceria-alumina. Appl. Catal. B:Environ.2012,128, 10-20.
    [33]T. Sakwarathorn, A. Luengnaruemitchai, S. Pongstabodee, Preferential CO oxidation in H2-rich stream over Au/CeO2 catalysts prepared via modified deposition-precipitation.J. Ind. Eng. Chem.2011,17,747-754.
    [34]P. Landon, J. Ferguson, B. E. Solsona, T. Garcia, S. Al-Sayari, A.F. Carley, A.A. Herzing, C. J. Kiely, M. Makkee, J.A. Moulijn, A. Overweg, S.E. Golunski, G.J. Hutchings, Selective oxidation of CO in the presence of H2, H2O and CO2 utilising Au/a-Fe2O3 catalysts for use in fuel cells. J. Mater. Chem.2006,16,199-208.
    [35]Y.-W. Yu, W.-S. Lee, C.-P. Yang, B.-Z. Wan, Low-temperature preferential oxidation of CO in a hydrogen rich stream (PROX) over Au/TiO2: Thermodynamic study and effect of gold-colloid pH adjustment time on catalytic activity. J. Chin. Inst. Chem. Eng.2007,38,151-160.
    [36]Y. B. Tu, M. Meng, Z. S. Sun, L. J. Zhang, T. Ding, T. Y. Zhang, CO preferential oxidation over Au/MnOx-CeO2 catalysts prepared with ultrasonic assistance:Effect of calcination temperature. Fuel Process. Technol.2012,93, 78-84.
    [37]Y.-W. Chen, D.-S. Lee, H.-J. Chen, Preferential oxidation of CO in H2 stream on Au/ZnO-TiO2 catalysts. Int. J. Hydrogen Energy 2012,37,15140-15155.
    [38]Y.-W. Chen, H.-J. Chen, D.-S. Lee, Au/Co3O4-TiO2 catalysts for preferential oxidation of CO in H2 stream. J. Mol. Catal. A:Chem.2012,363-364, 470-480.
    [39]C. Rossignol, S. Arrii, F. Morfin, L. Piccolo, V. Caps, J.-L. Rousset, Selective oxidation of CO over model gold-based catalysts in the presence of H2. J. Catal.2005,230,476-483.
    [40]E. Quinet, L. Piccolo, F. Morfin, P. Avenier, F. Diehl, V. Caps, J.-L. Rousset, On the mechanism of hydrogen-promoted gold-catalyzed CO oxidation. J. Catal.2009,268,384-389.
    [41]T. Deronzier, F. Morfin, L. Massin, M. Lomello, J.-L. Rousset, Pure nanoporous gold powder:synthesis and catalytic properties. Chem. Mater. 2011,23,5287-5289.
    [42]G. B. Hoflund, S. D. Gardner, D. R. Schryer, B. T. Upchurch, E. J. Kielin, Effect of COz on the performance of Au/MnOx, and Pt/SnOx, low-temperature CO oxidation catalysts. Langmuir 1995,11,3431-3434.
    [43]G. Avgouropoulos, T. Ioannides, C. Papadopoulou, J. Batista, S. Hocevar, H.K. Matralis, A comparative study of Pt/γ-Al2O3, Au/α-Fe2O3 and CuO-CeO2 catalysts for the selective oxidation of carbon monoxide in excess hydrogen. Catal. Today 2002,75,157-167.
    [44]M.M. Schubert, A. Venugopal, M.J. Kahlich, V. Plzak, R.J. Behm, Influence of H2O and CO2 on the selective CO oxidation in H2-rich gases over Au/α-Fe2O3. J. Catal.2004,222,32-40.
    [45]M. Date, M. Okumura, S. Tsubota, M. Haruta, Vital role of moisture in the catalytic activity of supported gold nanoparticles. Angew. Chem. Int. Ed.2004, 43,2129-2132.
    [46]A. Bongiorno, U. Landman, Water-enhanced catalysis of CO oxidation on free and supported gold nanoclusters. Phys. Rev. Lett.2005,95,106102.
    [47]A.-Q. Wang, J.-H. Liu, S. D. Lin, T.-S. Lin, C.-Y. Mou, A novel efficient Au-Ag alloy catalyst system:preparation, activity, and characterization. J. Catal.2005,233,186-197.
    [48]L.-C. Wang, Y. Zhong, D. Widmann, J. Weissmuller, R. J. Behm, On the nature of active sites on nanoporous Au catalysts for CO oxidation:a combined micro-reactor and TAP reactor study. ChemCatChem.2012,4, 251-259.
    [49]L. V. Moskaleva, S. Rohe, A. Wittstock, V. Zielasek, T. Kluner, K. M. Neyman, M. Baumer, Silver residues as a possible key to a remarkable oxidative catalytic activity of nanoporous gold. Phys. Chem. Chem. Phys. 2011,13,4529-4539.
    [50]A. Wittstock, B. Neumann, A. Schaefer, K. Dumbuya, C. Kiibel, M. M. Biener, V. Zielasek, H.-P. Steinruck, J. M. Gottfried, J. Biener, A. Hamza, M. Baumer, Nanoporous Au:An unsupported pure gold catalyst? J. Phys. Chem. C 2009, 113,5593-5600.
    [51]S. Rohe, K. Frank, A. Schaefer, A. Wittstock, V. Zielasek, A. Rosenauer, M. Baumer, CO oxidation on nanoporous gold:a combined TPD and XPS study of active catalysts. Surf. Sci.2013,609,109-112.
    [52]T. Fujita, P. F. Guan, K. McKenna, X. Y. Lang, A. Hirata, L. Zhang, T. Tokunaga, S. Arai, Y. Yamamoto, N. Tanaka, Y. Shikawa, N. Asao, Y. Yamamoto, J. Erlebacher, M. W. Chen, Atomic origins of the high catalytic activity of nanoporous gold. Nat. Mater.2012,11,775-780.
    [1]O. Pozdnyakova, D. Teschner, A. Wootsch, J. Krohnert, B. Steinhauer, H. Sauer, L. Toth, F.C. Jentoft, A. Knop-Gericke, Z. Paal, R. Schlogl, Preferential CO oxidation in hydrogen (PROX) on ceria-supported catalysts, part I:Oxidation state and surface species on Pt/CeO2 under reaction conditions. J. Catal.2006, 237,1-16.
    [2]R. Kou, Y. Shao, D. H. Wang, M. H. Engelhard, J. H. Kwak, J. Wang, V. V. Viswanathan, C. M. Wang, Y. H. Lin, Y. Wang, I. A. Aksay, J. Liu, Enhanced activity and stability of Pt catalysts on functionalized graphene sheets for electrocatalytic oxygen reduction. Electrochem. Commun.2009,11,954-957.
    [3]H. Ren, M. P. Humbert, C. A. Menning, J. G. Chen, Y. Shu, U. G Singh, W.-C. Cheng, Inhibition of coking and CO poisoning of Pt catalysts by the formation of Au/Pt bimetallic surfaces. Appl. Catal. A:Gen.2010,375,303-309.
    [4]T. Kadyk, S. Kirsch, R. Hanke-Rauschenbach, K. Sundmacher, Autonomous potential oscillations at the Pt anode of a polymer electrolyte membrane fuel cell under CO poisoning. Electrochim. Acta 2011,56,10593-10602.
    [5]M. S. Chen, D. Kumar, C. W. Yi, D. W. Goodman, The promotional effect of gold in catalysis by palladium-gold. Science 2005,310,291-293.
    [6]S. H. Zhou, K. Mcllwrath, G. Jackson, B. Eichhorn, Enhanced CO tolerance for hydrogen activation in Au-Pt dendritic heteroaggregate nanostructures. J. Am. Chem. Soc.2006,128,1780-1781.
    [7]J. A. Anderson, M. Fernandex-Garvia, G. L. Haller, Surface and bulk characterisation of metallic phases present during CO hydrogenation over Pd-Cu/KL zeolite catalysts. J. Catal.1996,164,477-483
    [8]F. Epron, F. Gauthard, C. Pineda, J. Barbier, Catalytic reduction of nitrate and nitrite on Pt-Cu/Al2O3 catalysts in Aqueous Solution:Role of the interaction between copper and platinum in the reaction. J. Catal.2001,198,309-318.
    [9]H. Xie, J. Y. Howe, V. Schwartz, J. R. Monnier, C. T. Williams, H. J. Ploehn, Hydrodechlorination of 1,2-dichloroethane catalyzed by dendrimer-derived Pt-Cu/SiO2 catalysts. J. Catal.2008,259,111-122.
    [10]Y. Sakamoto, Y. Kamiya, T. Okuhara, Selective hydrogenation of nitrate to nitrite in water over Cu-Pd bimetallic clusters supported on active carbon. J. Mol. Catal. A:Chem.2006,250,80-86.
    [11]H. F. Lang, S. Maldonado, K. J. Stevenson, B. D. Chandler, Synthesis and characterization of dendrimer templated supported bimetallic Pt-Au nanoparticles. J. Am. Chem. Soc.2004,126,12949-12956.
    [12]Y. Jin, Y. Shen, S. J. Dong, Electrochemical design of ultrathin platinum-coated gold nanoparticle monolayer films as a novel nanostructured electrocatalyst for oxygen reduction. J. Phys. Chem. B 2004,108,8142-8147.
    [13]J. Erlebacher, M. J. Aziz, A. Karma, N. Dimitrov, K. Sieradzki, Evolution of nanoporosity in dealloying. Nature 2001,410,450-453.
    [14]Y. Ding, Y. J. Kim, J. Erlebacher, Nanoporous gold leaf:"Ancient technology" Adv. Mater.2004,16,1897-1900.
    [15]H. M. Yin, C. Q. Zhou, C. X. Xu, P. P. Liu, X. H. Xu, Y Ding, Aerobic oxidation of D-glucose on support-free nanoporous gold. J. Phys. Chem. C 2008,112, 9673-9678.
    [16]J. Snyder, P. Asanithi, A. B. Dalton, J. Erlebacher, Stabilized nanoporous metals by dealloying ternary alloy precursors. Adv. Mater.2008,20,4883-4886.
    [17]C. X. Xu, J. Hou, X. Pang, X. Li, M. Zhu, B. Tang, Nanoporous PtCo and PtNi alloy ribbons for methanol electrooxidation. Int. J. Hydrogen Energy 2012,37, 10489-10498.
    [18]C. X. Xu, F. Sun, H. Gao, J. Wang, Nanoporous platinum-cobalt alloy for electrochemical sensing for ethanol, hydrogen peroxide, and glucose. Anal. Chim. Acta 2013,780,20-27.
    [19]J. L. Xu, C. Zhang, X. G Wang, H. Ji, C. C. Zhao, Y. Wang, Z. H. Zhang, Fabrication of bi-modal nanoporous bimetallic Pt-Au alloy with excellent electrocatalytic performance towards formic acid oxidation. Green Chem.2011, 13,1914-1922.
    [20]Z. H. Zhang, Y. Wang, X. G Wang, Nanoporous bimetallic Pt-Au alloy nanocomposites with superior catalytic activity towards electro-oxidation of methanol and formic acid. Nanoscale 2011,3,1663-1674.
    [21]R. Y. Wang, C. Wang, W. B. Cai, Y. Ding, Ultralow-platinum-loading high performance nanoporous electrocatalysts with nanoengineered surface structures. Adv. Mater.2010,22,1845-1848.
    [22]B. T. Qiao, A. Q. Wang, X. F. Yang, L. F. Allard, Z. Jiang, Y. T. Cui, J. Y. Liu, J. Li, T. Zhang, Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011,3,634-641.
    [23]H. Wang, X. Yuan, D.W. Li, X. H. Gu, Dendritic PtCo alloy nanoparticles as high performance oxygen reduction catalysts. J. Colloid Interface Sci.2012,384, 105-109.
    [24]H. Ji, X. G. Wang, C. Zhao, C. Zhang, J. L. Xu, Z. H. Zhang, Formation, control and functionalization of nanoporous silver through changing dealloying media and elemental doping. CrystEngComm 2011,13,2617-2628.
    [25]C. X. Xu, Q. Li, Y. Q. Liu, J. P. Wang, H. R. Geng, Hierarchical nanoporous PtFe alloy with multimodal size distributions and its catalytic performance toward methanol electrooxidation. Langmuir 2012,28,1886-1892.
    [26]T. A. Yamamoto, T. Nakagawa, S. Seino, H. Nitani, Bimetallic nanoparticles of PtM (M= Au, Cu, Ni) supported on iron oxide:radiolytic synthesis and CO oxidation catalysis. Appl. Catal. A:Gen.2010,387,195-202.
    [27]S. H. Oh, R. M. Sinkevitch, Carbon monoxide removal from hydrogen-rich fuel cell feedstreams by selective catalytic oxidation. J. Catal.1993,142,254-262.
    [28]T. Fujita, L. H. Qian, K. Inoke, J. Erlebacher, M.W. Chen, Three-dimensional morphology of nanoporous gold. Appl. Phys. Lett.,2008,92,251902.
    [29]T. Fujita, P.F. Guan, K. McKenna, X.Y. Lang, A. Hirata, L. Zhang, T. Tokunaga, S. Arai, Y. Yamamoto, N. Tanaka, Y. Shikawa, N. Asao, Y. Yamamoto, J. Erlebacher, M.W. Chen, Atomic origins of the high catalytic activity of nanoporous gold. Nat. Mater.2012,11,775-780.
    [30]J. F. Moulder, W. F. Stickle, P. E.Sobol, K. D.Bomben, Physical Electronics, Inc.: Eden Prairie, MN, Handbook ofX-Ray Photoelectron Spectroscopy 1995,181.
    [31]C. Wang, B. D. Li, H. Q. Lin, Y. Z. Yuan, Carbon nanotube-supported Pt-Co bimetallic catalysts for preferential oxidation of CO in a H2 rich stream with CO2 and H2O vapor. J. Power Sources 2012,202,200-208.
    [32]F. Zheng, S. Alayoglu, V. V. Pushkarev, S. K. Beaumont, C. Specht, F. Aksoy, Z. Liu, J. H.Guo, G. A.Somorjai, In situ study of oxidation states and structure of 4nm CoPt bimetallic nanoparticles during CO oxidation using X-ray spectroscopies in comparison with reaction turnover frequency. Catal. Today 2012,182,54-59.
    [33]T. Komatsu, A. Tamura, Pt3Co and PtCu intermetallic compounds:Promising catalysts for preferential oxidation of CO in excess hydrogen. J. Catal.2008,258, 306-314.
    [34]C. X. Xu, J. X. Su, X. X. Xu, P. P. Liu, H. J. Zhao, F. Tian, Y. Ding, Low temperature CO oxidation over unsupported nanoporous gold. J. Am. Chem. Soc. 2007,129,42-43.
    [35]G. X. Wang, C. Ma, Y. M. Choi, D. Su, Y. M. Zhu, P. Liu, R. Si, M. B. Vukmirovic, Y. Zhang, R. R. Adzic, Kirkendall effect and lattice contraction in nanocatalysts:a new strategy to enhance sustainable activity. J. Am. Chem. Soc. 2011,133,13551-13557.
    [36]A. Cao, R. W. Lu, G. Veser, Stabilizing metal nanoparticles for heterogeneous catalysis. Phys. Chem. Chem. Phys.2010,12,13499-13510.
    [37]H. L. Jiang, Q. Xu, Recent progress in synergistic catalysis over heterometallic nanoparticles. J. Mater. Chem.2011,21,13705-13725.
    [38]M. Comotti, C. D.Pina, R. Matarrese, M. Rossi, The catalytic activity of "naked" gold particles. Angew. Chem. Int. Ed.2004,43,5812-5815.
    [39]C. X. Xu, X. X. Xu, J. X. Su, Y. Ding, Research on unsupported nanoporous gold catalyst for CO oxidation. J. Catal.2007,252,243-248.
    [40]U. Oran, D. Uner, Mechanisms of CO oxidation reaction and effect of chlorine ions on the CO oxidation reaction over Pt/CeO2 and Pt/CeO2/γ-Al2O3 catalysts Appl. Catal. B:Environ.2004,54,183-191.
    [41]E. Quinet, L. Piccolo, F. Morfin, P. Avenier, F. Diehl, V. Caps, J.-L. Rousset, On the mechanism of hydrogen-promoted gold-catalyzed CO oxidation. J. Catal. 2009,268,384-389.
    [42]T. Deronzier, F. Morfin, L. Massin, M. Lomello, J.-L. Rousset, Pure nanoporous gold powder:synthesis and catalytic properties. Chem. Mater.2011,23, 5287-5289.
    [43]G Uysal, A. N. Akin, Z. Onsan, R. Yildinm, Preferential CO oxidation over Pt-SnO2/Al2O3 in hydrogen rich streams containing CO2 and H2O (CO removal from H2 with PROX). Catal. Lett.2006,111,173-176.
    [44]a) M.P. Lobera, C. Tellez, J. Herguido, M. Menendez, Catalytic purification of H2-rich streams by CO-PROX over Pt-Co-Ce/γ-Al2O3 in fluidized bed reactors. Catal. Today 2010,157,404-409. b) X. Yu, H. Li, S. Tu, J. Yan, Z. Wang, Pt-Co catalyst-coated channel plate reactor for preferential CO oxidation. Int. J. Hydrogen Energy 2011,36,3778-3788. c) J. Kugai, T. Moriya, S. Seino, T. Nakagawa, Y. Ohkubo, H. Nitani, T. A. Yamamoto, Comparison of structure and catalytic performance of Pt-Co and Pt-Cu bimetallic catalysts supported on Al2O3 and CeO2 synthesized by electron beam irradiation method for preferential CO oxidation. Int. J. Hydrogen Energy 2013,38,4456-4465.
    [45]P. V. Snytnikov, V. A. Sobyanin, V. D. Belyaev, P. G. Tsyrulnikov, N. B. Shitova, D. A. Shlyapin, Selective oxidation of carbon monoxide in excess hydrogen over Pt-, Ru-and Pd-supported catalysts. Appl Catal A:Gen.2003,239,149-156.
    [46]P. Hernandez-Fernandez, S. Rojas, P. Ocon, J. L. Go mez de la Fuente, M. A. Pena, F. J. Garcia-Garcia, P. Terreros, J. L. G. Fierro, Influence of the preparation route of bimetallic Pt-Au nanoparticle electrocatalysts for the oxygen reduction reaction. J. Phys. Chem. C2007,111,2913-2923.
    [47]L. Deng, W. Y. Hu, H. Q. Deng, S. F. Xiao, Surface segregation and structural features of bimetallic Au-Pt nanoparticles. J. Phys. Chem. C 2010,114, 11026-11032.
    [48]P. S. Bagus, C. J. Nelin, E. S. Ilton, M. Baron, H. Abbott, E. Primorac, H. Kuhlenbeck, S. Shaikhutdinov, H.-J. Freund, The complex core level spectra of CeO2:An analysis in terms of atomic and charge transfer effects. Chem. Phys. Lett.2010,487,237-240.
    [49]Z. Bastl, S. Pick, Angle resolved X-ray photoelectron spectroscopy study of Au deposited on Pt and Re surfaces. Surf. Sci.2004,566,832-836.
    [50]J. Liu, L. Cao, W. Huang, Z. L. Li, Preparation of AuPt alloy foam films and their superior electrocatalytic activity for the oxidation of formic acid. ACS Appl. Mater. Interfaces 2011,3,3552-3558.
    [51]F. Xiao, Z. R. Mo, F. Q. Zhao, B. Z. Zeng, Ultrasonic-electrodeposition of gold-platinum alloy nanoparticles on multi-walled carbon nanotubes-ionic liquid composite film and their electrocatalysis towards the oxidation of nitrite. Electrochem. Commun.2008,10,1740-1743.
    [52]H.-G. Boyen, A. Ethirajan, G. Kastle, F. Weigl, P. Ziemann, Alloy formation of supported gold nanoparticles at their transition from clusters to solids:Does size matter? Phys. Rev. Lett.2005,94,016804.
    [53]B. Richter, H. Kuhlenbeck, H.-J. Freund, P. S. Bagus, Cluster core-level binding-energy shifts:the role of lattice strain. Phys. Rev. Lett.2004,93,026805.
    [54]A. Capon, R. Parson, The oxidation of formic acid at noble metal electrodes:I. Review of previous work. J. Electroanal. Chem.1973,44,1-7.
    [55]A. Capon, R. Parson, The oxidation of formic acid at noble metal electrodes Part Ⅲ. Intermediates and mechanism on platinum electrodes. J. Electroanal. Chem. 1973,45,205-231.
    [56]M. Neurock, M. Janik, A. Wieckowski, A first principles comparison of the mechanism and site requirements for the electrocatalytic oxidation of methanol and formic acid over Pt. Faraday Discuss.2009,140,363-378.
    [57]X. B. Ge, X. L. Yan, R. Y. Wang, F. Tian, Y. Ding, Tailoring the structure and property of Pt-decorated nanoporous gold by thermal annealing. J. Phys. Chem. C 2009,113,7379-7384.
    [58]J. Kim, C. Jung, C. K. Rhee, T. H. Lim, Electrocatalytic oxidation of formic acid and methanol on Pt deposits on Au (111). Langmuir 2007,23,10831-10836.
    [59]X. F. Yang, A. Q. Wang, B. T. QIAO, J. Li, J. Y. Liu, T. Zhang, Single-atom catalysts:A new frontier in heterogeneous catalysis. Accounts Chem. Res.2013, 46,1740-1748.
    [60]C. X. Xu, R. Y. Wang, M. W. Chen, Y. Zhang, Y. Ding, Dealloying to nanoporous Au/Pt alloys and their structure sensitive electrocatalytic properties. Phys. Chem. Chem. Phys.2010,12,239-246.
    [61]S. Kim, C. H. Jung, J. Kim, C. K. Rhee, S. M. Choi, T. H. Lim, Modification of Au nanoparticles dispersed on carbon support using spontaneous deposition of Pt toward formic acid oxidation. Langmuir 2010,26,4497-4505.
    [1]A. Corma, S. Iborra, A. Velty, Chemical routes for the transformation of biomass into chemicals. Chem. Rev.2007,107,2411-2502.
    [2]T. Mitsudome, A. Noujima, T. Mizugaki, K. Jitsukawa, K. Kaneda, Supported gold nanoparticles as a reusable catalyst for synthesis of lactones from diols using molecular oxygen as an oxidant under mild conditions. Green Chem.2009,11, 793-797.
    [3]M. Eckert, G. Fleischmann, R. Jira, H. M. Bolt, K. Golka, Acetaldehyde, Ullmann's encyclopedia of industrial chemistry.2009.
    [4]J. Gong, C. B. Mullins, Selective oxidation of ethanol to acetaldehyde on gold. J. Am. Chem. Soc.2008,130,16458-16459.
    [5]B. Jorgensen, S. E. Christiansen, M. L. D. Thomsen, C. H. Christensen, Aerobic oxidation of aqueous ethanol using heterogeneous gold catalysts:Efficient routes to acetic acid and ethyl acetate. J. Catal.2007,251,332-337.
    [6]N. Yoneda, S. Kusano, M. Yasui, P. Pujado, S. Wilcher, Recent advances in processes and catalysts for the production of acetic acid. Appl Catal A:Gen.2001, 221,253-265.
    [7]T. Mitsudome, A. Noujima, T. Mizugaki, K. Jitsukawa, K. Kaneda, Efficient aerobic oxidation of alcohols using a hydrotalcite-supported gold nanoparticle catalyst. Adv. Synth. Catal.2009,351,1890-1896.
    [8]S. M. Tembe, G Patrick, M. S. Scurrell, Acetic acid production by selective oxidation of ethanol using Au catalysts supported on various metal oxide. Gold Bull.2009,42,321-327.
    [9]M. J. Beier, T. W. Hansen, J.-D. Grunwaldt, Selective liquid-phase oxidation of alcohols catalyzed by a silver-based catalyst promoted by the presence of ceria. J. Catal.2009,266,320-330.
    [10]P. Maity, C. S. Gopinath, S. Bhaduri, G. K. Lahiri, Applications of a high performance platinum nanocatalyst for the oxidation of alcohols in water. Green Chem.2009,11,554-561.
    [11]K. Mori, T. Hara, T. Mizugaki, K. Ebitani, K. Kaneda, Hydroxyapatite-supported palladium nanoclusters:a highly active heterogeneous catalyst for selective oxidation of alcohols by use of molecular oxygen. J. Am. Chem. Soc.2004,126, 10657-10666.
    [12]A. Villa, D. Wang, N. Dimitratos, D. S. Su, V. Trevisan, L. Prati, A. Villa, D. Wang, N. Dimitratos, D. S. Su, V. Trevisan, L. Prati, Pd on carbon nanotubes for liquid phase alcohol oxidation. Catal. Today 2004,126,10657-10666.
    [13]A. B. Laursen, Y. Y. Gorbanev, F. Cavalca, P. Malacrida, A. Kleiman-Schwarsctein, S. Kegnaes, A. Riisager, I. Chorkendorff, S. Dahl, Highly dispersed supported ruthenium oxide as an aerobic catalyst for acetic acid synthesis. Appl Catal A:Gen.2012,434,243-250.
    [14]Z. Yang, J. Li, X. G. Yang, X. F. Xie, Y. Wu, Gas-phase oxidation of alcohols over silver:The extension of catalytic cycles of oxidation of alcohols in liquid-phase. J. Mol. Catal. A:Chem.2005,241,15-22.
    [15]M. Toupin, T. Brousse, D. Belanger, Selective oxidation of methanol and ethanol on supported ruthenium oxide clusters at low temperatures. J. Phys. Chem. B 2005,109,2155-2163.
    [16]J. Lichtenberger, D. Lee, Enrique Iglesia, Catalytic oxidation of methanol on Pd metal and oxide clusters at near-ambient temperatures. Phys. Chem. Chem. Phys. 2007,9,4902-4906.
    [17]V. I. Sobolev, K. Yu. Koltunov, O. A. Simakova, A.-R. Leino, D. Yu. Murzin, Low temperature gas-phase oxidation of ethanol over Au/TiO2. Appl Catal A: Gen.2012,433,88-95.
    [18]D. P. Dubal, D. S. Dhawale, R. R. Salunkhe, V. J. Fulari, C. D. Lokhande, Achieving optimum selectivity in oxygen assisted alcohol cross-coupling on gold. J. Am. Chem. Soc.2010,132,16571-16580.
    [19]C. G. Freyschlag, R. J. Precious metal magic:catalytic wizardry. Mater. Today 2011,14,134-142.
    [20]A. Wittstock, V. Zielasek, J. Biener, C. M. Friend, M. Baumer, Nanoporous gold catalysts for selective gas-phase oxidative coupling of methanol at low temperature. Science 2010,327,319-322.
    [21]Z. W. Li, J. L. Xu, X. H. Gu, K. Wang, W. H. Wang, X. M. Zhang, Z. H. Zhang, Y. Ding, Selective gas-phase oxidation of alcohols over nanoporous silver. ChemCatChem 2013,5,1705-1708.
    [22]T. Fujita, P.F. Guan, K. McKenna, X.Y. Lang, A. Hirata, L. Zhang, T. Tokunaga, S. Arai, Y. Yamamoto, N. Tanaka, Y. Shikawa, N. Asao, Y. Yamamoto, J. Erlebacher, M.W. Nat. Mater.2012,11,775-780.
    [23]D. W. Li, Y. Zhu, H. Wang, Yi Ding, Nanoporous gold as an active low temperature catalyst toward CO oxidation in hydrogen-rich stream. Sci. Rep. 2013 DOI:10.1038/srep03015.
    [24]A.-Q. Wang, J.-H. Liu, S.D. Lin, T.-S. Lin, C.-Y. Mou, J. Catal.2005,233, 186-197.
    [25]K. M. Kosuda, A. Wittstock, C. M. Friend, M. Baumer, Oxygen-mediated coupling of alcohols over nanoporous gold catalysts at ambient pressures. Angew. Chem. Int. Ed.2012,51,1698-1701.
    [26]X. M. Kong, L. L. Shen, Selectivity control of ethanol gas-phase oxidation over nanoporous gold. Catal. Commun.2012,24,34-37.
    [27]P. Ferrin, D. Simonetti, S. Kandoi, E. Kunkes, J. A. Dumesic, J. K. Norskov, M. Mavrikakis, Modeling ethanol decomposition on transition metals:A combined application of scaling and bransted-evans-polanyi relations. J. Am. Chem. Soc. 2009,131,5809-5815.
    [28]J. Liu, J. Jiang, C. Cheng, H. Li, J. Zhang, H. Gong, H. J. Fan, Influence of alloy composition and dealloying solution on formation and microstructure of monolithic nanoporous silver through chemical dealloying of Al-Ag alloys. J. Phys. Chem. C2009,113,13139-13150.
    [29]I. Yamauchi, T. J. Mase, T. Kajiwara, M. Saraoka. Synthesis of skeletal silver from rapidly solidified Al-Ag precursor. J. Alloys Compd.2003,348,270-277.
    [30]X. Y. Liu, B. J. Xu, J. Haubrich, R. J. Madix, C. M. Friend, Surface-mediated self-coupling of ethanol on gold. J. Am. Chem. Soc.2009,131,5757-5759.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700