苯直接胺化合成苯胺按新催化体系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
把苯的C-H键活化,将氨基直接引人苯环合成苯胺的研究,近年来引起广泛关注,苯的直接胺化合成苯胺,将多步反应变为一步,可明显提高苯胺化反应的原子利用率。但如何实现温和条件下C-H键的选择性活化,并引入氨基官能团仍然是合成化学和绿色化学所面临的重大挑战之一,因此寻找苯直接胺化绿色合成方法仍旧是研究者的考察焦点。
     本文共设计制备了三种类型的非均相催化剂,并应用于苯的直接胺化反应,系统考察了他们对苯直接胺化反应过程的影响,具体内容如下:
     1.设计制备MCM-41和负载矾的V-MCM-41催化剂,通过XRD、FT-IR和低温N2吸附测试手段对以上介孔材料的组成和结构、表面物理化学性质进行了表征,结果表明:当矾添加量适当的时候,V-MCM-41的基本结构未发生改变;产品是具有高度有序的介孔材料;与母体材料相比,负载矾的V-MCM-41,随着矾含量的增加,样品的孔道结构发生了变化,这可能是由于样品中的部分V没有进入到分子筛的骨架中去,而是负载在分子筛的内表面上,占据了更多的孔道空间,从而引起孔道变窄,孔径分布的不均匀程度增加,导致孔比表面积、孔径和孔容的减小。
     把所制得的催化剂应用于以盐酸羟铵为胺化剂的苯直接胺化反应,系统探究了V-MCM-41介孔催化剂的催化性能,考察了V-MCM-41的矾负载量、溶剂种类、介质酸性、反应温度、原料配比、反应时间和催化剂用量对苯胺收率的影响,结果表明,当矾含量为V-MCM-41(40)时,苯胺的收率最大,为67.7%。以V-MCM-41(40)为催化剂,考察了溶剂种类、介质酸性、反应温度、原料配比、反应时间和催化剂用量对苯胺收率的影响,结果表明,以70v01.%的乙酸介质,70℃,催化剂量为0.05g,反应2小时,羟胺与苯摩尔比为1:1,苯胺的收率最高为67.7%。
     在参考文献的基础上,分析了苯直接胺化的反应历程,提出了质子化的氨自由基·NU3+是苯胺化的活性物种。
     2.采用燃烧法设计制备了多种SO42-/MxOy型固体强酸,通过酸强度、XRD、FT-IR、 NH3-TPD分析可知,所合成的SO42-/Fe2O3-TiO2(SFT)和SO42-/Fe2O3-TiO2-Nd2O3(SFTN)样品的表面硫与金属氧化物是以螯合双配位的方式结合的,具有超强酸性。添加了金属钕的SFTN催化剂样品的酸强度高于SFT样品。TEM分析表明,三元样品SFTN的粒度更小,直径大约是30nm。
     把它们应用于以盐酸羟胺为胺化剂,在温和条件下由苯一步合成苯胺的反应体系中,系统探究了SO42-/MxOy型固体强酸的催化剂性能,考察了催化剂制备条件、反应温度、原料配比、反应时间和催化剂用量对苯胺收率的影响。结果表明,当反应温度70℃,羟胺与苯摩尔比为1:1,催化剂量为0.05g,反应2小时,获得最佳的苯胺收率为62%。
     3.采用改良的胶体沉积法制备了不同三氧化二铝负载量的纳米金粒子,通过对样品SEM和XPS的分析表明,在所研究的载体使用量范围内,金纳米粒子覆盖载体颗粒的程度,随着载体颗粒加入量的减少而增加;传统胶体沉积法制得的纳米金样品,虽然可以观察到金纳米粒子几乎均匀地附着在载体颗粒表面,但是金纳米粒子的覆盖量与改良法所制得的样品相比,明显较少。
     把改良胶体沉积法制得的纳米金催化剂应用于,以氨水为胺化剂、双氧水为氧化剂的苯直接胺化反应中。考察了反应温度、氨水用量、双氧水用量、双氧水加料方式和反应时间对苯胺收率的影响。结果表明,催化剂2.0g,反应温度50℃,反应时间2小时,氨水与苯的摩尔比为3:1,双氧水与苯的摩尔比为1.5:1,25mL苯时,苯胺的产量最多为1.96mg。
Single-step amination of benzene to aniline by the activation of C-H bond of benzene attracts much attention recently. Direct amination of benzene to aniline can make multi-step processes change into single-step process, which can improve atom utilization. However, how to carry out activation of C-H bond, furthermore, the introduction of-NH2into benzene, still is a challenging topic in the field of synthetic chemistry and green chemistry. Therefore looking for direct amination of benzene under mild conditions is still the researchers'study focus.
     In this dissertation, Three different types of non-homogeneous catalysts have been prepared and utilized as catalysts for single-step amination of benzene to aniline. The influences of these catalysts on the activity and selectivity for amination were studied. Specific contents are as follows:
     1. In this paper, MCM-41and a series of ordered mesoporous composite materials V-MCM-41have been prepared for single-step amination of benzene to aniline using NH2OH as aminating agent under mild conditions. The composite materials were well characterized by FT-IR, X-ray diffraction analysis, and nitrogen adsorption analysis. The results confirm that V-MCM-41with the appropriate amount of V still had highly ordered mesoporous structure. Compared with MCM-41prepared, as the amounts of V in the catalytic samples increased, the pore structure of the V-MCM-41samples changed. This may be the result that a part of V species wasn't able to be incorporated into the molecular sieve skeleton, but was introduced onto the inner surface of the molecular sieve, they occupied more pore volume, leading to narrows in pore channel, reductions in pore size,pore volume and specific surface area.
     These materials were subsequently utilized as the catalysts for direct amination of benzene to aniline with NH2OH as an aminating agent under mild conditions. The influences of key reaction parameters, including loadings of V, solvents, media acidity, reaction temperature, the molar ratios of raw materials, reaction time and the catalyst amount on the activity and selectivity for the amination, were also studied. Based on the extensive literatures, the reaction mechanism was studied, thus the free-radical mechanism has been proposed for the amination of benzene, the protonated amino radical NH3+is the active aminating species for the amination of benzene.
     2. Using combustion method, a series of SO42-/MxOy solid super acid have been prepared for single-step amination of benzene to aniline with NH2OH as an aminating agent under mild conditions. The prepared materials doped and undoped by Nd were characterized by means of TG-DTG, XRD, FT-IR, NH3-TPD and TEM techniques. The results showed that the samples kept the typical covalence S=O bond structure of SO42-/MxOy (SM) solid acids, and both Lewis and Br(?)nsted acid sites existed; SFTN exhibited higher activity for the amination of benzene to aniline. TEM and HRTEM observation indicate that the introduction of Nd made the grains size considerably smaller, down to30nm.
     These materials were subsequently utilized as the catalysts for direct amination of benzene to aniline with NH2OH as an aminating agent. The influences of key reaction parameters, including catalytic preparation conditions, reaction temperatures, the molar ratios of raw materials, reaction time and the catalyst amount on the activity and selectivity for the reaction were also studied, the optimum conditions were determinded
     3.Gold nanoparticles (AuNPs) have been prepared by a modified colloidal deposition method, SEM and XPS analysis showed that the coverage of alumina particles by AuNPs increased as the amount of alumina decreased; AuNPs onto alumina particles by the conventional colloidal deposition method were also prepared, whose TEM showed that the coverage of AuNPs was evidently smaller than that in the case of modified colloidal deposition method, although the AuNPs were spread almost uniformly over the surface of alumina particles.
     Au-immobilized alumina particles (Alumina=200mg) were subsequently utilized as the catalysts for direct amination of benzene to aniline with NH3H2O as an aminating agent and H2O2as an oxidant under mild conditions. The influences of key reaction parameters, including reaction temperatures, NH3H2O amount, H2O2amount, feed motheds and reaction time on the activity and selectivity for the reaction were also studied, the reaction conditions were optimized.
引文
[1]李速延,周晓奇.苯胺生产技术研究进展[Jl.工业催化,2006,14(12):7-10.
    [2]孟庆如.苯直接胺化制苯胺技术进展lJl.化工技术经济,2006,24(10):35-37.
    [3]陈彤,胡常伟,付真金等.直接胺化绿色合成芳胺研究进展[J].科学通报,2002,47(14):1041-1043.
    [4]李玉芳.苯胺的生产技术及国内外市场分析[J].化工科技市场,2003,26(1):20-23.
    [5]洪仲芩.化工有机原料深加工[M].北京:化学工业出版社,1997.568-572.
    [6]李明,伍小明.MDI的生产技术及市场分析[J].化工科技市场,2006,29(6),1-3.
    [7]伍桂松.苯胺行业结构研究[J].石油化工技术经济,2006,22(2):34-38.
    [8]皮现玉,梁成雪.苯胺的合成方法与应用[J].氯碱工业,1999(6):34-39.
    [9]金栋.苯胺的生产及市场分析[J].四川化工与腐蚀控制,2002,5(6):45-49.
    [10]李玉芳.苯胺的生产应用及市场分析[J].化学推进剂与高分子材料,2002(4):7-13.
    [11]刘艳杰,蒋巍,阎丽萍.苯胺的生产技术及市场分析[J].天津化工,2003,17(6):37-40.
    [12]尚平,卜欣立,张坤玲.苯胺的生产技术进展[J].河北化工,2006,29(9):14-19.
    [13]贾志刚,李方实.液相催化加氢法制取芳胺的研究进展[J],化工时刊,2004,18(1):1-3..
    [14]Poojary D, Borade R, Hagemeyer A, etal. Amination of aromatic hydrocarbons and heterocyclic analog therof:WO,0069804[P].2000-11-23.
    [15]Thomas C I. Preparation of aromatic amines:Canad,553988[P].1958-03-04.
    [16]Becker J, Holderich W F. Amination of benzene in the presence of ammonia using a GroupⅧ metal supported on a carrieras catalyst[J]. Catal Lett,1998,54:125-128.
    [17]Holderich W, Becker J. Preparation of amino-substituted aromatic hydrocarbons:DE,19634110Al[P].1998-02-26.
    [18]Durante V A, Wijeskera T P, Karmakar S. Oxidative amination of benzene to aniline using molecular oxygen as the terminal oxidant:US,5861536[P].1999-01-19.
    [19]Axon A, Jackson S D, Claes P R. Process for the production of aromatic amines:WO,9910311[P].1999-03-04.
    [20]Stitt H E, Jackson S D. Amine production:WO,0009473[P].2002-02-24.
    [21]Hara K. Amination and cyanation of aromatic compounds:JP,06293715[P].1994-10-21.
    [22]Schmerling L. Preparation of aromatic amines:US,2948755[P].1960-08-09.
    [23]Squire E N. Synthesis of aromatic amines by reaction of aromatic compounds with ammonia:US,3919155[P].1975-11-11.
    [24]Squire E N. Synthesis of aromatic amines by reaction of aromatic compounds with ammonia:US,3929889[P].1975-12-30.
    [25]DelPesco T W. Synthesis of aromatic amines by reaction:US,4001260[P].1977-01-04.
    [26]DelPesco T W. Synthesis of aromatic amines by reaction:US,4031106[P].1977-06-21.
    [27]Hagemeyer A, Borade R, Desrosiers P, etal. Application of combinatorial catalysis for the direct amination of benzene to aniline[J]. Appl Catal A-Gen,2002,227(1-2):43-61.
    [28]Desrosiers P. Guan S H. Hagemeyer A. etal. Application of combinatorial catalysis for the direct amination of benzene to aniline [J]. Catal Today,2003,81(3):319-328.
    [29]Hoffmann N, Muhler M. On the mechanism of the oxidative amination of benzene with ammonia to aniline over NiO/ZrO2as cataloreactant[J]. Catal Lett,2005,103(1-2):155-159.
    [30]Poojary D, Borade R, Hagemeyer A, et al. Amination of aromatic hydrocarbons and heterocyclic analog therof:US,6933409[P].2005-08-23.
    [31]Mantegazza M A, Leofanti G, Petrini G, et al. Selective oxidation of ammonia to hydroxylamine with hydrogen peroxide on titanium based catalysts [J]. Stud Surf Sci Catal,1994,82:541-550.
    [32]Kuznetsova N I, Kuznetsova L I, Detusheva L G, et al. Amination of benzene and toluene with hydroxylamine in the presence of transition metal redox catalysts[J]. J Mol Catal A-Chem,2002,61(1-2):1-9.
    [33]Zhu L F, Guo B, Tang D Y, et al. Sodium metavanadate catalyzed one-step amination of benzene to aniline with hydroxylamine[J]. J Catal,2007,245(2):446-455.
    [34]Parida K, Mdash S S, Singha S. Structural properties and catalytic activity of Mn-MCM-41mesoporous molecular sieves for single-step amination of benzene to aniline[J]. Appl Catal A-Gen,2008,351:59-67.
    [35]胡常伟,祝良芳,夏云生.由苯直接氧化胺化一步合成苯胺的催化剂制备方法:中国,CN1555921[P].2004-12-22.
    [36]陈彤,付真金,祝良芳,等.Ni-Zr-Ce/Al2O3催化剂上H202作氧化剂直接使苯氧化胺化一步合成苯胺研究[J].化学学报,2003,61:1701-1703.
    [37]陈彤,祝良芳,胡常伟.Zr-Ni/Al2O3催化剂上苯由H202氧化直接氨基化制苯胺[J].分子催化,2005,19(4):1-5.
    [38]夏云生,祝良芳,李桂英,等.镍-钒催化剂作用下由苯直接氧化氨化合成苯胺[J].物理化学学报,2005,21(12):1337-1342.
    [39]Hu C W, Zhu L F, Xia Y S. Direct amination of benzene to aniline by aqueous ammonia and hydrogen peroxide over V-Ni/Al2O3catalyst with catalytic distillation [J]. Ind Eng Chem Res,2007,46:3443-3445.
    [40]祝良芳.由苯直接催化氧化氨基化一步合成苯胺研究[D].成都:四川大学化学学院,2007.
    [41]徐如人,庞文琴.分子筛与多孔材料材料化学[M].长春:科学出版社,2004.36.
    [42]Kresge C T, Leonowicz M E, Roth W J, et al. Ordered mesoporous molecular-sieves synthesized by a liquid-crystal template mechanism[J]. Nature,1992,359:710-712.
    [43]Beck J S, Vartuli J C, Roth W J, et al. A new family of mesoporous molecular-sieves prepared with liquid-crystal templates[J]. J Am Chem Soc,1992,114:10834-10843.
    [44]陈逢喜,黄茜丹,李全芝.中孔分子筛研究进展[J].科学通报,1999,44(18):1905-1920.
    [45]Renzo F D, Cambon H, Dutartre R. A28-year-old synthesis of micelle-templated mesoporous silica[J]. Microporous Mater,1997,10(4-6):283-286.
    [46]Yanagisawa T, Shimizu T, Kuroda K, et al. The preparation of alkyltriinethylaininonium-kaneinite complexes and their conversion to microporous materials[J]. B Chem Soc Jpn,1990,63(4):988-992.
    [47]Wu C G, Bein T. Conducting polyaniline filaments in a mesoporous channel host[J]. Science,1994,264:1757-1759.
    [48]Antonelli D M, Ying J Y. Synthesis of hexagonally packed mesoporous TiO2by a modified sol-gel method[J]. Angew Chem Int Ed Engl,1995,34(18):2014-2017.
    [49]Aksay I A, Trau M, Manne S, et al. Biomimetic pathways for assembling inorganic thin films[J]. Science,1996,273:892-898.
    [50]Lu Y F, Ganguli R, Drewien C A, et al. Continuous formation of supported cubic and hexagonal mesoporous films by sol-gel dip-coating[J]. Nature,1997,389:364-368.
    [51]Yang H, Kuperman A, Coombs N, et al. Synthesis of oriented films of mesoporous silica on mica[J]. Nature,1996,379:703-705.
    [52]Reddy K M, Moudrakovski I, Sayari A. Synthesis of mesoporous vanadium silicate molecular-sieves[J]. J Chem Soc Chem Commun,1994(9):1059-1060.
    [53]Yang P, Zhao D, Margolese D I, et al. Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks [J]. Nature,1998,396:152-155.
    [54]Imhof A, Pine D J. Ordered macroporous materials by emulsion templating[J]. Nature,1997,389:948-951.
    [55]Yang H, Coombs N, Sokolov I, et al. Free-standing and oriented mesoporous silica films grown at the air-water interface[J]. Nature,1996,381:589-592.
    [56]Antonelli D M, Ying J Y. Synthesis of a stable hexagonally packed mesoporous niobium oxide molecular sieve through a novel ligand-assisted templating mechanism [J]. Angew Chem Int Ed Engl,1996,35(4):426-430.
    [57]Schacht S, Huo Q, VoigtMartin I G, et al. Oil-water interface templating of mesoporous macroscale structures [J]. Science,1996,273:768-771.
    [58]Luan Z H, Cheng C F, Zhou W Z, et al. Mesopore molecular-sieve MCM-41containing framework aluminum[J]. J Phys Chem,1995,99(3):1018-1024.
    [59]Vartuli J C, Schmitt K D, Kresge C T, et al. Effect of surfactant silica molar ratios on the formation of mesoporous molecular sieves inorganic mimicry of surfactant liquid-crystal phases and mechanistic implications [J]. Chem Mat,1994,6(12):2317-2326.
    [60]Yang H, Coombs N, Ozin G A. Morphogenesis of shapes and surface patterns in mesoporous silica[J]. Nature,1997,386:692-695.
    [61]Braun P V, Osenar P, Stupp S I. Semiconducting superlattices templated by molecular assemblies [J]. Nature,1996,380:325-328.
    [62]Velev O D, Jede T A, Lobo R F, et al. Porous silica via colloidal crystallization[J]. Nature,1997,389:447-448.
    [63]Kruk M, Jaroniec M, Sayari A. Application of large pore MCM-41molecular sieves to improve pore size analysis using nitrogen adsorption measurements[J]. Langmuir,1997,13(23):6267-6273.
    [64]Blasco T, Corma A, Navarro M T, et al. Synthesis, characterization, and catalytic activity of Ti-MCM-41structures[J]. J Catal1995,156(1):65-74.
    [65]Stupp S I, Braun P V. Molecular manipulation of microstructures:Biomaterials, ceramics, and semiconductors[J]. Science,1997,277(5330):1242-1248.
    [66]Branton P J, Hall P G, Sing K S W. Physisorption of nitrogen and oxygen by MCM-41, a model mesoporous adsorbent[J]. J Chem Soc Chem Commun,1993(16):1257-1258.
    [67]Tanev P T, Pinnavaia T J. Mesoporous silica molecular sieves prepared by ionic and neutral surfactant templating:A comparison of physical properties [J]. Chem Mat1996,8(8):2068-2079.
    [68]Bagshaw S A, Pinnavaia T J:Mesoporous alumina molecular sieves[J]. Angew Chem Int Ed Engl,1996,35(10):1102-1105.
    [69]Xia Y N, Gates B, Yin Y D, et al. Monodispersed colloidal spheres:Old materials with new applications[J]. Adv Mater,2000,12(10):693-713.
    [70]Oliver S, Kuperman A, Coombs N, et al. Lamellar aluminophosphates with surface patterns that mimic diatom and radiolarian microskeletons[J]. Nature,1995,378:47-50.
    [71]Mercier L, Pinnavaia T J. Access in mesoporous materials:Advantages of a uniform pore structure in the design of a heavy metal ion adsorbent for environmental remediation [J]. Adv Mater,1997,9(6):500-503.
    [72]Ying J Y, Mehnert C P, Wong M S. Synthesis and applications of supramolecular-templated mesoporous materials[J]. Angew Chem Int Ed,1999,38(1-2):56-77.
    [73]Sayari A. Catalysis by crystalline mesoporous molecular sieves[J]. Chem. Mat.,1996,8(8):1840-1852.
    [74]Raman N K, Anderson M T, Brinker C J.Template-based approaches to the preparation of amorphous, nanoporous silicas[J]. Chem Mat,1996,8(8):1682-1701.
    [75]Moller K, Bein T. Inclusion chemistry in periodic mesoporous hosts[J]. Chem Mat,1998,10(10):2950-2963.
    [76]Martin C R. Membrane-based synthesis of nanomaterials[J]. Chem Mat,1996,8(8):1739-1746.
    [77]Gleiter H. Nanostructured materials:Basic concepts and microstructure[J]. Acta Mater,2000,48(1):1-29.
    [78]Ciesla U, Schuth F. Ordered mesoporous materials[J]. Microporous Mesoporous Mat,1999,27(2-3):131-149.
    [79]Zhao X S, Lu G Q, Millar G. J. Advances in mesoporous molecular sieve MCM-41[J]. Ind Eng Chem Res,1996,35(7):2075-2090.
    [80]Barton T J, Bull L M, Klemperer W G, et al. Tailored porous materials[J]. Chem Mat,1999,11(10):2633-2656.
    [81]Stein A, Melde B J, Schroden R. C. Hybrid inorganic-organic mesoporous silicates-Nanoscopic reactors coming of age[J]. Adv Mater,2000,12(19):1403-1419.
    [82]Mann S, Burkett S L, Davis S. A, et al. Sol-gel synthesis of organized matter[J]. Chem Mat,1997, 9(11):2300-2310.
    [83]Beck J S, Vartuli J C. Recent advances in the synthesis, characterization and applications of mesoporous molecular sieves[J]. Curr Opin Solid State Mat Sci,1996,1(1):76-87.
    [84]Sayari A, Liu P. Non-silica periodic mesostructured materials:recent progress [J]. Microporous Mater,1997,12(4-6):149-177.
    [85]Davis M E. Ordered porous materials for emerging applications [J]. Nature,2002,417:813-821.
    [86]Sayari A, Hamoudi S. Periodic mesoporous silica-based organic-Inorganic nanocomposite materials[J]. Chem Mat,2001,13(10):3151-3168.
    [87]Schuth F, Schmidt W. Microporous and mesoporous materials [J]. Adv Eng Mater,2002,4(5):269-279.
    [88]Seddon J M, Raimondi M E. Liquid crystal templating of mesoporous materials [J]. Mol. Cryst Liq Crys C,2000,347(1):221-229.
    [89]On D T, Desplantier-Giscard D, Danumah C, et al. Perspectives in catalytic applications of mesostructured materials[J]. Appl Catal A-Gen,2001,222(1-2):299-357.
    [90]Schulz-Ekloff G, Wohrle D, Duffel B V, et al. Chromophores in porous silicas and minerals: preparation and optical properties [J]. Microporous Mesoporous Mat,2002,51(2):91-138.
    [91]Ying J Y, Sun T. Research needs assessment on nanostructured catalysts[J]. J Electroceram,1997,1(3):219-238.
    [92]Soler-illia G J D, Sanchez C, Lebeau B, et al. Chemical strategies to design textured materials:From microporous and mesoporous oxides to nanonetworks and hierarchical structures[J]. Chem Rev,2002,102:4093-4138.
    [93]韩涤非,王安杰.MCM-41介孔分子筛在精细有机合成非均相催化中的应用[J].化学进展,2002,14(2):98-106.
    [94]许俊强.掺杂介孔MCM-41分子筛的制备,表征及其催化性能表征[D].[博士学位论文].成都:四川大学工业催化,2007.
    [95]Yu R B, Xiao F S, Wang D, et al. Catalytic performance in phenol hydroxylation by hydrogen peroxide over a catalyst of V-Zr-O complex[J].Catal Today,1999,51(1):392-461.
    [96]Xu J Q, Chu W, Luo S Z. Synthesis and characterization of mesoporous V-MCM-41molecular sieves with good hydrothermal and thermal stability [J]. J Mol Catal A-Chem,2006,256(1-2):48-56.
    [97]Kumar N, Nieminen V, Lindfors, et al. Cu-H-MCM-41, H-MCM-41and Na-MCM-41mesoporous molecular sieve catalysts for isomerization of1-butene to isobutene[J]. Catal Lett,2002,78(1-4):105-110.
    [98]Hulea V,Fajula F. Ni-exchanged Al-MCM-41all efficient bifunctional catalyst for ethylene oligomerization[J]. J Catal,2004,225(1):213-222.
    [99]Umamaheswari V, Palauichamy M, MurugesanV,et al. Vapour phase alkylation of ethylbenzene with t-butyl alcohol over mesoporous AI-MCM-41molecular sieves[J]. P Indian AS-Chem Sci,2002,114(3):203-212.
    [100]Paul P P, Miller M A, Heimrich M J. Emissiion control catalyst derived from mesoporous molecular sieves[J]. Mater Res Soc Symposium Proc,1996,431(8-11):117-121.
    [101]Koch H, Reschetilowski W. Is the catalytic activity of AI-MCM-41sufficient for hydrocarbon cracking?[J]. Mieropor Mesopor Mater,1998,25(1-3):127-129.
    [102]伏再辉,尹笃林.TS分子筛催化性能研究,TS-2分子筛催化1,2-丙二醇液相氧化反应的研究[J].分子催化,1996,10(6):469-472.
    [103]Gunnewegh E A, Gopie S S, Bekkum H. V. MCM-41type molecular sieves as catalysts for the Friedel-Crafts acyltion of2-metheoxynaphthalene[J]. J Mol Catal A-Chem,1996,106(1-2):151-158.
    [104]Thangaraj A, Sivasanker S, Ratnasamy P. Catalytic properties of crystalline titanium silicates Ⅲ. Ammoximation of cyclohexanone[J]. J Catal,1991,131:394-400.
    [105]Corma A, Navarro M. T,et al. From micro to mesoporous molecular sieves:adapting composition and structure for cataly sis [J]. Stud Surf Sci Catal,2002,142(A-B):487-501.
    [106]Zhang Q, Wang Y, Itsuki S, et al. Fe-MCM-41for selective epoxidation of styrene with hydrogen peroxide[J]. Chem Lett,2001,5(9):946-947.
    [107]罗勇.Ti-MCM-41分子筛的合成与催化氧化性能的研究[J].上海:华东理工大学,2002,77-84.
    [108]Srinivas D, Manikaudan P, Laha S. C, et al. Reactive oxo-titanium species in titanosilicate molecular sieves:EPR investigations and structure-activity correlations[J]. J Catal,2003,217(1):160-171.
    [109]李守贵,房铭,庞文琴.钌卟啉/MCM-41催化剂的制备、表征及性质[J].催化学报.1999,20(2):161-165.
    [110]Kohara I, Fujiyama H, Iwai K,et al.Catalytic activity of Cu ion-exchanged Na·MCM-41in the liquid-phase oxidation of2,6-di-tert-butylphenol[J]. J Mol Catal A-Chem,2000,153(1-2):93-101.
    [111]Tatsumi T, Nakamura M, Negishi S, et al. Shape-selective oxidation of alkanes with H2O2catalysed by titanosilicate [J]. J Chem Soc Chem Commun,1990(6):476-477.
    [112]Clerici M G. Oxidation of saturated hydrocarbons with hydrogen peroxide catalysed by titanium silicate[J]. Appl Catal A-Gen,1991,68(1-2):249-261.
    [113]Huybrechts D R C, De Bruycher L, Jacobs P A. Oxyfunctionalization of alkanes with hydrogen peroxide on titanium silicalite[J]. Nature,1990,345:240-242.
    [114]Chiche B, Finiels A, Gauthier C,et al. Friedel-Crafts acylation of toluene and p-xylene with carboxylic acids catalyzed by zeolites[J]. J Org Chem,1986,51(11):2128-2130.
    [115]Paul V, Sudalai A, Daniel T, et al. HZSM-5catalysed regiospecific benzoylation of activated aromatic compounds [J]. Tetrahedron Lett.,1994,35(16):2601-2602.
    [116]Izumi Y, Ogawa M, Urabe K. Alkali metal salts and ammonium salts of Keggin-type heteropolyacids as solid acid catalysts for liquid-phase Friedel-Crafts reactions[J]. Appl Catal A-Gen,1995,132(1):127-140.
    [117]Corma A, Climent M J, Garcia H, et al. Design of synthetic zeolites as catalysts in organic-reactions-acylation of anisole by acyl chlorides or carboxylic-acids over acid zeolites[J]. Appl Catal,1989,49(1):109-123.
    [118]Gunnewegh E A, Gopie S S, Bekkum H V.MCM-41type molecular sieves as catalysts for the Friedel-Crafts acylation of2-methoxynaphthalene[J]. J Mol Catal A-Chem,1996,106(1-2):151-158.
    [119]Vasant R, Choudhary V R, Jana S K. Highly active Si-MCM-41-supported Ga2O3and In2O3catalysts for friedel-crafts-type benzylation and acylation reactions in the presence or absence of moisture [J]. J Catal,2000,192(2):257-261.
    [120]Jansen J C, Creyghton E J, Njo S L, et al. On the remarkable behaviour of zeolite Beta in acid catalysis[J]. Catal. Today,1997,38(2):205-212.
    [121]Hu X C, Foo M L,Chuah G K, et al. Pore Size Engineering on MCM-41:Selectivity Tuning of Heterogenized AlC13for the Synthesis of Linear Alkyl Benzenes[J]. J Catal,2000,195(2):412-415.
    [122]Mokaya R. The Effect of Particle Size on Aluminosilicate MCM-41Catalysts Prepared via Grafting Routes[J]. J Catal,1999,186(2):470-477.
    [123]Jun S, Ryoo R. Aluminum Impregnation into Mesoporous Silica Molecular Sieves for Catalytic Application to Friedel-Crafts Alkylation[J]. J Catal,2000,195(2):237-243.
    [124]Kowalab S, Stawniski K, Stankiewicz K. Proc.3rd Polish-German Zeolite Colloquium, NCUP (ed.Rozwadowski M), Torun,1998.169.
    [125]Kosslick H, Lischke G, Landmesser H, et al. Acidity and Catalytic Behavior of Substituted MCM-48[J]. J Catal,1998,176(1):102-114.
    [126]Climent M J, Corma A,Iborra S, et al. Use of Mesoporous MCM-41Aluminosilicates as Catalysts in the Production of Fine Chemicals:Preparation of Dimethylacetals[J]. J Catal,1996,161(2):783-789.
    [127]Climent M J, Corma A, Guil-Lopez R, et al. Use of Mesoporous MCM-41Aluminosilicates as Catalysts in the Preparation of Fine Chemicals:A New Route for the Preparation of Jasminaldehyde with High Selectivity [J]. J Catal,1998,175(1):70-79.
    [128]Janenicke S, Chuah G K, Lin C H, et al. Organic-inorganic hybrid catalysts for acid-and base-catalyzed reactions[J]. Micro Meso Mater,2000,35-36:143-153.
    [129]Climent M J, Corma A,Iborra S, et al. Mesoporous Materials as Catalysts for the Production of Chemicals:Synthesis of Alkyl Glucosides on MCM-41[J]. J Catal,1999,183(1):76-82.
    [130]Nowinska K, Kaleta W. Synthesis of Bisphenol-A over heteropoly compounds encapsulated into mesoporous molecular sieves[J]. Appl Catal A-Gen,2000,203(1):91-100.
    [131]Kong F Z, Jiang J Y, Jin Z L. Ammonium salts with poly ether-tail:new ionic liquids for rhodium catalyzed two-phase hydroformylation of1-te-tradecane[J]. Catal. Lett.,2004,96(1-2):63-65.
    [132]陈华,黎耀忠,程溥明等.两相催化体系中烯烃氢甲酰化的高区域选择性[J].催化学报,1999,20(50):573-576.
    [133]Cornils B, Beller M, Frohning C.D, et al. Progress in hydroformylation and carbonylatiun[J]. J Mol Catal A-Chem,1995,104:17-85.
    [134]张宇,袁友珠,廖新丽,等.酸碱存在下水溶性铑膦配合物的NMR表征及氢甲酰化性能研究[J].高等学校化学学报,1999,20(10):1589-1594.
    [135]Huang L, He Y, Kawi S, et al. Catalytic studies of aminated MCM-41-tethered rhodium complexes for hydroformylation1-hexene and styrene[J]. J Mol Catal A-Chem,2004,213(2):241-249.
    [136]Huang L, He Y, Kawi S. Catalytic studies of aminated MCM-41-tethered rhodium complexes for 1-hexene hydroformylation[J]. Appl Catal A-Gen,2004,265(2):247-257.
    [137]杨勇,彭庆蓉,袁友珠.有机官能团化介孔分子筛固载铑膦配合物的制备及其对己烯氢甲酰化的催化性能[J].2004,25(5):421-425.
    [138]董永治,徐奕德,刘安明,等.Rh/L和Rh-Zn/L分子筛催化剂上乙烯的氢甲酰化反应[J].催化学报,1994,15:207-211.
    [139]Takahashi N, Mijin A, Suematsu H, et al. An infrared study of Rh-Y zeolite related to activity for ethylene hydroformylation[J]. J Catal,1989,117:348-354.
    [140]Verhoef M J, Kooyman P J, Peters J A, et al. A study on the stability of MCM-41-supported heteropoly acids under liquid-and gas-phase esterification conditions[J]. Micro Meso Mater,1999,27(2-3):365-371.
    [141]Dean J A.兰氏化学手册[M].第十三版.尚久芳等译.北京:科学出版社,1991.10-23.
    [142]王正烈,周亚平.物理化学[M].北京:高等教育出版社,2001.101-152.
    [143]Zhao D Y, Feng J L, Huo Q S, et al. Triblock Copolymer Syntheses of Mesoporous Silica with Periodic50to300Angstrom Pores[J]. Science,1998,279(5350):548-552.
    [144]Bagshaw S A, Prouzet E, Pinnavaia T J. Templating of Mesoporous Molecular Sieves by Nonionic Polyethylene Oxide Surfactants [J]. Science,1995,269(5228):1242-1244.
    [145]Ryoo R, Kim J M, Ko C H, et al. Disordered Molecular Sieve with Branched Mesoporous Channel Network [J]. J Phys Chem,1996,100(45):17718-17721.
    [146]Inagaki S, Koiwai A, Suzuki N, et al. Syntheses of Highly Ordered Mesoporous Materials, FSM-16, Derived from Kanemite[J]. B Chem Soc Jpn,1996,69(5):1449-1457.
    [147]陈彤.苯在催化剂作用下直接氨基化/羟基化研究[D]:[博士学位论文].四川:四川大学化学学院,2003.
    [148]Wang L Z, Shi J L, Yu J, et al. Synthesis of nanostructured mesoporous silica materials containing manganese[J]. Nanostruct Mater,1998,10(8):1289-1299.
    [149]Ronny N, Khenkin A M. Vanadium-substituted MCM-41zeolites as catalysts for oxidation of alkanes with peroxides. Chem Commun,1996(23):2643-2644.
    [150]Wei D, Chueh W T, Haller G L. Catalytic behavior of vanadium substituted mesoporous molecular sieves[J]. Catal Today,1999,51(3-4):501-511.
    [151]Oscar A A, Andrea R B, Jorgelina C. Synthesis at atmospheric pressure and characterization of highly ordered Al, V, and Ti-MCM-41mesostructured catalysts[J]. Catal Today,2008,133-135(4-6):891-896.
    [152]豆茂峰,金胜明,付英,等.介孔分子筛Ti-MCM-41的制备和结构(英文)[J].硅酸盐学报,2008,36(1):65-68.
    [153]Selvaraj M, Lee T G. A novel route to produce phthalic anhydride by oxidation of o-xylene with air over mesoporous V-Mo-MCM-41molecular sieves[J]. Micropor Me sopor Mat,2005,85(1-2):39-51.
    [154]Uphade B S,Akita T,Nakamura T,et al. Vapor-phase epoxidafion of propene using H2and O2over Au/Ti-MCM-48[J]. J Catal,2002,209(2):331-340.
    [155]Citterio A,Gentile A,Minisci F,et al. Polar effects in free radical reactions.Homolytic aromatic amination by the amino radical cation,+NH3reactivity and selectivity [J]. J Org Chem1984,49:4479.
    [156]Chen P F, Du M X, Lei H, et al. SO42-/ZrO2-titania nanotubes as efficient solid superacid catalysts for selective mononitration of toluene[J]. Catal Commun,2012,18(10):47-50.
    [157]L(?)ften T, Gnep N S, Guisnet M, et al. Iron and manganese promoted sulfated zirconia:acidic properties and n-butane isomerization activity[J]. Catal Today,2005,100(3-4):397-401.
    [158]Furuta S, Matsuhashi H, Arata K. Catalytic action of sulfated tin oxide for etherification and esterification in comparison with sulfated zirconia[J]. Appl Catal A-Gen,2004,269(1-2):187-191.
    [159]Guo H F, Yan P, Hao X Y, et al. Influences of introducing Al on the solid super acid SO42-/SnO2[J]. Mater Chem Phys,2008,112(3):1065-1068.
    [160]Guo C X,Y S,C J H, et al. Alkylation of isobutane with butenes over solid superacids, SO42-/ZrO2and SO42-/TiO2[J]. Appl Catal A-Gen,1994,107(2):229-238.
    [161]Suzuki T, Yokoi T, Otomo R, et al. Dehydration of xylose over sulfated tin oxide catalyst:Influences of the preparation conditions on the structural properties and catalytic performance [J]. Appl Catal A-Gen,2011,408(1-2):117-124.
    [162]Li H X, Li G S, Zhu J, et al. Preparation of an active SO42-/TiO2photocatalyst for phenol degradation under supercritical conditions[J]. J Mol Catal A-Chem,2005,226(1):93-100.
    [163]Hino M, Kobayashi S, Arata K. Solid catalyst treated with anion.2. Reactions of butane and isobutane catalyzed by zirconium oxide treated with sulfate ion. Solid superacid catalyst[J]. J Am Chem Soc,1979,101(21):6439-6441.
    [164]Hino M, Arata K. Synthesis of solid superacid catalyst with acid strength of Ho≤-16.04[J]. J Chem Soc Chem Commun,1980(18):851-852.
    [165]Tian Z M, Deng Q G, Sun H, et al. Preparation, Characterization and Catalytic Performance of La-SO42-/SBA-15in Esterification of Acetic Acid with n-Butanol[J]. Chem Res Chinese U,2008,24(3):357-361.
    [166]Wang Z C, Shui H F, Lei Z. P, et al. Study of the preasphaltenes of coal liquefaction and its hydro-conversion kinetics catalyzed by SO42-/ZrO2[J]. Fuel Process Technol,2011,92(10):1830-1835.
    [167]Hua W M, Yue Y H, Gao Z. Acidity enhancement of SBA mesoporous molecular sieve by modification with SO42-/ZrO2[J]. J Mol Catal A-Chem,2001,170(1-2):195-202.
    [168]于世涛,刘福胜.固体酸与精细化工[M].北京:化学工业出版社,2006.58.
    [169]杜长海,秦永宁,贺岩峰等.催化精馏专用填料型固体酸SO42-/ZrO2-Al2O3-Al的研究[J].化学物理学报,2003,16(6):504-508.
    [170]Yu J C, Zhang L Z, Yu J G. Rapid synthesis of mesoporous TiO2with high photocatalytic activity by ultrasound-induced agglomeration [J]. New J Chem,2002,26(4):416-420.
    [171]Haase F, Sauer J. The Surface Structure of Sulfated Zirconia:Periodic ab Initio Study of Sulfuric Acid Adsorbed on ZrO2(101) and ZrO2(001)[J]. J Am Chem Soc,1998,120(51):13503-13512.
    [172]Babou F, Coudurier G, Vedrine J C. Acidic Properties of Sulfated Zirconia:An Infrared Spectroscopic Study[J]. J Catal,1995,152(2):341-349.
    [173]Yin H L, Tan Z Y, Liao Y T, et al. Application of SO42-/TiO2solid superacid in decontaminating radioactive pollutants [J]. J Environ Radioactiv,2006,87(2):227-235.
    [174]Chen W H, Ko H H, Sakthivel A, et al.A solid-state NMR, FT-IR and TPD study on acid properties of sulfated and metal-promoted zirconia:Influence of promoter and sulfation treatment[J]. Catal Today,2006,116(2):111-120.
    [175]Ma H Zh, Chen F T, Wang B, et al. Modified SO42-/Fe2O3solid superacid catalysts for electrochemical reaction of toluene with methanol[J]. J Hazard Mater,2007,145(3):453-458.
    [176]Barthos R, Lonyi F, Onyestyak G, et al.An NH3-TPD and-FR study on the acidity of sulfated zirconia[J]. Solid State Ionics,2001,141-142(3):253-258.
    [177]Riemer T, Spielbauer D, Hunger M, et al. Superacid properties of sulfated zirconia as measured by Raman and1H MAS NMR spectroscopy[J]. J Chem Soc Chem Commun,1994(10):1181-1182.
    [178]Haruta M, Yamada N, Kobayashi T, et al. Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide[J]. J Catal,1989(2):301-309.
    [179]Wang D H, Hao Zh P, Cheng D Y, et al. Influence of pretreatment conditions on low-temperature CO oxidation over Au/MOx/Al2O3catalysts[J]. J Mol Catal A,2003,200(1-2):229-238.
    [180]Patil N S, Jha R, Uphade B S, et al. Epoxidation of styrene by anhydrous t-butyl hydroperoxide over gold supported on Al2O3, Ga2O3, In2O3and Ti2O3[J]. Appl Catal A,2004,275(1-2):87-93.
    [181]Enache D I, Edwards J K, Landon P, et al. Solvent-Free Oxidation of Primary Alcohols to Aldehydes Using Au-Pd/TiO2Catalysts [J]. Science,2006,311(5759):362-365.
    [182]Li G, Enache D I, Edwards J K, et al. Solvent-free oxidation of benzyl alcohol with oxygen using zeolite-supported Au and Au-Pd catalysts [J]. Catal Lett,2006,110(1-2):7-13.
    [183]Daniel M C, Astruc D. Gold Nanoparticles:Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology[J]. Chem Rev,2004,104(1):293-346.
    [184]Jia C J, Liu Y, Bongard H, et al. Very Low Temperature CO Oxidation over Colloidally Deposited Gold Nanoparticles on Mg(OH)2and MgO[J]. J Am Chem Soc,2010,132(5):1520-1522.
    [185]Shimizu K, Miyamoto Y, Kawasaki T, et al. Chemoselective Hydrogenation of Nitroaromatics by Supported Gold Catalysts:Mechanistic Reasons of Size-and Support-Dependent Activity and Selectivity [J]. J Phys Chem C,2009,113(41):17803-17810.
    [186]Tompos A, Margitfalvi J L, Szabo E G, et al. Combinatorial Design of Al2O3Supported Au Catalysts For Preferential CO Oxidation[J]. Top Catal,2010,53(1-2):108-115.
    [187]Delannoy L, Hassan N E, Musi A, et al. Preparation of Supported Gold Nanoparticles by a Modified Incipient Wetness Impregnation Method[J]. J Phys Chem B,2006,110(45):22471-22478.
    [188]Haruta M, Kobayashi T, Sano H, et al. Novel Gold Catalysts for the Oxidation of Carbon Monoxide at a Temperature far Below0℃[J]. Chem Lett,1987,16(2):405-408.
    [189]Wang T, Shi S, Akiyama Y, et al. Chemically immobilizing gold nanoparticles to the surface of polystyrene particles[J]. J Mater Sci,2010,45(16):4539-4542.
    [190]Ohnuma A, Cho E. C, Camargo P. H, et al. A Facile Synthesis of Asymmetric Hybrid Colloidal Particles[J]. J Am Chem Soc,2009,131(4)1352-1353.
    [191]Lu Y, Proch S, Schrinner M, et al. Thermosensitive core-shell microgel as a "nanoreactor" for catalytic active metal nanoparticles [J]. J Mater Chem,2009,19(23):3955-3961.
    [192]Lee J H, Mahmoud M A, Sitterle V, et al. Facile Preparation of Highly-Scattering Metal Nanoparticle-Coated Polymer Microbeads and Their Surface Plasmon Resonance [J]. J Am Chem Soc,2009,131(14):5048-5049.
    [193]Gabaldon J P, Bore M, Datye A K, et al. Mesoporous silica supports for improved thermal stability in supported Au catalysts[J]. Top Catal,2007,44(1-2)253-262.
    [194]Wen L, Fu J K, Gu P Y, et al. Monodispersed gold nanoparticles supported on γ-Al2O3for enhancement of low-temperature catalytic oxidation of CO[J]. Appl Catal B-Environ,2008,79(4):402-409.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700