过渡金属羟基氧化物催化臭氧氧化水中痕量pCNB的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统的水处理工艺对水中的痕量有害有机污染物去除甚微,且这些有机物的在后续消毒过程中会引起消毒副产物的产生。化学氧化法是去除水中有机污染物的理想途径,但一般的氧化剂很难高效的氧化去除水中痕量的有机污染物。金属羟基氧化物催化臭氧氧化技术是强化臭氧氧化去除水中痕量有机污染物的新方向。掌握金属羟基氧化物催化臭氧氧化的基本规律,是寻找经济高效的水处理催化剂并正确应用催化臭氧氧化技术的基础。
     论文以实验室制备的六种过渡金属羟基氧化物作为催化剂,分别对它们进行了结构和表面性质的表征。通过考察各催化剂催化水中臭氧分解和氧化痕量对氯硝基苯(pCNB)的能力,筛选出催化活性较高的催化剂,并对其催化臭氧分解的机理进行了推测。最终探讨了催化剂的结构和表面性质对催化能力的影响。
     在单独臭氧氧化工艺中,水中痕量pCNB的去除效率随着臭氧浓度和水体纯净度的增加而增大,而与pCNB初始浓度成负相关性。羟基自由基的抑制剂和溶液pH值对臭氧氧化pCNB的反应影响显著。反应过程中,TOC的去除率比pCNB低50个百分点左右。
     实验中成功制备了羟基氧化锰(MnOOH)、羟基氧化铁(FeOOH)、羟基氧化钴(CoOOH)、羟基氧化镍(NiOOH)、羟基氧化铜(CuOOH)和羟基氧化锌(ZnOOH)六种过渡金属羟基氧化物,材料的单体大都具有纳米尺寸,对气体具有一定的吸附能力和容量。通过检测发现,催化剂表面主要含有羟基官能团,CuOOH的表面羟基含量较小,其他催化剂均含有丰富的表面羟基。各催化剂中构成羟基的氧种各不相同,ZnOOH、FeOOH和CoOOH中以化学吸附氧为主,MnOOH和CuOOH中所含的主要为晶格氧,而NiOOH中大多为表面吸附氧。
     ZnOOH、FeOOH和CoOOH具有较高的催化活性,可以使臭氧氧化去除pCNB的效率从55%分别提高至85%、92%和99%以上。而MnOOH、NiOOH和CuOOH没有表现出促进臭氧氧化降解pCNB的能力。催化过程中有微量的金属离子溶出,但均低于国标限值。
     分别研究了ZnOOH、FeOOH和CoOOH三种高效催化剂催化臭氧氧化pCNB的效能和反应过程的影响因素,结果表明:pCNB的去除率随臭氧浓度、催化剂投量和反应温度的提高而增大;反应体系对初始浓度为50μg/L和100μg/L的pCNB去除效率最高;随着水体纯净度的降低,催化剂促进pCNB降解的能力显著下降;NO3-、Na+和K+对催化臭氧氧化pCNB的影响可以忽略,水体硬度可以小幅度的促进催化臭氧氧化反应。一定浓度Cl-的存在可以使pCNB的去除率略有降低,SO42-具有一定的表面络合能力,使催化剂的催化能力有所下降,PO43-可以显著抑制催化体系中pCNB的去除;催化体系中pCNB去除率受水中HCO3-碱度的影响较大,抑制作用随HCO3-浓度的增加而增强;水体中微量腐殖酸对pCNB的去除基本没有影响,而高浓度腐殖酸则抑制pCNB的去除;催化剂随着烘制温度的升高其催化活性不断下降;催化剂多次使用后,仍可保持较好的催化能力。
     羟基氧化铁、羟基氧化钴和羟基氧化锌可以显著加速水中臭氧和pCNB的分解,分别使臭氧的一级分解速率常数提高了1.25倍、1.52倍和1.87倍,使pCNB的降解速率分别提高至单独臭氧氧化的2倍、3倍和9倍。叔丁醇可以大幅度的抑制催化反应中pCNB的降解,在三种催化反应体系中均检测到了羟基自由的产生,证明催化臭氧氧化工艺中pCNB的降解是以羟基自由基为主、臭氧分子为辅的氧化反应。催化剂在pH=6.5和7.5的中性溶液中催化能力最强。
     表面羟基是决定催化剂催化水中臭氧分解能力的关键因素,催化活性较高的羟基氧化物都具有较大的表面羟基密度。催化剂中的化学吸附氧是催化反应中的活性氧种,化学吸附氧上的结构羟基或表面吸附水中的氢离子形成的吸附羟基是反应的活性羟基,溶液中的臭氧分子在此类活性羟基上吸附并发生分解反应,生成高活性的·OH氧化物质。
It is difficult for traditional water treatment process to remove trace concentration of organic pollutants, and then some disinfection by-products would be generated in the process of chlorination. Chemical oxidation has been considered to be an efficient way for the removal of organic pollutants in water, however, it is not so efficient in the destruction of recalcitrant organic pollutants. Research of metal hydroxides catalytic ozonation has recently received much attention. It is important to know the catalytic mechanism of metal hydroxides for the decomposition of ozone in water.
     Hydroxides of six transitional metals, prepared in laboratory, were used as catalysts in the paper. Some studies were carried out on the characterization of their structure and surface properties. The catalytic decomposition of ozone and p-chloronitrobenzene (pCNB) in water were investigated, and then some hydroxides with high catalytic activity were selected out and applied in the catalytic oxidation of trace concentration of pCNB. The mechanism of catalytic ozone decomposition was discussed. The role of the catalyst structure and surface hydroxyl in catalytic ozonation were finally summarized.
     In the solo ozone oxidation of pCNB, the removal efficiency gets better with increasing initial concentration of ozone and the water purity, but the initial concentration of pCNB has negative effects on its removal. Hydroxyl radical inhibitor and solution pH significantly affected the ozonation of pCNB. Removal of TOC was not so high as that of pCNB in the process, about 50 percentage points lower.
     The catalyst prepared in the laboratory were manganese hydroxide (MnOOH), iron hydroxide (FeOOH), cobalt hydroxide (CoOOH), nickel hydroxide (NiOOH), copper hydroxide (CuOOH) and zinc hydroxide (ZnOOH). Most materials have nano-sized monomers, all of them have certain ability and capacity for the adsorption of gas. Experimental results show that, the mainly functional groups on the catalyst surface was hydroxyl, all the hydroxides have abundant surface hydroxyl groups except CuOOH. Species of hydroxyl oxygen were found to be different in different hydroxides. Hydroxyl groups on the surface of ZnOOH, FeOOH and CoOOH mainly contain chemi-adsorbed oxygen, MnOOH and CuOOH have hydroxyl groups with the lattice oxygen, and the oxygen in NiOOH was identified as that in surface-adsorped hydroxyl groups.
     Iron hydroxide, cobalt hydroxide and zinc hydroxide present strong catalytic activity in the reaction. At reacting time of 20min, the catalytic removal of pCNB by FeOOH, CoOOH and ZnOOH in distilled water increases from 55% to 85%, 92% and 99%, respectively. Manganese hydroxide, copper hydroxide and nickel hydroxide hold no catalytic abilities in the ozonation of pCNB in this experiment. The dissolution of metal ions in the catalytic process can be ingnored, for the dissolved amount was much less than the limit in national standard.
     Efficiency and affecting factors of catalytic ozonation of pCNB by ZnOOH, FeOOH and CoOOH were investigated. Results show that, the removal of pCNB increased with the increasing reaction temperature, water purity, ozone concentration and catalyst dosage; the best removal efficiency of pCNB was obtained when the initial concentration of pCNB was 50μg/L and 100μg/L; effects of NO3-, Na+ and K+ on the catalytic ozonation of pCNB can be ignored, the degradation of pCNB were slightly promoted in the presence of Ca2+ and Mg2+, the ozonation of pCNB were slightly inhibited by high concentration of Cl-, the removal efficiency of pCNB decreased in the presence of SO42-, as hydroxyl inhibitors, PO43- and HCO3- can significantly inhibit the catalytic degradation of pCNB; the removal of pCNB decreased with the increasing concentration of humic acid; the catalytic ability of the catalyst get weaker with increasing the calcinated temperature; after five successive recycles, the catalyst remained stable in the catalytic ozonation of pCNB.
     Hydroxides of iron, cobalt and zinc can significantly speed up the decomposition of ozone and pCNB in water. Rate constant of ozone decomposition increased 1.25 times, 1.52 times and 1.87 times, respectively. The catalytic degradation rates of pCNB were 2 times, 3 times and 9 times higher as the solo ozonation. Tert-butanol can significantly inhibit the degradation of pCNB in these three catalytic reaction systems. Enhancements of hydroxyl free radicals were obtained in the catalyzed ozone decomposition by FeOOH, CoOOH and ZnOOH. So the catalytic oxidation of pCNB can be divided into two parts: main reaction with hydroxyl radicals and accessorial oxidation by ozone molecules. The optimal catalysis is achieved at solution pH=6.5 and pH=7.5.
     Surface hydroxyl groups were revealed to be important active sites on catalyst. Hydroxides, which show high catalytic activity in ozone decomposition, have abundant surface hydroxyl groups. Chemi-adsorbed oxygens were thought to be active oxygen species, hydroxyls formed on the adsorbed oxygen (structural hydroxyls or hydroxyls formed through adsorption of hydrogen ions in water) have the ability to catalyse ozone decomposition. Ozone molecules in water can be adsorbed on these active hydroxyls, then ozone decomposition with the production of·OH was promoted.
引文
1王占生,刘文君.微污染水源饮用水处理.中国建筑工业出版社. 1999: 15-27
    2卫生部.生活饮用水卫生规范.中华人民共和国卫生部, 2001: 1-8
    3卫生部.生活饮用水卫生标准.中华人民共和国卫生部, 2006: 1-10
    4 C. W. K. Chow, J. A. van Leeuwen, M. Drikas, et al. The impact of the character of natural organic matters in conventional treatment with alum. Water Science and Technology, 1999, 40(9): 97-104
    5王维哲.大骨节病的有机物病因及其作用机理.中国环境科学. 1989, 9(3): 191-195
    6 G. C. Zhang, Z. S. Wang. Mechanism study of the coagulant impact on the mutugenic activity in water. Water Research. 2000, 34(6): 1781-1790
    7 M. Pirbazari. Physical chemical characterization five earthy-musty-smelling compounds. Water Science Technology. 1992, 25(2): 177-184.
    8许建华,万英,汤利华等.微污染原水的生物接触氧化法预处理技术研究.同济大学学报. 1995, 23(4): 376-381
    9邓茂先,陈详贵.环境内分泌干扰物研究进展.国外医学卫生学分册. 2000, 27(2): 65-77
    10 R. R. Trussel. Endocrine disruptors. Journal of the American Water Works Association. 2001, 93(2): 58-65
    11 J. J. Rook. Formatin of haloforms during chlorination of natural water. Water Treatment Exam. 1974, 23(2): 234-243
    12 T. A. Bellar, J. J. Lichtenberg, R. C. Kroner. The occurrence of organohalides in chlorinated drinking waters. Journal of the American Water Works Association. 1974, 66(12): 703-707
    13张俊然,朱惠刚.遗传毒理学短期测试方法的发展及其在饮用水监测方面的应用.上海环境科学. 1996, 15(2): 38-41
    14胡江泳,王占生. B市某水厂水源水的致突变性研究.给水排水, 1993, 19(8): 12-16
    15徐凤丹,范美云,宋瑞霞等.我国典型地区饮水中致突变性研究.环境科学, 1993, 15(3): 1-6
    16贺维顺,王蕊芳,吴世芳等.昆明水源水和自来水水质致突变性及化学背景值.动物学研究. 1996, 17(4): 421-427
    17鲁文清,越飞,陈秀娜等.氯化饮水中有机提取物对大鼠和人肝肿瘤细胞(HepG2)的遗传毒性及脂质过氧化作用.卫生研究. 1999, 28(6): 326-328
    18 P. C. Singer. Humic substances as precursors for potentially harmful disinfection by-products. Water Science and Technology, 1999, 40(9): 25-30
    19 A. C. Diehl, G. E. Speitel Jr., J. M. Symons, et al. DBP formation during chlorination. Journal of the American Water Works Association. 2000, 92(6): 76-90
    20 F. W. Pontius. Regulatory update for 2001 and beyond. Journal of the American Water Works Association. 2001, 93(2): 66-79
    21 W. A. Mitch, D. L. SEdlak. Formation of N-nitrosodimethylamine (NDMA) from Dimethylamine during Chlorination. Environment Science and Technology. 2002, 36(4): 588-595
    22 J. Choi, R. L. Valentine. Formation of N-nitrosodimethylamine (NDMA) from Reaction of Monochloramine: a New Disinfection by-product. Water Research. 2002, 36(4): 817-824
    23贲岳.污水处理过程中两种硝基含氮有机物的生物降解实验研究.哈尔滨工业大学博士论文. 2009, 32-35
    24 A. Ayanaba, M. Alexander. Transformations of Methylamines and Formation of a Hazardous Product, Dimethylnitrosamine, in Samples of Treated Sewage and Lake Water. Journal of Environmental Quality. 1974, 3(1): 83-89
    25 R. L. Tate, M. Alexander. Resistance of Nitrosamines to Microbial Attack. Journal of Environmental Quality. 1976, 5(2): 131-133
    26 J. M. Feng. Nitrochlorobene Market Shrinks Gradually. China Chemical Reporter. 2005, 26: 21
    27 C. Liang. Market Analysis and Development Projections for Chlorobenzene Product Series. China Chemical Reporter, 2004, 26: 20
    28徐根良,徐秀珠.环境中痕量特殊有机污染物的高效液相色谱测定.浙江大学学报(自然科学版), 1999, 33(3): 323-327
    29孙润泰,陈敏,于波等.气相色谱法测定水源水中硝基氯苯类化合物结果分析.中国卫生工程学. 2002, 1(3): 149-153
    30申献辰,冯惠华,王凤荣等.黄河中游对硝基氯苯传输迁移转化模拟.水科学进展. 1997, 8(3): 264-269
    31 Q. Li, M. Minami, H. Inagaki. Acute and Subchronic Immunotoxicity of p-Nitrochlorobenzene in Mice. I. Effect on Natural Killer, Cytotoxic T-lymphocyte activities and mitogen-stimulated lymphocyte proliferation. Toxicology. 1998, 127(1): 223-232
    32岳舜琳.城市供水水质问题.中国给水排水, 1997, 13(增刊): 35-38
    33潘凛溥,陈国喜. SBR法处理造纸废水研究.环境科学与技术, 1998, 2: 20-21
    34 M. Modell. Processing Methods for the Oxidation of Organics in Supercritical Water. 1985, US patent: 4543190
    35 R. W. Shaw, T. B. Brill, A. A. Clifford, et al. Supercritical Water: a Medium for Chemistry. Chemical & Engineering News. 1991, 23(12): 26-38
    36 G. L. Amy, R. M. Narbaitz, W. J. Cooper. Removing VOCs from Groundwater Containing Humic Substances by Means of Coupled Air Stripping and Adsorption. Journal of the American Water Works Association. 1987, 79(8): 49-54
    37 F. J. Beltran. Ozone reaction kinetics for water and wastewater systems. Lewis Publisher. 2004: 4-19
    38 B. Kasprzyk-Hordern, M. Zilek, J. Nawrócki. Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment. Applied Catalysis B: Environmental. 2003, 46(4): 639-669.
    39 R. Gerald, B. H. Rupert. UV-O3, UV-H2O2, UV-TiO2 and the photo-fenton reaction comparison of advanced oxidation processes for wastewater treatment. Chemosphere. 1994, 28(8): 1447-1454
    40 J. Hoigne, H. Bader. Rate constants of reactions of ozone with organic and inorganic compounds in water-II. Dissociating organic compounds. Water Research. 1983, 17(2): 185-194
    41 J. Hoigne, H. Bader. Rate constants of reaction of ozone with organic and inorganic compounds in water-I. Dissociating organic compounds. Water Research. 1983, 17(2): 173-183
    42钱易,汤洪霄,文湘华等.水体颗粒物和难降解有机物的特性与控制技术原理(下).中国环境科学出版社. 2000: 92-93
    43 G. V. Buxton, C. L. Greenstock, W. P. Helman, et al. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals in aqueous solution. Journal of Physical and Chemical Reference Data.1988, 17(2): 513-594
    44 U. von Gunten. Ozonation of Drinking Water: Part I. Oxidation Kinetics and Product Formation. Water Research. 2003, 37(1): 1443-1467
    45沈吉敏.水中硝基(氯)苯及多羟基单宁酸的O3/H2O2降解效果与机理.哈尔滨工业大学博士论文. 2007: 23-24
    46齐飞.铝氧化物催化臭氧氧化水中嗅味物质的效能与机理研究.哈尔滨工业大学博士论文. 2008: 28-29
    47 J. Ma, N. J. D. Graham. Degradation of atrazine by manganese-catalysed ozonation: Influence of humic substances. Water Research. 1999, 33(3): 785-793
    48 J. Ma, N. J. D. Graham. Preliminary investigation of manganese-catalysed ozonation for the destruction of atrazine. Ozone Science and Engineering. 1997, 19(3): 227-240
    49 J. Ma, N. J. D. Graham. Degradation of atrazine by manganese-catalysed ozonation-influence of radical scavengers. Water Research. 2000, 34(15): 3822-3828
    50 R. Andreozzi, A. Insola, V. Caprio, et al. The use of manganese dioxide as a heterogeneous catalyst for oxalic acid ozonation in aqueous solution. Applied Catalysis A: General. 1996, 138(1): 75-81
    51 R. Andreozzi, A. Insola, V. Caprio, et al. The kinetics of Mn(Ⅱ)-catalysed ozonation of oxalic acid in aqueous solution. Water Research. 1992, 26(7): 917-922
    52 R. Andreozzi, V. Caprio, A. Insola, et al. The ozonation of pyruvic acid in aqueous solutions catalyzed by suspended and dissolved manganese. Water Research. 1998, 32(5): 1492-1496
    53 R. Andreozzi, V. Caprio, R. Marotta, et al. Kinetic modeling of pyruvic acid ozonation in aqueous solutions catalyzed by Mn(Ⅱ) and Mn(IV) ions. Water Research. 2001, 35(1): 109-120
    54 R. Andreozzi, M. S. Lo Casale, R. Marotta, et al. n-Methyl-p-aminophenol (methol) ozonation in aqueous solution: kinetics, mechanism and toxicological characterization of ozonized samples. Water Research. 2000, 34(18): 4419-4429
    55 S. Tong, W. Liu, W. Leng, et al. Characteristics of MnO2 catalytic ozonation of sulfosalicylic acid and propionic acid in water. Chemosphere, 2003, 50(10): 1359-1364
    56 T. S. Ping, L. W. Hua, Z. J. Qing, et al. Catalytic ozonation of sulfosalicylic acid. Ozone: Science & Engineering. 2002, 24: 117-122
    57 F. J. Beltran, F. J. Rivas, R. Montero-de-Espinosa. Catalytic ozonation of oxalic acid in an aqueous TiO2 slurry reactor. Applied Catalysis B: Environmental. 2002, 39(3): 221-232
    58 Z. Parisheva, L. Nusheva, N. Danova. Advanced oxidation of solutions containing formaldehyde. Part II. Catalytic ozonation. Environment Protection Engineering. 2004, 30(3): 13-22
    59 E. Piera, J. C. Calpe, E. Brillas, et al. 2,4-Dichlorophenoxyacetic acid degradation by catalyzed ozonation: TiO2/UVA/O3 and Fe (Ⅱ)/UVA/O3 systems. Applied Catalysis B: Environmental. 2000, 27(3): 169-177
    60 Y. X. Yang, J. Ma, Q. D. Qin, et al. Degradation of nitrobenzene by nano-TiO2 catalyzed ozonation. Journal of Molecular Catalysis A: Chemical. 2007, 267(1-2): 41-48
    61 W. J. Huang, G. C. Fang, C. C. Wang. A nanometer-ZnO catalyst to enhance the ozonation of 2,4,6-trichlorophenol in water. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2005, 260(1-3): 45-51
    62 H. Jung, H. Choi. Catalytic decomposition of ozone and para-Chlorobenzoic acid (pCBA) in the presence of nanosized ZnO. Applied Catalysis B: Environmental. 2006, 66(3-4): 288-294
    63张彭义,祝万鹏,吕斌. Ni、Fe氧化物对吐氏酸废水催化臭氧化研究.上海环境科学. 1996, 15(10): 25-27
    64张涛.羟基氧化铁催化臭氧氧化水中有机物研究.哈尔滨工业大学博士论文. 2006: 17
    65 C. Cooper, R. Burch. An investigation of catalytic ozonation for the oxidation of halocarbons in drinking water preparation. Water Research. 1999, 33(18): 3695-3700
    66 R. Gracia, S. Cortes, J. Sarasa, et al. TiO2-catalysed ozonation of raw Ebro river water. Water Research. 2000, 34(5): 1525-1532
    67 F. J. Beltran, F. J. Rivas, R. Montero-de-Espinosa. A TiO2/Al2O3 catalyst to improve the ozonation of oxalic acid in water. Applied Catalysis B: Environmental. 2004, 47(2): 101-120.
    68 N. K. V. Leitner, B. Delouane, B. Legube, et al. Effect of catalysts duringozonation of salicylic acid, peptides and humic substances in aqueous solution. Ozone: Science & Engineering. 1999, 21(3): 261-276
    69 J. E. Lee, B. S. Jin, S. H. Cho, et al. Catalytic ozonation of humic acids with Fe/MgO. Reaction Kinetics and Catalysis Letters. 2005, 85(1): 65-71
    70 J. Qu, H. Li, H. Liu, et al. Ozonation of alachlor catalyzed by Cu/Al2O3 in water. Catalysis Today. 2004, 90(3-4): 291-296
    71 F. Delanoe, B. Acedo, N. Karpel Vel Leitner, et al. Relationship between the structure of Ru/CeO2 catalysts and their activity in the catalytic ozonation of succinic acid aqueous solutions. Applied Catalysis B: Environmental. 2001, 29(4): 315-326
    72 N. Karpel Vel Leitner, F. Delano, B. Acedo, et al. Reactivity of various Ru/CeO2 catalysts during ozonation of succinic acid aqueous solutions. New Journal of Chemistry. 2000, 24(4): 229-233
    73 G. L. Elizarova, G. M. Zhidomirov, V. N. Parmon. Hydroxides of transition metals as artificial catalysts for oxidation of water to dioxygen. Catalysis Today. 2000, 58(2): 71-88
    74 M. Muruganandham, J. J. Wu. Granularα-FeOOH–A stable and efficient catalyst for the decomposition of dissolved ozone in water. Catalysis Communications. 2007, 8: 668-672
    75张涛,鲁金凤,马军等.羟基氧化铁催化臭氧氧化对滤后水卤乙酸生成势的影响.环境科学. 2006, 27(8): 1580-1585
    76鲁金凤,张涛,马军等.羟基氧化铁催化臭氧氧化对滤后水THMs生成势控制作用.环境科学. 2006, 27(5): 935-940
    77马军,韩帮军,张涛等.臭氧多相催化氧化处理微污染水中试研究.环境科学学报. 2006, 26 (9): 1412-1419
    78张涛,陈忠林,马军等.水合氧化铁催化臭氧氧化去除水中痕量硝基苯.环境科学学报. 2004, 25(4): 43-47
    79 J. S. Park, H. Choi, J. Cho. Kinetic decomposition of ozone and para-chlorobenzoic acid (pCBA) during catalytic ozonation. Water Research. 2004, 38: 2284-2291
    80 N. Nilesh. Oxidation of chlorobenzene by ozone and heterogeneous catalytic ozonation. Hazardous and industrial wastes: proceedings of the Twenty-seventh Mil-Atlantic Industrial Wastes Conference. 1995: 371-382
    81 H. Bader, J. Hoigne. Determination of ozone in water by the indigo method. Water Research. 1981, 15(4): 449-456
    82徐腾娇,陈忠林,沈吉敏等.臭氧氧化降解水中对氯硝基苯的效能与机制.水处理技术. 2007, 33(1): 27-30
    83 J. W. Munch, D. J. M. Winslow, S. D. Wendelken, et al. EPA Method 556: Determination of Carbonyl Compounds in Drinking Water by Pentafluorobenzyblydroxylamine Derivatisation and Capillary Gas Chromatography with Electron Capture Detection. 1998: 1-37
    84 Y. H. Han, K. Ichikawa, H. Utsumi. A kinetic study of enhancing effect by phenolic compounds on the hydroxyl radical generation during ozonation. Water Science Technology. 2004, 50(8): 97-102
    85 H. Tamura, A. Tanaka, K. Y. Mita, et al. Surface hydroxyl site densities on metal oxides as a measure for the ion-exchange capacity. Journal of Colloid and Interface Science. 1999, 209(1): 225-231
    86张昱,杨敏,黄霞.铈铁复合氧化物阴离子吸附剂的表面酸碱特性研究.离子交换与吸附. 2003, 19(5): 423-429
    87 P. Pitter. Determination of Biological Degradability of Organic Substances. Water Research. 1976, 10(3): 231-235
    88张洪林.难降解有机物的处理技术进展.水处理技术. 1998, 24(5): 259-264
    89 J. Hoigne, H. Bader. Rate Constants of Reactions of Ozone with Organic and Inorganic Compounds in Water III: Inorganic Compounds and Radicals. Water Research. 1995, 19(8): 993-1004
    90 J. Staehelin, J. Hoigne. Decomposition of Ozone in Water in the Presence of Organic Solutes Acting as Promoters and Inhibitors of Radical Chain Reactions. Environmental Science and Technology. 1985, 19(12): 1206-1213
    91 AWWA Research Foundation and Compagie Generale des Eaux Foundmental Aspects. Ozone in water treatment: application and engineering. Lewis Publisher. 1991: 18-19
    92孙琦,盛京.纳米材料的技术发展及应用.化工进展. 1997, 1:48-53
    93 L. Q. Jing, Z. L. Xu, X. J. Sun, et al. The surface properties and photocatalytic activities of ZnO ultrafine paricles. Applied Surface Science. 2001, 180(3-4): 308-314
    94 D. B. Zhao, M. Wu, Y. Kou, et al. Ionic liquids: Applications in catalysis.Catalysis Today. 2002, 74(1-2): 157-189
    95于迎涛,徐柏庆.前驱体水解对纳米铂形状控制合成的影响.化学学报. 2003, 61: 1758-1764
    96 M. Vincent, M. Christophe, S. Jurgen, et al. Enantio selective hydrogenation of ethyl pyruvate in biphasic liquid-liquid media by reusable surfactant-stabilized aqueous suspensions of platinum nanoparticles. Journal of Catalysis. 2004, 225(1): 1-6
    97 R. M. Rioux, M. A. Vannice. Hydrogenation/dehydrogenation reactions: Isopropanol dehydrogenation over copper catalysts. Journal of Catalysis. 2003, 216(1-2): 362-376
    98 T. W. Hong, S. K. Kim, Y. J. Kim. Dehydrogenation properties of nano-/amorphous Mg2NiHx by hydrogen induced mechanical alloying. Journal of Alloys and Compounds. 2000, 312(1-2): 60-67
    99 MohammadIlyas, Ikramullah. Dehydrogenation of cyclohexanol to cyclohexanone catalysed by Y2O3/ZrO2: activation energy. Catalysis Communications. 2004, 5(1): 1-4
    100 T. Yong, K. Hidajat, S. Kawi. Reaction study of auto thermal steam reforming of methanol to hydrogen using a novel nano Cu-Zn-Al-catalyst. Journal of Power Sources. 2004, 131(1-2): 91-95
    101 J. Wang, F. Y. Wen, Z. H. Zhang, et al. Investigation on degradation of dye stuff wastewater using visible light in the presence of a novel nano TiO2 catalyst doped with upconversion luminescence agent. Journal of Photochemistry and Photobiology A: Chemistry. 2006, 180: 189-195
    102郭永,巩雄,杨宏秀.纳米微粒的制备方法及其进展.化学通报. 1996, 3: 1-4
    103 W. H. Cheng, K. C. Wu, C. H. Lee. Recent advances in nano precious metal catalyst research at Union Chemical Laboratories, ITRI. Catalysis Today. 2004, 97(2-3): 145-151
    104 T. Zhang, J. Ma. Catalytic ozonation of trace nitrobenzene in water with synthetic goethite. Journal of Molecular Catalysis A: Chemical. 2008, 279: 82-89
    105张绍岩,丁士文,刘淑娟等.均相沉淀法合成纳米ZnO及其光催化性能研究.化学学报. 2002, 60(7): 1225-1229
    106尹元根.多相催化剂的研究方法.化学工业出版社. 1988: 134-246
    107朱建育,施利毅,张仲燕等.纳米α-FeOOH颗粒的形态和结构.功能材料.2002, 33(2): 225-227
    108魏俊峰,吴大清.矿物-水界面的表面离子化和络合反应模式.地球科学进展. 2000, 15(1): 90-96
    109杨南如.无机非金属材料测试方法.武汉工业大学出版社. 1993: 121-128
    110 F. W. Jason, B. H. Gar. Surface Characterization Study of the Thermal Decomposition of AgO. Journal of Physical Chemistry. 1994, 98(34): 8519-8524
    111 J. S. Hammond, S. W. Gaarenstroom, N. Winograd. X-ray Photoelectron Spectroscopic Studies of Cadmium- and Silver-oxygen Surfaces. Analytical Chemistry. 1975, 47: 2193-2199
    112张利文,丁铁柱,王强等. Ln0.5Sr0.5CoO3-δ阴极薄膜材料的XRD和XPS研究.稀土. 2008, 29(5): 5-9
    113王丹军,郭莉,李东升等. CuO纳米粒子的谱学特性研究.光谱学与光谱分析. 2008, 28(4): 788-792
    114刘社田,于作龙,于亚利等.钙钛石型复合氧化物催化剂LaMnyCo1-yO3的催化性能研究: I.在氨氧化反应中氧的形态和催化性能的关系.化学学报. 1993, 51: 543-549
    115 W. H. Glaze, J. W. Kang, D. H. Chapin. Chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation. Ozone Science and Engineering. 1987, 9(4): 335-352
    116陈忠林,沈吉敏,李学艳等.臭氧化去除水中对硝基氯苯动力学及机理.化工学报, 2006, 57(10): 2439-2444
    117沈吉敏,陈忠林,李学艳等. O3/ H2O2去除水中硝基苯效果与机理.环境科学. 2006, 27(9): 1791-1797.
    118赵雷,孙志忠,马军.蜂窝陶瓷催化臭氧化降解水中草酸的研究.环境科学. 2007, 28(11): 2533-2538
    119 G. L. Elizarova, G. M. Zhidomirov, V. N. Parmon. Hydroxides of transition metals as artificial catalysts for oxidation of water to dioxygen. Catalysis Today. 2000, 58(2): 71-88
    120 Y. Z. Pi, E. Mathisa, C. S. Jean. Effect of phosphate buffer upon CuO/Al2O3 and Cu(II) catalyzed ozonation of oxalic acid solution. Ozone Science and Engineering. 2003, 25(5): 393-397
    121 R. L. Parfitt, J. D. Russell. Adsorption on hydrous oxides. IV Mechanisms of adsorption of various ions on goethite. Journal of Soil Science. 1977, 28: 297-305
    122 F. Sunada, A. Heller. Effects of water, salt water, and silicone overcoating of the TiO2 photocatalyst on the rates and products of photocatalytic oxidation of liquid 3-octanol and 3-octanone. Environmental Science & Technology. 1998, 32(2): 282-286
    123 M. C. D. A. Mateus, A. M. da Silva, H. D. Burrows. Kinetics of photodegradation of the fungicide fenarimol in natural waters and in various salt solutions: salinity effects and mechanistic considerations. Water Research. 2000, 34(4): 1119-1126
    124 E. H. Goslan, D. A. Fearing, J. Banks, et al. Seasonal variations in the disinfection by-product precursor profile of a reservoir water. AQUA. 2002, 51(8): 475-482
    125 F. Xiong, N. J. D. Graham. Removal of atrazine through ozonation in the presence of humic substances. Ozone Science and Engineering. 1992, 14(3): 263-268
    126王凯雄.水化学.化学工业出版社. 2001: 252-253
    127 U. Von Gunten. Ozonation of drinking water: Part I. Oxidation kinetics and product formation. Water Research. 2003, 37: 1443-1467
    128 K. M. Bulanin, A. V. Alexeev, D. S. Bystrov, et al. Infrared study of ozone adsorption on SiO2. Journal of Physical Chemistry. 1994, 98(19): 5100-5103
    129 K. M. Bulanin, J. C. Lavalley, A. A. Tsyganenko. Infrared study of ozone adsorption on TiO2(Anatase). Journal of Physical Chemistry B. 1995, 99: 10294-10298
    130 K. M. Bulanin, J. C. Lavalley, J. Lamotte, et al. Infrared study of ozone adsorption on CeO2. Journal of Physical Chemistry B. 1998, 102: 6809-6816
    131 K. M. Bulanin, J. C. Lavalley, A. A. Tsyganenko. Infrared study of ozone adsorption on CaO. Journal of Physical Chemistry B. 1997, 101: 2917-2922
    132杨庆良,谢家理,许正等.高湿度条件下O3在MnOx/γ-Al2O3催化剂上的分解.四川大学学报. 2001, 38(2): 226-229
    133崔津津,杨秋华.纳米钙钛矿型La1-xAgxMnO3的光催化活性研究.稀有金属材料与工程. 2007, 36(增刊3): 420-423
    134井立强,孙晓君,蔡伟民等. Pd/ZnO和Ag/ZnO复合纳米粒子的SPS和XPS研究.物理化学学报[J]. 2002, 18(8): 754-758.
    135井立强,袁福龙,侯海鸽等. ZnO纳米粒子的表面氧空位与其光致发光和光催化性能的关系.中国科学B辑:化学. 2004, 34(4): 310-314

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700