可生物同化有机碳在给水处理单元过程中的变化规律
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
可生物同化有机碳(Assimilable Organic Carbon,简称AOC)是可生物降解有机物中能被微生物转化成其自身菌体的部分。AOC可反映饮用水的生物稳定性,即水中可生物降解有机物支持异养菌生长的潜力。生物不稳定的饮用水将给管网和管网水质带来严重影响,因此关于给水处理过程中AOC变化规律的研究具有重要的现实意义。
     本课题中AOC测定采用LeChevallier法,接种方式为荧光假单胞菌—P17菌株和螺旋菌—NOX菌株分别接种。绘制产率标准曲线,发现在高浓度(大于200μg·L~(-1)乙酸碳)时得到的P17产率系数小于低浓度的产率系数,高低浓度的产率系数分别为7.5×106和1.4×107cfu·mL~(-1)。NOX菌的产率曲线中高低浓度的产率系数保持一致,约为7.1×108cfu·mL~(-1)左右。通过江水超滤膜过滤进行AOC不同分子量分布的测定,发现AOC主要以分子量小于1ku的有机物为主体,占AOC总量的43%。
     松花江原水AOC较高,而且随季节变化波动较大。夏季最高可达2714μg·L~(-1);冬季最低为452μg·L~(-1)。以松花江水为水源水的S水厂常规给水处理各单元过程中,混凝单元对AOC去除率最高,春季和冬季的去除率达到30%左右,夏季和秋季可达到60~80%;过滤单元对AOC的去除不稳定;加氯消毒后AOC增加20%左右。整个常规给水处理工艺中,以AOC-NOX为代表的羧酸类物质只占AOC的10%左右,经消毒后这一比例才略有上升。常规给水处理工艺抗AOC冲击负荷较低,出厂水AOC随原水变化而波动,最低达到400μg·L~(-1),属于生物不稳定饮用水。AOC在管网内的消耗随温度变化,温度越高消耗越快,总消耗量都在300μg·L~(-1)以上,说明管网内有可能存在细菌再繁殖问题。
     考察了不同水体、混凝剂、混凝剂投量、pH值和钙离子浓度等混凝条件下AOC变化规律和水质变化情况。研究发现,江水混凝过程中硫酸铝在高投量下对AOC的去除率最高达24.5%,而相同投量下氯化铁混凝的去除率可以达到65.9%。人工配水混凝在低投量下铝、铁混凝剂对AOC的去除率分别为71.8%和93.0%。氯化铁混凝剂在去除AOC和其它混凝效果方面均优于硫酸铝。在中性和弱酸性pH值条件下混凝AOC的去除率最高,达到86.1%,碱性条件下混凝AOC反而增加了29.1%。复合铝铁混凝剂对AOC的影响有限,增加Ca2+离子浓度可使AOC去除率从54.1%上升到80.4%。
     分别选取了高锰酸钾、臭氧和次氯酸钠三种预氧化剂来研究AOC在预氧化过程中的变化规律。三种预氧化方法混凝后的AOC随预氧化剂投量增加而增长,AOC最高增长率分别为61.5%、86.9%和81.1%。三种预氧化过程中混凝前AOC的增长率分别为23.6%、33.5%和17.7%。臭氧预氧化产物中AOC-NOX所代表的羧酸类物质较多,占AOC的40%;高锰酸钾和次氯酸钠氧化后水体中能被P17菌利用的基质增加。在三种预氧化剂的预氧化中,AOC/TOC(有机物的生物可同化性)分别从8.2%增加到14.0%、16.7%和10.8%。高锰酸钾和臭氧预氧化过程中TOC的变化主要是由其中BDOC的变化而引起的;而次氯酸钠预氧化中TOC增长了5.2%,主要来自于AOC的增加。在三种预氧化过程中,不能被生物降解的有机物(NBDOC)都没有随氧化剂投量的增加而变化。臭氧和高锰酸钾都是在投量低于1.0mg·L~(-1)时的助凝效果较好,而次氯酸钠是在投量高于1.0mg·L~(-1)时有微弱助凝效果。
     选取了三种不同载体—陶粒、硅胶和沸石负载TiO2,以考察AOC所代表的小分子物质在臭氧多相催化氧化过程中的变化规律。臭氧催化氧化比单纯的臭氧氧化能更彻底地将大分子有机物氧化成小分子有机物。陶粒、硅胶和沸石负载TiO2等三种催化氧化条件下,将AOC从大约300μg·L~(-1)分别增加到674μg·L~(-1)、847μg·L~(-1)和882μg·L~(-1),AOC/TOC从初始的4.7%分别升高到30.5%、33.2%和46.0%,明显地提高了水中有机物的可生物降解性。增加臭氧投量,催化氧化可使小分子有机物部分被矿化,水中AOC下降13.0%。以AOC-NOX所代表的羧酸类物质在催化氧化过程中明显增加,占总AOC的90%以上,改变了AOC的组成比例。与未改性时相比,改性后TiO2催化氧化出水的AOC降低了17.9%,对催化剂的进一步改进可能使有机物的可生化性控制在一个合理的范围。
Assimilable Organic Carbon (AOC) is the fraction of organic carbon that is most easily consumed by microorganisms, resulting in a proliferation of microbial cells. It has been regarded as one of the most important quality parameters for microbiological stability in drinking water treatment and distribution systems. Removal of AOC during the production of drinking water not only deprives heterotrophic bacteria of nutrients indispensable for their survival and multiplication in the water phase, but also limits bacterial colonization in drinking water distribution system.
     AOC was analysed by a modification of the LeChevallier method. The maximum growth of Pseudomonas fluorescens P17 and Spirillum sp. strain NOX which were inoculated into duplicate water samples respectively was converted to the amount of AOC. The yield factor of strain P17 at high concentration remains below the level expected on the yield factors observed at low concentrations, and the Y value of strain NOX does not decrease. Yield factors for the test strains were taken from standardization calibration curves experiments and were 7.5×106 and 1.4×107 cfu·mL~(-1) for strain P17 at high and low concentration and 7.1×108 cfu·mL~(-1) for strain NOX. The AOC concentration of raw water was fractionated into seven fractions by ultrafiltration, and the AOC of molecular weight less than 1ku is the largest proportion, reaching 43%.
     The AOC in Songhua River source is always at a high level and ranged from 452μg·L~(-1) to 2714μg·L~(-1), depending on the season, with the highest value in summer and the lowest in winter. Coagulation was the most effective step on the AOC removal in the conventional treatments of S plant, with the removal rate of about 30% in spring and winter, and 60~80% in summer and autumn. The effect of AOC removal by filtration was not stable, and the AOC was enhanced about 20% by chlorine disinfection. AOC-NOX constituted about 10% proportion of AOC in conventional water treatment, and the ratio was enhanced by chlorine in disinfection. The AOC in the effluent of the plant depends on the concentration of influent, and the AOC in the effluent (more than 400μg·L~(-1)), was above the limits for biostability. The AOC declined to above 300μg·L~(-1) along the distribution system, depending on the temperature. Most likely, biofilm processes played an important role in AOC uptake, and multiplication of bactecia in distribution systems posed a potential health threat to citizen.
     The variation of AOC under different coagulation conditions was investigated, including coagulant dosages, pH value, poly aluminum iron sulphate coagulant, waters from different source and Ca2+ iron concentration. It was found that the removal rate of AOC during alum coagulation in raw surface water was only about 24.5% at high coagulant dosage. Higher removal rate of AOC with the case of FeCl3 coagulation (about 65.9%) was observed under the same dosages. The removal rates of AOC during alum and iron coagulation of the synthetic water were 71.8% and 93.0% at low coagulant dosages, and the case of coagulation with FeCl3 also resulted in a better coagulation effect. It indicated that the pH of coagulation is a very influential parameter for the removal of AOC. The highest AOC removal rate after coagulation was obtained at initial pH 6.5 and 7.0, reaching 86.1%; AOC was increased to 29.1% after coagulation when the water is in alkaline condition. Poly aluminum iron sulphate coagulant had limited effect on the AOC value and enhancing Ca2+ concentration increased the removal of AOC from 54.1% to 80.4%.
     Three oxidants were selected in studying the variation of AOC in preoxidation process, including potassium permanganate, ozone and NaClO. AOC was increased by 61.5%, 86.9% and 81.1% respectively with the increase of oxidant dosages after coagulation. The AOC was increased by 23.6%, 33.5% and 17.7% only in preoxidation before coagulation. More AOC-NOX, which represents carboxylic acids, was formed and constituted about 40% of AOC during O3 preoxidation, while permanganate and NaClO preoxidation increased the substrate available for strain P17. The AOC/TOC ratio, which indicated assimilation ability of organic carbon, was increased from 8.2% to 14.0%, 16.7% and 10.8% in the three preoxidations respectively. The variation of TOC during permanganate and O3 preoxidation resulted from the variation of BDOC, and AOC increase was responsible for TOC increase by 5.2% during NaClO preoxidation process. The concentration of NBDOC changed little with the increase of oxidant dosages in the three preoxidation processes. Permanganate and O3 preoxidation exhibited better coagulation effect with the dosage less than 1.0mg·L~(-1), while better condition efficientcy was achieved at higher NaClO dosages.
     The variation of AOC was investigated during catalytic oxidation with titanium dioxide nano-particles loaded on several selected carriers in ozonation such as cerami, silica gel and zeolite. Catalytic ozone oxidation is more effective than ozonation alone for the degradation of large molecular weight fractions of organics into lower molecular size. The AOC increased to 674μg·L~(-1), 847μg·L~(-1) and 882μg·L~(-1) from 300μg·L~(-1) by the catalytic ozonation in the presence of cerami/TiO2, silica gel/TiO2, zeolite /TiO2 respectively; and the proportion of AOC in TOC could increase to 30.5%、33.2% and 46.0% from 4.7%, respectively. The catalytic oxidation greatly enhanced the biologradability of organics in water. With ozone dosage increased, AOC reduced 13.0% because some of the low molecular sized organic carbon was mineralized. In these processes, AOC-NOX mostly consisting of carboxyl acid increase rapidly, resulting in the increase of the proportion of AOC-NOX in AOC to 90% and the majority of AOC turned over from AOC-P17 to AOC-NOX. The AOC was less (17.9%) in modified catalytic oxidation than TiO2 catalytic oxidation, and it is assumed that advanced modification could reduce AOC efficiently to a reasonable level.
引文
1钱正英,张光斗.中国可持续发展水资源战略研究综合报告及各专题报告.中国水利水电出版社, 2001, 2~4.
    2王占生,刘文君.微污染水源饮用水处理.中国建筑工业出版社, 1999, 1~1.
    3张宗枯,施德鸿.中国水污染问题.中国环境问题院士谈.中国纺织出版社, 2001, 139~152.
    4扬志清. 21世纪水资源展望.水资源保护, 2004, 4: 66~68.
    5吴少杰,苗利.当前我国城市污水资源化存在的问题与对策.环境保护, 2003, 5: 50~52.
    6金兆丰,王健.我国污水回用现状及发展趋势.环境保护, 2001, 11: 39~41.
    7罗晓鸿,王占生,张锡辉.饮用水消毒剂的比较与评价.给水排水, 1994, 20(10):43~45.
    8黄君礼.二氧化氯在饮用水消毒中应用前景.环境科学进展, 1993, 1(5):50~55.
    9 R. R. Trussell, M. D. Umphres. The Formation of Trihalomethanes. J. AWWA, 2008, 70(12):604~612.
    10 S. W. Krasner, M. J. McGuire, J. G. Jacangelo. The Occurrence of Disinfection By-products in US Drinking Water. J. AWWA, 2006, 81(8):41~52.
    11 D. A. Reckhow, P. C. Singer, D. L. Malcolm. Chlorination of Humic Materials: Byproduct Formation and Chemical Interpretations. Environ. Sci. Technol., 1990, 24(11): 1655~1664.
    12 V. Breemen. The Fate of Fulvic Acids during Water Treatment. Wat. Res., 2007, 13: 771~779.
    13朱振岗.松花江水中有机污染物的致癌危险性研究.中国环境科学, 1985, 5(3): 7~12.
    14岳舜林.生物滤池处理黄浦江源水的研究.给水深度处理学术交流会议论文, 1988, 25~29.
    15马军,蔡国庆,翟学东.臭氧催化氧化与活性炭联用提高电厂供水水质.给水排水, 2001, 27(11): 43~46.
    16 K. C. Marshell. Role of bacterial adhesion in biofilm formation and biocorrosion. Proceedings of the international workship on industrial biofoulingand biocorrosion. Stuttgart, 1990, 13~14.
    17 Y. P. Tsai, T. Y. Pai, J. M. Qiu. The impacts of the AOC concentration on biofilm formation under higher shear force condition. Biotechnology, 2004, 111: 155~167.
    18 L. A. Navy. Biofilm composition formation and control in the Los Angeles Aque ductsystem. J. AWWA, 2005.
    19 M. W. Lechevallier, C. D. Lowry. Disinfection of biofilms in a model distribution system. J. AWWA, 1990, 82(7):87~99.
    20 R. J. Bull, L. S. Birnbaum. Water chlorination-essential process or cancer hazard. Fund. And Appl. Toxicol., 2005, 23(2): 155~166.
    21 Van Der Kooij. Assimilable Organic Carbon as Indicator of Bacterial Regrowth. J. AWWA, 1992, 84 (2): 57~65.
    22 L. J. Hem, H. Efraimsen. Assimilable Organic Carbon in Molecular Weight Fraction of Natural Organic Matter. Wat. Res., 2001, 35(4): 1106~1110.
    23 F. A. Hammes, T. Egli. New method for assimilable organic carbon determination using flow-cytometric enumeration and a natural microbial consortium as inoculum. Environ. Sci. Technol., 2005, 39: 3289~3294.
    24 Van Der Kooij. AOC Manual. Kiwa Water Research., 2001, 212(s).
    25 Van Der Kooij. The ovvurrence of Pseudomonas spp. in surface water and in tap water as determined on citrate media. Antonie van Leeuwenhoek J. Microbiol, 1978, 43: 187~197.
    26 Van Der Kooij. Characterization and classification of fluorescent pseudomonads from tap water and surface water. Antonie van Leeuwanhoek J. Microbiol, 1979, 45: 225~240.
    27 Van Der Kooij. Etermining the Concentration of easily asimilable organic carbon in drinking water. J. AWWA, 1982, 74(10): 540~545.
    28 Van Der Kooij, W. A. M. Hijnen. Substrate Utilization by an Oxialate-Consuming Spirillum Speciesinits Growth in Ozonated Water. Appl. Environ. Micro, 1984, 47(3): 551~559.
    29 L. A. Kaplan, T. L. Bott, D. J. Reasoner. Evaluation and simplification of the assimilable organic carbon nutrient bioassay for bacterial growth in drinking water. Appl Environ Microbiol, 1993, 59: 1532~1539.
    30 L CheckLight. Real-time monitoring of assimilable organic carbon in raw drinking water [EB/OL]. http://www. CheckLight. Co.il / pdf / case_studies /aoc-case-study. Pdf, 2004.
    31 R. Kelly. Life in the distribution system: monitoring biofilm formation potentials. Water Conditioning &Purification, 2004, 46(8): 39~40.
    32 T. Miettinen, T. Vartiainen, P. J. Martikainen. Contamination of drinking water. Nature, 1996, 381: 654~655.
    33 T. Miettinen, T. Vartiainen, P. J. Martikainen. Phosphorus and bacterial growth in drinking water. Appl. Environ. Microbiol, 1997, 63(8): 3242~3245.
    34 S. Sathasivan, S. Ohgaki, K. Yamamoto, et al. Role of inorganic phosphorus in controlling regrowth in water distribution system. Wat. Sci. Tech, 2004, 35(8): 37~44.
    35 S. Sathasivan, S. Ohgaki. Application of new bacterial regrowth potential method for water distribution system—a clear evidence of phosphorus limitation. Wat. Res., 1999, 33(1): 137~144.
    36 J. P. Chandy, M. L. Angles. Determination of nutrients limiting biofilm formation and the subsequent impact on disinfectant decay. Wat. Res., 2001, 35(11): 2677~2682.
    37 J. Frias, F. Ribas, F. Lucena. Effects of different nutrients on bacterial growth in a pilot distribution system. Antonievan Leeuwenhoek, 2005, 80: 129~138.
    38 P. Monika, H. Koen, V. K. Chris. Investigation of microbially available phosphorus (MAP) in flemish drinking water. Wat. Res., 2005, 39: 2267–2272.
    39 D. S. Baldwin. Reactive“organic”phosphorus revisited. Wat. Res., 1998, 32(8): 2265~2270.
    40 M. J. Lehtola, I. T. Miettinen, V. T. Martikainen, et al. A new sensitive bioassay for determination of microbially available phosphorus in water. Appl. Environ. Microbiol, 1999, 65(5): 2032~2034.
    41姜登岭,张晓健,饮用水中磷对微生物生长的限制作用.中国给水排水, 2004, 20(1): 26~28.
    42 S. Sarhasivan, S. Ohgaki, K. Yamamoto. Role of inorganic Phosphorus in controlloling regrowth in water distribution systerm. Wat. Sci. Tech., 1997, 35(18): 37~44.
    43 T. Miettinen, T. Vartiainen, P. J. Martikainen. Detementation of Assimilable Organic Carbon in Humus-richDrinking Waters. Wat. Res., 1999, 33(10): 2277~2282.
    44 Van der Kooij, D. V. Lieverloo, J. H. M. Schellart. Distributing drinking waterwithout disinfectant: highest achievement or height of folly? Water Supply: Res. Technol. AQUA, 1999, 48(1), 31~37.
    45 M. W. LeChevallier, N. E. Shaw, L. A. Kaplan. Development of a rapid AOC method for water. Appl. Environ. Microb., 1993, 59: 1526~1531.
    46 M. W. LeChevallier, N. J. Welch, D. B. Smith. Full-scale studies of factors related to coliform regrowth in drinking water. Appl. Environ. Microbio., 1996, 62(7): 2201~2211.
    47 Kaplan, D. J. Reasoner, E. W. A. Rice. Surney of BOM in US Drinking Waters. J. AWWA, 1994, 86(2): 121~133.
    48周鸿,王占生,张晓建.不同水处理工艺对可同化有机碳(AOC)的去除特性研究.广州大学学报, 2005, 4(1):91~94.
    49 H. Frederik, Urs von Guntena, Mechanistic and kinetic evaluation of organic disinfection by-product and assimilable organic carbon (AOC) formation during the ozonation of drinking water. Wat. Res., 2006, 40, 2275 ~ 2286.
    50 R. P. Schneider, L. M. Ferreira, P. Binder. Dynamics of organic carbon and of bacterial populations in a conventional pretreatment train of a reverse osmosis unit experiencing severe biofouling. Membrane Science, 2005, 266: 18~29.
    51 M. Huck, P. M. Fedorak, W. R. Anderson. Formation and Removal of Assimilable Organic Carbon during Biological Treatment. J. AWWA, 1991, 83(12): 69~80.
    52王丽花,周鸿,张晓建等.某市饮用水生物稳定性研究.给水排水,2001, 27(12): 23~25.
    53刘文君.饮用水中可生物降解有机物和消毒副产物特性研究.北京高等教育出版社,2003.
    54 V. Lund, D. Hongve. Ultraviolet irradiated water containing humic substrates inhibits bacterial metabolism. Wat. Res., 2004, 28(5): 1111~1116.
    55 L. Markku, T. M. Ilkka, V. Terttu. Impact of UV disinfection on microbiallyavailable phosphorus, organic carbon, and microbial growth in drinking water. Wat. Res., 2004, 37: 1064~1070.
    56 Volk, K. Bell, E. Ibrahim, et al. Impact of Enhanced and Optimized Coagulation on Removal of Organic Matter and its Biodegradable Fraction in Drinking Watert. Wat. Res., 2000, 34 (12): 3247~3257.
    57 Urfer, P. M. Huck. Measurement of biomass activity in drinking water biofilters using a respirometric method. Wat. Res, 2001, 35(6):1469~1477.
    58 C. Fonseca, R. S. Summers, M. T. Hernandez. Comparative measurements of microbial activity in drinking water biofilters. Wat. Res., 2001, 35(16): 3817~3824.
    59 W. LeChevallier, W. C. Becker, P. Schorr, et al. Evaluating the Performance of Biologically Active Rapid Filters. J. AWWA, 1992, 84(4): 136~146.
    60 Miltner, H. M. Shukairy, R. S. Summers. Disinfection By-product formation and Control by Oaonation and Biotreatment. J. AWWA, 2006, 84(11): 53~62.
    61姜登岭,徐丽丽,孙善利.水源水中AOC和BDOC的去除.工业用水与废水,2006,37(3):20~23.
    62 J. Y. Hu, Z. S. Wang, W. J. NG, et al. The Effect of Water Treatment Processes on the Biological Stability of Potable Water. Wat. Res., 1999, 33(11): 2587~2592.
    63 S. L. Zhang, P. M. Huck. Removal of AOC in Biological Water Treatment Processes: A Kinetic Modeling Approach. Wat. Res., 2006, 30(5): 1195~1207.
    64吴红伟,刘文君,张淑琪等.提供生物稳定饮用水的最佳工艺.环境科学, 2000,21(3) : 64~67.
    65 R. S. Summers. Activated Carbon Adsorption of Humic Substances. Colloid Interface Sci., 1988, 122(2): 367~381.
    66龙小庆,罗敏,王占生.活性炭—纳滤膜工艺去除饮用水中总有机碳和可同化有机碳.水处理技术,2000,26(6):351~354.
    67 J. G. Jacangelo, J. DeMarco, D. M. Owen, et al. Selected Processes for Removing NOM: an Overview. J. AWWA, 2005, 87(1): 64~77.
    68 W. LeChevallier. The Case for Maintaining a Disinfectant Residual. J. AWWA, 1999, 91(1): 86~94.
    69 C. Escobar, A. A. Randall. Assimilable Organic Carbon(AOC) and Biodegradable Dissolved Organic Carbon(BDOC): Complementary Measurements. Wat. Res., 2001, 35(18): 4444~4454.
    70 C. Escobar, A. A. Randall. Influence of NF on Distribution System Biostability. J. AWWA, 1999, 91(6): 76~89.
    71 P. Noeon, K. Boksoon, S. Minjeong. Application of various membranes to remove NOM typically occurring in Korea with respect to DBP, AOC and transport parameters. Desalination, 2005, 178: 161~169.
    72 T. F. Speth, A. M. Gusses, R. S. Summers, Evaluation of nanofiltration pretreatments for flux loss control. Desalination, 2000, 130~131.
    73 P. H. Meesters, J. W. Groenestijin, J. Gerritse. Biofouling reduction in recirculating cooling system through biofiltration of process water. Wat. Res., 2004, 37: 525~532.
    74 Y. Hu, L. F. Song, S. L. Ong. Biofiltration pretreatment for reverse osmosis (RO) membrane in a water reclamation system. Chemosphere, 2005, 59: 127~133.
    75李灵芝. RO深度处理自来水中有害物质.辽宁化工,1998,27(5): 271~273.
    76李绍峰,刘伟,黄君礼. NF和RO膜用于饮用水处理的研究.南京理工大学学报,2003,27(1) : 93~97.
    77 U. Von Gunten. Ozonation of drinking water. Part I. Oxidation kinetics and product formation. Wat. Res., 2003a, 37: 1443~1467.
    78 Z. S. Can, M. Gurol. Formaldehyde formation during ozonation of drinking water. Ozone Sci. Eng, 2004, 25(1): 41~51.
    79 Nawrochi, J. Swietlik. Influence of ozonation conditionson aldehyde and carboxylic acid formation. Ozone Sci. Eng, 2005, 25 (1): 53~62.
    80吴红伟,刘文君,王占生.臭氧组合工艺去除饮用水源水中有机物的效果.环境科学,2000,21(4): 29~33.
    81 Volk, P. Roche, J. C. Joret, et al. Comparison of the Effect of Ozone-Hydrogen Peroxide System and Catalytic Ozone on the Biodegradable Organic Matter of a Fulvic Acid Solution. Wat. Res., 1997, 31(3): 650~656.
    82 C. Bonnet, B. Welte, A. Montiel. Removal of Biodetradable Dissolved Organic Carbon in a Water Treatment Plant. Wat. Res, 2007, 26(12): 1673~1680.
    83 S. M. Bradford, C. J. Palmer, B. H. Olson. Assimilable Organic Carbon Concentrations in Southern California Surface and Groundwater. Wat. Res., 2004, 28(2): 427~435.
    84 A. Hammes, E. Salhi, O. Koster, et al. Mechanistic and kinetic evaluation of organic disinfection by-product and assimilable organic carbon (AOC) formation during the ozonation of drinking water. Wat. Res., 2006, 40: 2275~2286.
    85张淑琪,刘彦竹,胡江泳,等.臭氧氧化自来水生物稳定性研究.环境科学, 1998, 19(5) : 34~36.
    86孔令宇,张晓建,王占生.臭氧—生物活性碳与单独活性炭工艺处理效果比较.中国给水排水, 2006, 22(11): 49~51.
    87段蕾,李伟光,丁驰,等.臭氧在生物活性碳工艺中作用的中试研究.给水排水, 2007, 33(2): 30~33.
    88 P. Servais, G. Billen. Determination of the Biodegradable Fraction of Dissolved Organic Matter in Waters. Wat. Res., 1987, 21: 445~450.
    89 P. M. Huck. Measurement of Biodegradable Organic Matter and Bacterial Growth Potential in Drinking Water. J. AWWA, 1990, 82(7): 78~86.
    90 C. Joret, Y. Levi. Biodegradable Dissolved Organic Carbon (BDOC) Content of Drinking Water and Potential Regrowth of Bacteria. Wat. Sci. Tech, 1991, 24(2): 95~101.
    91 A. Cipparone, A. C. Diehl. Ozonation and BDOC Removal: Effecton Water Quality. J. AWWA, 1997, 89(2): 84~97.
    92 J. Lehtola, I. T. Miettinen, T. Vartiainen, et al. Microbially available organic carbon, phosphorus, and microbial growth in ozonated drinking water. Wat. Res., 2001, 35: 1635~1640.
    93 C. Escobar, A. A. Randall. Case study: ozonation and distribution system biostability. J. AWWA, 2001, 93 (10): 77~89.
    94 Isabel, S. Escobar. Assimiable Organic Carbon (AOC) and Biodegrable Dissolved Organic Carbon (BDOC): Complementary Measurement. Wat. Res., 2001, 35(8): 4444~4445.
    95 H. Bader, J. Hoigne. Determination of Oaone in Wter by the Indigo Method: a Submitted Standard Method. Ozone Sci. Eng., 1982, 4(4): 169~176.
    96 S. Elovitz, U. Von Gunten. Hydroxyl Radical/ozone Ratio During Ozonation Processes. I. The Rct Concept. Ozone Sci. Eng. 1999, 21(3): 239~260.
    97 R. A. Gibbs, J. E. Scutt, B. T. Croll. Assimilable organic carbon concentration and bacterial numbers in a water distribution system. Water Science and Technology, 1993, 27 (3-4): 159~166.
    98白晓慧,朱睿宁,张晓红.饮用水中AOC测定的优化与改进.净水技术, 2008, 27(3): 48~50.
    99周德庆.微生物学教程.北京:高等教育出版社, 1993, 190页.
    100 Larw, E. Harry. Assimilable Organic Carbon in Molecular Weight Fractions of Natural Organic Matter. Wat. Res., 2001, 35(4): 1106~1110.
    101 H. H. Yeh, I. C. Tseng, W. L. Lai, et al. Chlorine residual and assimilable organic carbon for drinking water quality control in Taiwan. WaterSupply, 2008, 16(3-4): 237~243.
    102李欣,王郁萍,赵洪宾.给水管网中细菌再生长的研究.哈尔滨工业大学学报, 2002, 34(3): 117~343.
    103 Y. P. Tsai, T. Y. Pai, J. M. Qiu. The impacts of the AOC concentration on biofilm formation under higher shear force condition. Biotechnology, 2004, 111: 155~167.
    104 P. Chandy, M. L. Angles. Determination of nutrients limiting biofilm formation and the subsequent impact on disinfectant decay. Wat. Res., 2001, 35 (11): 2677~2682.
    105 C. Escobar, A. A. Randall. Case study: ozonation and distribution system biostability. J. AWWA, 2001, 93(10): 77~89.
    106 H. Zhou, S. Q. Zhang, Han F. Mechanism study of the coagulant impact on mutagenic activity in water. Chinese Journal of Environmental Science, 1999, 20: 41~44.
    107胡万里.混凝/混凝剂/混凝设备.北京:化学工业出版社, 1999, 29~32.
    108韩宏大,叶伟,叶长青,等.新型聚合铝的生产性试验研究.环境科学, 2006, 27(4): 704~708.
    109刘海龙,夏忠欢,王东升,等.典型南方水强化混凝有机物分级处理研究.环境科学, 2006, 27(5): 909~912.
    110 A. Gray. The preparation, characterization, and use of inorganic iron (Ш) polymers for coagulation in water treatment. Doctoral dissertation, The Johns Hopkins Univ., Baltimore, MD, 1988.
    111 A. Dempsey. Reaction between fulvic acid and aluminum: Effect on the coagulation process. In: I. H. Suffet and P. Mac Carthy (editors). Aquatic Humic Substance: Influenceon Fate and Treatment of Pollutant. ACS, Washington, D. C. 1989.
    112 J. Semmens, K. Ayers. Removal of trace organics by coagulation from Mississippi water. J. AWWA, 1985, 77: 79 ~84.
    113 Lefebvre, B. Legube. Coagulation par le Fe (III) de substances humiques extradites d'eaux de surface: effects du pH et de la concentration en substances humiques. Wat. Res., 1990, 24: 591~606.
    114蒋展鹏,廖孟钧.腐殖质及其在环境污染控制中的作用.环境污染与防治, 1990, 13(3): 24~28.
    115 S. J. Randtke. Organic contaminant removal by coagulation and related process combinations. J. AWWA, 2005, 80(5): 40 ~56.
    116 Schniver. Humic Matter in Environment. Chemical Industry Press, P. R. China,(Canada), 1979.
    117张贵春.微污染水源饮用水处理工艺及其水质研究: 1学位论文2.北京:清华大学环境工程系, 1994.
    118 Zhang. Mechanism study on organics removal with the conventional water treatment process in fulvic acid contaminated surface water. In Environ. Eng. Manage. WIT Press/Computational Mechanics, UK, 1998, 179~188.
    119 C. Zhang, Z. S. Wang. A study on the removal of mutagens from water by various united water purification process. Wat. Res., 1999, 34: 1781~1790.
    120周玲玲,张永吉,孙丽华.铁盐和铝盐混凝对水中天然有机物的去除特性研究.环境科学, 2008, 29(5): 1187 ~1191
    121 C. C. Chiena, C. M. Kaoa, C. D. Dongb. Effectiveness of AOC removal by advanced water treatment systems: a case study. Desalination, 2007, 202: 318~325.
    122 W. Liua, H. Wua, Z. Wanga, Investigation of assimilable organic carbon (AOC) and bacterial regrowth in drinking water distribution system. Wat. Res., 2002, 36: 891~898.
    123 Easton, P. Jago. The impact of water treatment on AOC removal–experiences at UK water works. In: Proc. AWWA WQTC Conf., Miami; FL Nov. 1993, 7~11.
    124 V. Christlan, I. B. Kimberly, Eva. Impact of enhanced and optimized coagulation of removal of organic matter and its biodegradable fraction in drinking water. Wat. Res., 2000, 34: 3247~3257.
    125 Frederik, M. Sebastien, S. Elisabeth, et al. Formation of assimilable organic carbon (AOC) and specific natural organic matter (NOM) fractions during ozonation of phytoplankton. Wat. Res., 2007, 41: 1447~1454.
    126 C. Muller, R. Forster, S. Gammeter, et al. Influence of ozonated cyanobacteria on bacterial growth in rapid sand filters. J. Water Supply: Res. Technol.-AQUA, 2005, 52(5): 333~340.
    127王志红,崔福义.聚合铝类混凝剂及混凝条件对余铝的影响试验研究给水排水,2004,11(2):25~27.
    128 C. Volk, K. Bell, E. Ibrahim, et al. Impact of Enhanced and Optimized Coagulation on Removal of Organic Matter and its Biodegradable Fraction in Drinking Watert. Wat. Res., 2000, 34(12): 3247~3257.
    129 K. James, Edzwald. Enhanced coagulation: us requirement sand abroader view. Wat. Sci. Tech., 1999, 40(9): 63~70.
    130冯利,汤鸿霄.铝盐最佳混凝形态和最佳pH范围研究.环境化学, 1998, 17(2): 163~169.
    131 E. Gregor, C. J. Nokes, E. Fenton. Optimizing natural organic matter removal from low turbidity waters by controlled pH adjustment of aluminum coagulation. Wat. Res., 1997, 31(12): 2949~2958.
    132 Plaschke, J. Romer, R. Klenze, et al. In situ AFM study of sorbed humic acid colloids at different pH. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 160: 269~279.
    133 R. R. Engebreison, R. V. Wandruszka. Microorganization in Dissolved Humic Acids. Environ. Sci. Technol., 1994, 28(11): 1934~1941.
    134郭瑾,马军.不同性质天然有机物对水中颗粒稳定性影响的机理研究.环境科学, 2006, 27(3): 69~76.
    135马军,李圭白,李晓东.高锰酸钾除微污染效能-GC/MS分析.中国给水排水, 1999, 15(5):13~15.
    136 MA Jun, Li G. B, Chen Z. L, et al. Enhanced Coagulation of Surface Waters with Hhigh Organic Content by Permanganate Preoxidation. Water Science and Technology: Water Supply, 2001, 1(1): 51~61.
    137齐鲁,梁恒,王毅,等. PPC预氧化处理珠江水系受污染水的效能研究.中国给水排水, 2008, 24(9): 101~105.
    138杨威,李星,杨艳玲,等.水合二氧化锰的制备及其混凝特性.中国给水排水, 2006, 22(15): 37~40.
    139 G. V. Korshin, C. W. Li, M. M. Benjamin. Monitoring the Properties of Natural Organic Matter through UV Spectroscopy: a Consistent Theory. Wat. Res., 1997, 31(7): 1787~1795.
    140 T. K. Nissinen, I. T. Miettinen, P. J. Martikainen, et al. Molecular Size Distribution of Natural Organic Matter in Raw and Drinking Waters. Chimosphere, 2001, 45(6-7): 865~873.
    141 W. R. Hang, J. Hongne. California Plant Combines Conservation with Water Treatment. Ozone Science and Eng., 2004, 6: 103~104.
    142 H. Tsugura. Changein Ozone Demand of WA during the Treatment Process. Water Sci Tech., 1998, 37(12): 285~292.
    143 P. Jearnine. Treatment and Reuse of Waste water in the Textile Industry by Means of Ozonation and Electroflocculation. Water Sci Tech., 1998, 37 (2): 49~55.
    144 Young Ku, Jaylinchang. Comparison of Ozone and Hydrogen Peroxide/ Ozone for the Treatment of Europhic water. Wat. Res., 1998, 32(6): 1957 ~1963.
    145 Yao Jehngjyun. Enhanced Biodegradation of Petrochemical Waste water Using Ozonation and BAC Advanced Treatment System. Wat. Res., 1998, 32 (11): 3235~3244.
    146 Van der Kooij, W. A. M. Hijnen, J. C. Kruithof. The effects of ozonation, biological filtration and distribution on theconcentration of easily assimilable organic carbon (AOC) in drinking water. Ozone Sci. Eng. 11, 1989, 297~311.
    147 C. J. Volk, M. W. LeChevallier. Effects of conventional treatment on AOC and BDOC levels. J. AWWA, 2002, 94(6): 112~123.
    148袁波祥,陈莎,杨圣杰.臭氧化技术在饮用水处理中的应用.北方交通大学学报, 2001, 25(6): 54~56.
    149 W. J. Huang, G. C. Fang, C. C. Wang. The determination and fate of disinfection by-products from ozonation of polluted raw water. Sci. Total Environ, 2005, 345 (1–3): 261~272.
    150 S. D. Richardson, A. D. Thruston Jr. Identification of new ozone disinfection by products in drinking water. Environ. Sci. Technol, 1999, 33: 3368~3377.
    151杨涛,傅金祥,梁建浩.次氯酸钠预氧化处理微污染水源水的试验.工业用水与废水, 2005, (36): 14~16.
    152韦朝海,陈传好,王刚,等. Fenton试剂催化氧化降解含硝基苯废水的特性.环境科学, 2001, 22(5):60~64.
    153胡军,周集体,孙丽颖,等.芳香化合物的光催化-臭氧联用降解研究.环境科学与技术, 2004, 27:15~18.
    154 S. Wietlik, A. Dabrowska, U. Raczyk, J. Nawrocki. Reactivity of natural organic matter fractions with chlorine dioxide and ozone. Wat. Res., 2004, 38:547~558.
    155 R. Andreozzi, V. Caprio, A. Insola, et al. The ozonation of pyruvic acid in aqueous solutions catalyzed by suspended and dissolved manganese. Water Research, 1998, 32(5):1492~1496.
    156 R. Gracia, S. Cortes, J. Sarasa, et al. TiO2-catalysed ozonation of raw river water. Wat. Res., 2000, 34(5): 1525~1532.
    157 V. L. Nathalie, D. Florence, A. Benito, et al. Reactivity of various Ru/CeO2 catalysts during ozonation of succinic acid aqueous solutions. New J. Chem., 2000, 24(4):229~233.
    158 A. E. Rutkovskii, L. R. Vishnyakov, A. A. Chekhovshkii, et al. Use of plasma technology in creating catalysts on carriers. Powder Metallurgy and Metal Ceramics, 2000, 39(3~4):207~209.
    159石枫华,马军.臭氧化和臭氧催化氧化工艺的除污效能.中国给水排水, 2004, 20:1~4.
    160张涛,陈忠林,马军.水合氧化铁催化臭氧氧化去除水中痕量硝基苯.环境科学, 2004, 25(4):43~47.
    161 R. Gracia, S. Cortes, P. Sarasa, et al. Catalytic ozonation with supported titanium dioxide, the stability of catalyst in water. Ozone Science & Engineering, 2000, 22(2):185~193.
    162马军,刘晓飞,王刚,等.臭氧/高锰酸盐控制臭氧氧化副产物.中国给水排水, 2005, 21(6): 12~15.
    163 Noeon, K. Boksoon, S. Minjeong, et al. Application of various membranes to remove NOM typically occurring in Korea with respect to DBP, AOC and transport parameters. Desalination, 2005, 178: 161~169.
    164 P. Schneider, L. M. Ferreira, P. Binder, et al. Dynamics of organic carbon and of bacterial populations in a conventional pretreatment train of a reverse osmosis unit experiencing severe biofouling. Membrane Science, 2005, 266: 18~29.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700