阳离子红X-GRL染料的UV、O_3、O_3/UV氧化处理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在确定·OH间接反应速度k_R、光源总辐射流率P_(253.7)、体积传质系数k_La、反应器有效光程L等工作的基础上,用UV、O_3、O_3/UV等方法处理阳离子红X-GRL染料废水,进行了影响因素研究、动力学研究、机理研究、模型研究、氧化与生化组合研究等。
     UV氧化处理研究
     通过研究阳离子红X-GRL光降解的影响因素、机理及动力学,得到了如下结论:
     1.影响因素研究结果表明:液相溶解氧浓度可强烈地影响光降解效率;染料的转化率随光强的提高而升高;染料的转化率随初始染料浓度的下降而提高;pH对使染料的光降解没有影响;染料的转化率随温度的升高而下降;染料的转化率随投加TBA浓度的升高而下降。
     2.光降解机理研究结果表明:存在氧气时,阳离子红X-GRL染料的光降解路径主要有四种机制:激发态染料均裂成自由基,而自由基进一步与氧反应并产生O_2·~-;激发态染料将一个电子转移给基态分子氧使其形成O_2·~-,染料自身形成自由基阳离子并进一步水解:染料由O_2·~-/HO_2降解;激发态染料将一个能量转移给基态分子氧形成~1O_2,而~1O_2可将染料降解。
     3.在获得的光降解机理的基础上,运用稳态法得到了不存在TBA时的光降解反应动力学方程,结合描述反应器内辐射能分布的线光源球面辐射模型,可求得光降解总量子产率。
     研究表明:不存在TBA时,总量子产率φ_D是温度和溶解氧浓度的函数。回归得到总量子产率φ_D关于温度和溶解氧浓度的Arrhenius修正式:光降解反应的活化能E_a=11.298 kJ·mol~(-1)。
     4.阳离子红X-GRL染料的总量子产率φ_D很低(在10~(-3)mol·einstein~(-1)的量级上),说明染料抗光解能力较强、单独用紫外光降解阳离子红X-GRL染料的效率是很低的,应该采用如O_3、O_3/UV等强氧化能力的处理方法。
     O_3氧化处理研究
     1.用GC/MS定性和GC半定量等方法确定了阳离子红X-GRL染料在臭氧氧化过程中各中间产物的出现次序及浓度变化,结合臭氧与染料反应的化学计量比、反应过程中溶液pH、TOC的下降和NO_3~-的生成,经基于量子物理的Austin Model 1分子轨道计算软件优化、计算,得出了阳离子红X-GRL的降解脱色机理。染料的臭氧氧化可分为三个阶段:助色基脱落阶段;生色基分解阶段;无色中间产物的进一步降解,形成有机酸、醛、酮及烷烃等有机小分子阶段。确定了染料分子中6个氮的迁移路径:即产生2分子N_2、1分子胺基化合物和1分子NO_3~-。染料的臭氧氧化以直接氧化为主。
     2.投加·OH抑制剂TBA研究表明:pH、温度对染料脱色率的影响不明显;提高臭氧气体流量可明显地提高染料的脱色速度;投加TBA时,染料的降解效果略有下降;起始染料浓度对脱色率有负影响。O_3体系化学计量比为4。
     pH、臭氧气体流量、起始染料浓度等对直接反应速度常数k_D没有明显的影响;温度对直接反应速度常数k_D有明显的影响。回归得出直接反应速度常数k_D的Arrhenius方程为:其中:指前因子k_0=108810 L·mol~(-1)·s~(-1),活化能E_a=15538 J·mol~(-1)。
     Ha介于0.039和0.083之间,证明反应为慢速反应动力学区域。
     3.不存在抑制剂的臭氧氧化研究表明:pH、温度对染料脱色率的影响不明显;提高臭氧气体流量可明显地提高染料的脱色速度;起始染料浓度对脱色率有负影响。
     染料的降解反应速度对臭氧和染料各为一级反应、对·OH与染料的间接反应各为一级反应。
     DH、温度等对总反应速度常数k_T有明显的影响;提高臭氧气体流量、起始染料浓度对总反应迷度常数k_T没有明显的影响。
    
    逝些些全博尘学位论文:阳离子红X一G RL染料的Uv、oJ、。3/uv氧化处理研究
     动力学研究得出总反应速度常数析的Arrhenius回归方程为:
     气,=ko exp(一气。*/RT)(OH一)m=一08013exp(一5298/R犷)(oH一)。oo,,(L·m。一’·s一’)
    其中:k0=1050一3L·mol一l·s一’,表观活化能Ea,。bs=一529sJ·mol一‘,参数m=0.0037。
     Ho介于0.04!和0.080之间,证明反应为慢速反应动力学区域。
     在pH=9.24的碱性条件下,间接反应约占总反应速度的10%左右。随着p日的下降,间接反应
    。’i总反应速度的比例下降。
     4.采川臭氧分解机理、染料降解机理,运用物料衡算、动力学方程来建立染料臭氧氧化的动力
    学模型。在验证摸型可靠性的基础上,进行了参数敏感性分析。
     模型求解中证明模型预测的结果是可靠的,即:预测染料的降解速度的误差大多小于10%;预
    测液相臭氧浓度与实验测定结果比较接近,但当染料脱色接近完全后,臭氧浓度的预测值偏高,土
    要是由于预测式中未考虑中间产物对臭氧的消耗,引入了偏差;预测气相臭氧浓度很准确,但由于
    模型中未考虑中间产物对臭氧的消耗,在反应结束阶段,预测出气臭氧浓度略有偏高;NO3一的生成
    速度与染料的脱色速度密切相关,受其它因素的影响小,故预测NO3一非常成功;反应开始后数秒内,
    液相臭氧浓度有急剧的上升,而后很快趋于平缓,说明反应器很快即可达到全混状态。
     参数敏感性分析结果表明:气相臭氧分压、臭氧气体流量、抑制剂等因素对染料降解、液相臭
    氧浓度的累积、出气臭氧浓度、心H浓度、心H间?
In this research, wastewater containing Cationic Red X-GRL dye was treated by UV, ozone, and ozone combined with UV, respecively. After determining the OH indirect reaction rate constant kR, the radiation flow rate of UV lamp P253.7, the volumetric mass transfer coefficient kLa, and the effective length of the radiation in photochemical reactor L, the influence factor, mechanism., kinetics, and modeling were investigated for these three processes. UV photooxidation research
    In an immersion photochemical reactor equipped with monochromatic UV light of 253.7nm, the direct photodegradation of Cationic Red X-GRL was studied varying different process parameters, including temperature, pH, concentration of the radical scavenger, light intensity of the lamp, initial concentration of the dye, feeding gas flow rate, and the concentration of the dissolved oxygen. The photodegradation rate equation was derived from a proposed photodegradation mechanism. The quantum yield of reaction was determined from Line Source Spherical Emission Model (LSSE Model), which describes the radiation flow rate absorbed by the solution in the photodegradation process.
    In the presence of dissolved oxygen, there are four possible photodegradation pathways of Diacryl Red X-GRL under the UV radiation of 253.7 nm in the presence of dissolved oxygen: homolysis of excited dye to radicals; electron transfer of excited dye to form radical dye cation; decomposed by superoxide radical anion; and decomposed by singlet oxygen.
    The overall quantum yield is a function of temperature, pH, concentration of TBA, and concentration of dissolved oxygen. After non-linear regression analysis, the overall quantum yields can be correlated to a function of the temperature, pH, concentration of TBA, and concentration of dissolved oxygen in a modified Arrhenius expression:
    with activation energy Ea of 11.298 kJ mol-1.
    As designed for resisting to UV photodegradation, the quantum yield of dye is very low (at the magnitude of 10-3 mol einstein-1), UV cannot treat the dye easily. O3 oxidation research
    1. In a semi-batch reactor, experiments of Cationic Red X-GRL degradation by ozonation were developed varying ozone gas flow rate, initial Cationic Red X-GRL concentration, temperature, and pH. When the formation of intermediates and the variation of pH, TOC, and nitrate ion during the ozonation were investigated by the use of some analytical instruments such as GC/MS, GC, and IC, the probable degradation mechanism of the Cationic Red X-GRL in aqueous solution was deliberated with the aid of Austin Model 1 Molecular Orbit (AMI MO) calculations. The N(12)-C(13) site in Cationic Red X-GRL, instead of the N(6)-N(7) site, is found to be the principal site for ozone cycloaddition in the degradation processes. During the degradation process, among the six nitrogen atoms of Cationic Red X-GRL, one is transferred into a nitrate ion, one becomes the form of an amine compound, and the rest four are transformed into two molecules of nitrogen. In the course of the ozonation of Cationic Red X-GRL, the direct attack of o
    zone is the main decolour effect.
    2. The ozonation of Cationic Red X-GRL in the presence of TBA, a scavenger of hydroxyl radical, was studied with variation of the ozone gas flow rate, initial Cationic Red X-GRL concentration, temperature, concentration of TBA, and pH.
    The effect of pH and temperature to conversion of dye are ambiguous, while the ozone gas flow rate can increase the conversion of dye. The conversion of dye was decreased with the increasing concentration ofTBA.
    The homogeneous experiments performed by mixing separately aqueous solutions of ozone and dye lead to stoichiometric ratio of 4 moles of ozone consumed per mole of dye reacted at various pHs.
    By the evaluation of the liquid mass transfer coefficient, the interfacial area, and the stoichiometric
    
    
    
    
    ratio between ozone and Cationic Red X-GRL, the rate constants and the kinetic regime of the reaction between ozone and Cationic Red X-GRL were investigated by applying the experimental data to a
引文
[1] Sandra, GM, Renato, SF, Nelson, D. Degradation and toxicity reduction of textile effluent by combined photocatalytic and ozonation processes. Chemosphere, 2000, 40:369-373.
    [2] Ledakowicz, S, Solecka, M, Zylla, R. Biodegradation, decolourisation and detoxification of textile wastewater enhanced by advanced oxidation processes. J Biotechnol., 2001, 89:175-184.
    [3] 戴日成,张统,郭茜,曹健舞,蒋勇.印染废水水质特征及处理技术综述.给水排水,2000,26(10):33-36.
    [4] 李家珍 主编.染料、染色工业废水处理.化学工业出版社出版:北京.1997年6月.
    [5] [瑞士] P.里斯,H.佐林格 著.陈水林 译.染料化学基础纺织工业出版社出版:北京,1990年11月.
    [6] 王菊生.染整工艺原理(第三册).中国纺织出版社:北京,2001.1.
    [7] 高宝玉等.化学氧化法和化学混凝法用于染料废水的脱色研究.环境科学研究,1999,12(1):5-9.
    [8] 朱建平等.吸附气浮法脱除染料离子的研究.环境工程,1993,11(1):10-12.
    [9] Ozoh, PTE. Adsorption of cotton fabric dyestuff wastewater on Nigeria agricultural semi activated carbon. Environmental Monitoring and Assessment, 1997, 46(3): 255-265.
    [10] Shi, W. Chemically modified sunflower stalks as absorbents for color removal from textile wastewater. J. Applied Polymer Sci., 1999, 71 11: 1841-1850.
    [11] Gang, S. Sunflower stalks as adsorbents for color removal from textile wastewater. Ind. & Engng. Chem. Res., 1997, 36(3): 808-812.
    [12] 贾金平,申哲民等.含染料废水处理方法的现状与进展.上海环境科学,2000,19(1):26-29.
    [13] 冀滨弘,章非娟.染料工业废水处理的现状与进展.污染防治技术,1998,11(4):250-253.
    [14] 彭跃莲等.膜生物反应器在废水处理中的应用.水处理技术,1999,25(2):63-69.
    [15] Marmagne, O. Color removal from textile plant effluents. American dyestuff reporter. 1996, 85(4): 15-21.
    [16] 王振余.碳膜处理染料水溶液的研究.膜科学与技术,1997,17(5):7-10.
    [17] Simonsson, D. Electrochemistry for cleaner environment. Chem. Soc. Rev., 1997, 26(3): 181-190.
    [18] Comninellis, C, Pulgrin C. Electrochemical wastewater treatment using high overvoltage anodes. J. Appl. Electrochem., 1991, 23:108-112.
    [19] Naumczyk J, Szpyrkowicz L, Grandi F Z. Electrochemical treatment of texitile wastewater. Wat. Sci. Technol., 1996, 33(7):17-24.
    [20] Nicola M, Badea T. Wastewater treatment using electrochemical oxidation of organic pollutants. Sci. Technol. Environ. Prot., 1996, 3(1): 35-40.
    [21] Schmal, D, Erkel, J V, Dejong, AMCP, Van Duin, PJ. Environmental Technology. In: Proc 2nd Eur Conf Environ Tech, (ECET 2nd, Amsterdam, 1987). The Netherlands: Martinus Nijhoff Publishers, 1987 June: 22-26.
    [22] Naohide, T, et al. Application of solid polymer electrolyte for treatment of water colored by dyestuffs. Mizu Kankyo Gakkaishi, 1998, 21(1):47-50.
    [23] 汪群慧,复极性粒子群电极用于印染废水的处理.南京化工学院学报,1990,12(3):69-71.
    [24] 韩洪军.铁屑—碳粒法处理工业废水.环境保护,1991,(1):17-18.
    [25] Jia, Jinping, Yang, Ji, Liao, Jun. Treatment of dyeing wastewater with ACF electrodes. Water Research, 1999, 33(3): 881-884.
    [26] 贾金平,杨骥,廖军.活性炭纤维电极法处理染料废水的探讨.上海环境科学,1997,16(4):19-22.
    [27] Lin, SH, Peng, CF. Continuous treatment of textile waster by combined coagulation. Electrochemical oxidation and activated sludge. Water Research, 1996, 30(3): 587-592.
    [28] 冷少华等.光催化和光电降解对氯苯胺.第一届环境模拟与污染控制学术研讨会论文集.北京,1999,39-40.
    [29] Ellis, TG. Activated sludge and other suspend culture processes. Wat. Environ. Res., 1998, 70 (4): 473-495.
    [30] Fills, MW. Biological Fixed-film systems. Wat. Environ. Res., 1998, 70(4): 495-518.
    [31] Riffat, R, Sajjad, MW, Dararat, S. Anaerobic Processes. Wat. Environ. Res., 1998, 70(4): 518-540.
    [32] 安虎仁,钱易,顾夏生.染料在好氧条件下的生物降解性能.环境科学,1995,15(6):16-18.
    [33] 詹伯君.膜法SBR处理印染色废水工程设计.给水排水,1997,23(7):25-27.
    [34] 姜金生等.酸化水解—接触氧化—生物碳法处理印染废水的应用.给水排水,1997,23(2):28-31.
    [35] 宋文华等.蒽醌染料及其中间体絮凝菌的特性.城市环境与城市生态,1999,12(1):22-26.
    [36] 朱怀兰.生物难降解有机污染物微生物处理技术的进展,上海环境科学,1997,16(3):10-12.
    [37] 闵一珏.ZE 1号印染废水脱色菌群的选育及适用条件研究,环境污染与防治,1992,14(6):14-16.
    [38] Rccd, BE, Matsumoto, MR, Jensen, JN, et al. Physicochemical processes. Wat. Environ. Res., 1998, 70(4): 449-473.
    [39] Inmaculada, C. et al. Chemical degradation of aromatic amines by Fenton's reagent. War. Res., 1997, 318:1985-1995.
    [40] 彭书传等.2-萘磺酸钠生产废水的处理.中国环境科学,1998,18(5):455-457.
    [41] 李晓平等.纳米TiO_2光催化降解水中有机污染物的研究与发展.功能材料,1999,30(3),242-245.
    [42] 高廷耀等.二氧化钛膜光催化氧化苯酚的影响因素研究二.中国给水排水,1999,14(4):14-16,20.
    [43] 王俭.载钛多孔玻璃光催化苯酚废水.环境工程,1994,12(6):16-17.
    [44] 郭新章等.TiO_2、WO_3对活性染料水溶液的光催化降解.环境工程,1992,12(2):15-17.
    [45] 谭湘萍.栽银TiO_2半导体催化剂对印染废水的光降解研究.环境污染与防治,1994,16(5)5-7.
    
    
    [46] 程沧沧,胡德文.TiO_2-Fe~(3+)体系降解耐酸大红染料的研究.环境污染与防治,1998,20(4):17-19.
    [47] Tratnyek, PG, Elovitz, MS, Colverson, P. Photoeffects of textile dye wasters; sensitization of singlet oxygen formation, oxidation of phenols and toxicity to bacterial. Environmental Toxicity and chemistry, 1994, 13:27-33.
    [48] Rice, RG. Ozone in the United States of America state-of- the-art. Proceedings of 13th ozone world Congress. Tokyo, 1997, Vol 2, SA-8: 1029-1040.
    [49] Beltran, FJ. et al. Impact of chemical oxidation on biological treatment of a primary municipal wastewater. 1 effects on COD and biodegradability. Ozone Sci Engng., 1997, 19: 495-512.
    [50] Brian, M, et al. Ozone application to color destruction of industrial wastewater-Part Ⅰ: experimental. American Dyestuff Reporter, 1998, 87(8): 18-22.
    [51] 冀小元,吕越峰.染料中间体废水多相催化臭氧氧化中几种催化剂的筛选研究.工业水处理,1996,16(5):20-22
    [52] 张彭义等.Ni、Fe氧化物对吐氏酸废水催化臭氧化研究.环境科学,1996,15:25-27.
    [53] Ledakowicz, S. et al. Optimisation of oxidants dose for combined chemical and biological treatment of textile wastewater. Wat. Res., 1999, 33(11): 2511-2516.
    [54] ZHU, S. et al. Effects of ozonation of naphthalene derivatives on their elimination and biodegradability. Bull. of Environ. Contam. & Toxicology. 1999, 63(1): 101-108.
    [55] Chu, W, Ma, CW, Reaction kinetics of UV-decolourization for dye materials, Chemosphere, 1998, 37(5): 961-974
    [56] Wu, Feng, Deng, Nansheng, Hua, Helin. Degradation mechanism of azo dye C I reactive red 2 by iron powder reduction and photooxidation in aqueous solutions, Chemosphere, 2000, 41: 1233-1238.
    [57] Tsui, SM, Chu, W. Quantum yield study of the photodegradation of hydrophobic dyes in the presence of acetone sensitizer, Chemosphere, 2001, 44: 17-22.
    [58] Wu, T, Lin, T, Zhao, J, Hidaka, H, Serpone, N. TiO_2-assisted photodegradation of dyes. 9. Phooxidation of a squarylium cyanine dye in aqueous dispersions under visible light irradiation. Envir. Sci. Technol., 1999, 33:1379-1387.
    [59] Wilkinson, F, Helman, WP, Ross, AB. Quantum yields for the photosensitized formation of the lowest electronically excited singlet state of molecular oxygen singlet oxygen in solution. J. Phys. Chem. Ref. Data, 1993, 22:113-262.
    [60] 詹豪强.偶氮染料结构、光稳定性和光化学降解机理研究.化学进展,1998,10(4):415-426.
    [61] Sotelo, JL, Beltrán, FJ, Benitez, FJ, Beltrán-Heredia, J. Ozone decomposition in water-kinetic study, Ind. Eng. Chem. Res., 1987, 26:39-43.
    [62] Staehelin, J, Hoigné, J. Decomposition of ozone in water: rate of initiation by hydroxide ions and hydrogen peroxide. Environ. Sci. Technol., 1982, 16(10): 676-681.
    [63] Tomiyasu, H, Fukutomi, H, Gordon, G. Kinetics and mechanisms of ozone decomposition in basic aqueous solutions, lnorg. Chem., 1985, 24:2964-2985.
    [64] Nemes, A, Fabian, I, Gordon, G. Experimental aspects of mechanistic studies on aqueous ozone decomposition in alkaline solution. Ozone Sci. & Engng., 2000, 22(3): 287-304.
    [65] Staehelin, J, Hoigné, J. Decomposition of ozone in water: rate of initiation by hydroxide ions and hydrogen peroxide, Environ. Sci. Technol., 1982, 16:676-681.
    [66] Hoigné, J, Bader, H. Rate constants of reactions of ozone with organic and inorganic and inorganic compounds in water-Ⅲ. Inorganic compounds and radicals, Wat. Res., 1985, 19: 993-1004.
    [67] Staehelin, J, Hoigné, J. Decomposition of ozone in water in the presence of organic solutes acting as promoters and inhibitors of radical chain reactions, Environ, Sci. Technol., 1985, 19:1206-1213.
    [68] Hoigné, J. Chemistry of aqueous ozone and transformation pollutants by ozonation and advanced oxidation processes, In The Handbook of Environmental Chemistry; Hrubec, J., Ed.; Springer-Verlag: Berlin, 1998, Vol. 5, Part C: 83-141.
    [69] Bailey, PS. The reactions of ozone with organic compounds. Chem. Rev. 1958, 58, 925-1010.
    [70] Benitéz, FJ, Beltran-Heredia, J, Acero, JL, Pinilla, ML. Ozonation kinetics of phenolic acids present in wastewaters from olive oil mills. Ind. Eng. Chem. Res., 1997, 36: 638-644.
    [71] Adams, CD, Randtke, SJ. Ozonation byproducts of atrazine in synthetic and natural waters, Environ. Sci. Technol., 1992, 26:2218-2227.
    [72] Bellamy, WD, Hickman, T, Mueller, PA, Ziemba, N. Treatment of VOC-contaminated groundwater by hydrogen peroxide and ozone oxidation, Research Journal Water Pollution Control Federation, 1991, 63:120-127.
    [73] Duguet, JP, Bruchet, A, Mallevialle, J. Application of combined ozone-hydrogen peroxide for the removal of aromatic compounds from a groundwater, Ozone Sci. & Engng., 1990, 12:281-294.
    [74] Duguet, JP, Bernazeau, F, Mallevialle, J. Research Note: Removal of atrazine by ozone and ozone-hydrogen peroxide combination in surface water, Ozone Sci. & Engng., 1990, 12: 195-197.
    [75] Beltrán, FJ, García-Araya, JF, Acedo, B. Advanced oxidation of atrazine in water-Ⅰ. Ozonation, Wat. Res., 1994, 28:2153-2164.
    [76] Aieta, EM, Reagan, KM, Lang, JS, Mc Reynolds, L, Kang, J-K, Glaze, WH. Advanced oxidation processes for treatment of groundwater contaminated with TCE and PCE, Journal of American Water Works Association, 1998, 5:64-72.
    [77] Glaze, WH, Kang, J-W. Advanced oxidation processes for treating groundwater contaminated with TCE and PCE, Journal of American Water Works Association, 1988, 5: 57-63.
    [78] Rinker, EB, Ashour, SS, Johnson, MC, Kott, GJ, Rinker, RG, Sandal, OC. Kinetics of the aqueous-phase reaction between ozone and 2,4,6-trichlorophenol. AIChe J., 1999, 45(8): 1802-1807.
    [79] Beltrán, FJ, Encinar, JM, Alonso, MA. Nitroaromatic hydrocarbon ozonation in water. 1. Single Ozonation. Ind. Eng. Chem. Res., 1998, 37, 25-31.
    
    
    [80] Masten, SJ, Galbraith, MJ, Davies, SHR. Oxidation of trichlorobenzene using advanced oxidation processes, ozone in water and wastewater treatment, 11th Ozone World Congress, 1993, 20/45-20/49.
    [81] Behar, D, Czapski, G, Duchovny, I. Carbonate radical in flash photolysis and pulse radiolysis of aqueous carbonate solutions, J. Phys. Chem., 1970, 74:2206-2210.
    [82] Hoigné, J, Bader, H. Ozonation of water: role of hydroxyl radical reactions in ozonation processes in aqueous solutions, Wat. Res., 1976, 10:377-386.
    [83] Drguet, JP, Bruchet, A, Mallevialle, J. Geosmin and 2-methylisoborneol removal using ozone or ozone/hydrogen peroxide coupling. Ozone in Water Treatment, Proceedings of the 9th Ozone World Congress, 1989, 1:709-719.
    [84] Adams, CD, Randtke, SJ, Thurmann, EM, Hulsey, RA. Occurrence and treatment of atrazine and its degradation products in drinking water, Proceedings of the Annual Conference of American Water Works Association, 18th-21st June, Cincinnati, Ohio, USA, 1990, 871-885.
    [85] Masten, S, Hoigné, J. Comparison of ozone and hydroxyl radical-induced oxidation of chlorinated hydrocarbons in water, Ozone Sci. & Engng., 1992, 14:197-214.
    [86] Legrini, O, Oliveros, E, Braun, AM. Photochemical processes for water treatment, Chem. Rev., 1993, 93:671-698.
    [87] Forni, L, Bahnemann, D, Hart, EJ. Mechanism of the hydroxide ion inititated decomposition of ozone in aqueous solution, J. Phys. Chem., 1982, 86:255-259.
    [88] Buxton, GV, Greenstock, CL, Helman, WP, Ross, AB. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (OH/O) in aqueous solutions, J. Phys. Chem. Refer. Data, 1988, 17:513-886.
    [89] Xiong, F, Legube, B. Enhancement of radical chain reactions of ozone in water in the presence of an aquatic fulvic acid, Ozone Sci. & Engng., 1991, 13:349-361.
    [90] Peyton, GR, Glaze, WH. Mechanism of photolytic ozonation-ACS Symposium-Series 327, Washington DC, 1987: 76-87.
    [91] Xiong, F, Graham, NJD. Research Note: Removal of atrazine through ozonation in the presence of humic substances. Ozone Sci. & Engng., 1992, 14:283-301.
    [92] Liao, CH, Gurol, MD. Chemical oxidation by photolytic decomposition of hydrogen peroxide, Environ. Sci. Technol., 1995, 29:3007-3014.
    [93] Nowell, LH, Hoigné, J. Photolysis of aqueous chlorine at sunlight and ultraviolet wavelength-Ⅰ degradation rates. Wat. Res., 1992, 26:593-598.
    [94] Haag, WR, Yao, CCD. Rate constants for reaction of hydroxyl radicals with several drinking water contaminants, Environ. Sci. Technol., 1992, 26:1005-1013.
    [95] Sotelo, JL, Beltrán, FJ, Bentize, FJ, Beltrán-Heredia, J. Henry's law constant for the ozone- water system, Wat. Res., 1989, 23:1239-1246.
    [96] Matrozov, V, Kachtunov, S, Tregunov, B, Stepanov, A. Experimental determination of the molecular diffusion coefficient of ozone in water. Zh Prikl Khim, 1976, 49:1070-1073.
    [97] Wilke, CR, Chang, P. Correlation of diffusion coeffcients in dilute solutions, AIChe J., 1955, 1:264-270.
    [98] 徐新华,赵伟荣.臭氧在水处理中的应用.化学工业出版社:北京.2003.
    [99] Linek, V, Vacek, V, Benes, P. A critical review and experimental verification of the correct use of the dynamic method for the determination of oxygen transfer in aerated vessels to water electrolyte solutions and viscous liquids, Chem. Engng. J., 1987, 34:11-34.
    [100] Stockinger, H. Removal of Biorefractory Pollutants in Wastewater by Combined Biotreatment- Ozonation, Dissertation ETH No. 11063, Zurich, 1995.
    [101] Levenspiel, O. Chemical Reaction Engineering, John Wiley & Sons, New York, 1972.
    [102] kin, SH, Peng, CF. Performance characteristics of a packed-bed ozone contactor, Journal Environmental Science & Health A, 1997, 32: 929-941.
    [103] Huang, WH, Chang, CY, Chiu, CY, Lee, SJ, Yu, YH, Liou, HT, Ku, Y, Chen, JN. A refined model for ozone mass transfer in a bubble column, Journal Environmental Science & Health A, 1998, 33:441-460.
    [104] Charpentier, JC. Mass-transfer rates in gas-liquid absorbers and reactors. Advances in Chemical Engineering. Academic Press: New York, 1981, 11:3-133.
    [105] Beltrán, FJ. Theoretical aspects of the kinetics of competitive first order reactions of ozone in the O_3/H_2O_2 and O_3/UV oxidation processes, Ozone Sci. & Engng., 1997, 19:13-37.
    [106] Andreozzi, R, Caprio, V, D'Amore, MG, Insola, A, Tufano, V. Analysis of complex reaction networks in gas-liquid systems, the ozonation of 2-hydroxypyridine in aqueous solutions, Ind. Eng. Chem. Res., 1991, 30:2098-2104.
    [107] Hoigné, J, Bader, H. Rate constants of reactions of ozone with organic and inorganic compounds in water-Ⅰ. Non-dissociated organic compounds, Wat. Res., 1983, 17:173-183.
    [108] Beltrán, FJ, Encinar, JM, García-Araya, JF. Oxidation by ozone and chlorine dioxide of two distillery wastewater contaminants: gallic acid and epicatechin, Wat. Res., 1993, 27:1023-1032.
    [109] Gurol, MD, Nekouinaini, S. Kinetic behaviour of ozone in aqueous solutions of substituted phenols, Ind. Engng. Chem. Fund., 1984, 23:54-60.
    [110] Hoigné, J, Bader, H. Ozonation of water: oxidation competition values of different types of waters used in switzerland, Ozone Sci. & Engng., 1979, 1:357-372.
    [111] Li, KY, Kuo, CH, Weeks, JL. A kinetic study of ozone-phenol reaction in aqueous solution, AIChe J., 1979, 25:583-591.
    [112] Zhao, W, Shi, H, Wang, D. Kinetics of the reaction between ozone and Cationic Red X-GRL. Chinese Journal of
    
    Chemical Engineering, 2003, 11(4): 388-394.
    [113] Benitez, FJ, Beltrán-Heredia, J, González, T. Ozonation of aqueous solutions of Fenuron. Ind. Eng. Chem. Res., 1991, 30(11): 2390-2395.
    [114] Chramosta, N, De Laat, J, Doré, M, Suty, H, Pouilot, M. tude de la Dégradation de Triazine par O_3/H_2O_2 et O_3 Ciné tique et sous produit d'Oxydation, Water Supply, 1993, 11: 177-185.
    [115] Hoigné, J, Bader, H. Rate constants of reactions of ozone with organic and inorganic compounds in water-Ⅱ. Dissociated organic compounds, Wat. Res., 1983, 17:184-195.
    [116] Yao, CCD, Haag, WR. Rate constants for direct reactions of ozone with several drinking water contaminants, Wat. Res., 1991, 25:761-773.
    [117] Von Gunten, S, Hoigné, J, Bruchet, A. Oxidation in ozonation processes, application of reaction kinetics in water treatment, Proceedings of the 12th Ozone World Congress Lille France, 1995, 17-25.
    [118] Peyton, GR. Guidelines for the selection of a chemical model for advanced oxidation processes, Water Pollution, Research Journal Canada, 1992, 27(1): 43-56.
    [119] Yao, CCD, Haag, WR. Rate constants for reaction of hydroxyl radicals with several drinking water contaminants, Environ. Sci. & Technol., 1992, 26:1005-1012.
    [120] Glaze, WH, Beltrán, F, Tuhkanen, T, Kang, JW. Chemical models of advanced oxidation processes, Water Pollution Research Journal Canada, 1992, 27(1): 23-42.
    [121] Laplanche, A, Orta de Velasquez, MT, Boisdon, V, Martin, N, Martin, G. Modelisation of micropollutant removal in drinking water treatment by ozonation or advanced oxidation processes (O_3/H_2O_3), Ozone in Water and Wastewater Treatment- Proceedings of the 11th Ozone World Congress San Francisco, 1993, 17-90.
    [122] Marinas, BJ, Liang, S, Aieta, EM. Modeling hydrodynamics and ozone residual distribution in a pilot-scale ozone bubble-diffusor contactor, Journal American Waterworks Association, 1993, 85(3): 90-99.
    [123] Tufano, V, Andreozzi, R, Caprio, V, D'Amore, MG, Insola, A. Optimal operating conditions for lab- scale ozonation reators, Ozone Sci. & Engng., 1994, 16:181-195.
    [124] Gurol, MD, Singer, PC. Dynamics of the ozonation of phenol-Ⅱ, mathematical model, Wat. Res., 1983, 16:1173-1181.
    [125] Beltrán, FJ, Encinar, JM, Garcia-Araya, JF. Modeling industrial wastewater ozonation in bubble contactors: scale-up from bench to pilot plant In: Proceedings of the 12th Ozone World Congress, May 15-18, Vol. 1:369-380, International Ozone Association Lille France, 1995.
    [126] Whitlow, JE, Roth, JA. Heterogeneous ozonation kinetics of pollutants in wastewater, Environmental Progress, 1988, 7:52-57.
    [127] Beltrán, FJ, Encinar, JM, Garcia-Araya, JF. Ozonation of o-Cresol in aqueous solutions, Wat. Res., 1990, 24:1309-1316.
    [128] Chang, BJ, Chian, ESK. A model study of ozone-sparged vessels for the removal of organics from water, Wat. Res., 1981, 15:929-936.
    [129] Hardwick, TJ. The free radical mechanism in the reactions of hydrogen peroxide. Can. J. Chem., 1957, 35(3): 428.
    [130] Weiss, J. Investigation on the radical HO_2 in solution. Trans. Faraday Soc., 1935, 31(3): 668.
    [131] Prengle, HW. Experimental rate constant and reactor considerations for the destruction of micropollutants and trihalomethane precursors by ozone with uv radiations. Environ. Sci. & Tech., 1983, 17(4): 743.
    [132] Mattews, RW. Photooxidation of organic material in aqueous suspensions of titanium dioxide. Water Res., 1990, 24(5):653.
    [133] EPA. Handbook on advanced photochemical oxidation processes. 1998.
    [134] Glaze, WH, Kang, JW. The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation, Ozone Sci. & Engng., 1987, 9:335-352.
    [135] Kang, JW, Hoffmann, MR. Kinetic and mechanism of the sonolytic destruction of methyl tert-butyl ther by ultrasonic irradiation in the presence of ozone. Environ. Sci. Technol., 1998 32(12):3194.
    [136] Taube, H, Bray, WC. Chain reactions in aqueous solutions containing ozone, hydrogen peroxide and acid, Journal of the American Chemical Society. 1940, 62:3357-3373.
    [137] Büler, RE, Staehelin, J, Hoigné, J. Ozone decomposition in water studies by pulse radiolysis. 1. HO_2/O_2 and HO_3/O_3 as intermediates, J. Phys. Chem., 1984, 88: 2560-2564.
    [138] McGrath, WD, Norrish, RGW. Studies of the reactions of excited oxygen atoms and molecules produced in the flash photolysis of ozone. Prog. Royal. Soc. Series A., 1960, 254:317, London, England.
    [139] Peyton, GR, Glaze, WH. New developments in the Ozone/UV process. Proc. 6th Ozone World Congress, Washington. D. C. 1983.
    [140] Taube, H. Photochemical reactions of ozone in solution. Trans. Faraday Soc., 1956, 53: 656-665.
    [141] Peyton, GR, Glaze, WH. Destruction of pollutants in water with ozone in combination with ultraviolet radiation. 3. photolysis of aqueous ozone. Environ. Sci. Technol., 1988, 22: 761-767.
    [142] Guittonneau, P, Glaze, WH, Duguet, JP, Wable, O. Characterization of natural waters for potential to oxidize organic pollutants with ozone, Proceedings 10th Ozone World Congress and Exhibition, Monaco, International Ozone Association, Zürich, Switzerland, 1991.
    [143] Glaze, WH, Lay, Y, Kang, JW, Advanced oxidation processes, a kinetic model for the oxidation of 1,2-dibromo-3-chloropropane in water by the combination of hydrogen peroxide and UV radiation. Ind. Eng. Chem. Res., 1995, 34:2314-2323.
    [144] Baxendale, JH, Wilson, JA. Photolysis of hydrogen peroxide at high light intensities. Trans. Faraday. Soc.
    
    1957, 53:344-356.
    [145] De Laat, J, Tace, E, Doré, M. Etude de l'Oxydation de Chloroethanes en Milieu Aqueux Dilue par H_2O_2/UV, Wat. Res., 1994, 28:2507-2519.
    [146] Paillard, H, Brunet, R, Doté, M. Optimal Conditions for Applying an Ozone/Hydrogen Peroxide Oxidizing System, Wat. Res., 1988, 22:91-103.
    [147] Prados, M, Paillard, H, Roche, P. Hydroxyl radical oxidation processes for the removal of triazine from natural water, Ozone Sci. & Engng., 1995, 17:183-194.
    [148] Neta, P, Huie, RE, Ross, AB. Rate constants for reactions of inorganic radicals in aqueous solutions. J. Phys. Chem. Ref. Data, 1988, 17:1027-1284.
    [149] Neta, P, Grodkowski, J, Ross, AB. Rate constants for reactions of carbon-centered radicals in aqueous solutions. J. Phys. Chem. Ref. Data, 1996, 25:709-1066.
    [150] Stern, M, Ramval, M, Kut, OM, Heinzle, E. Adaptation of a mixed culture during the biological treatment of p-toluenesulfonate assisted by ozone, 7th European Congress on Biotechnology Nice February, 1995, 19-23. 1995.
    [151] Scott, JP, Ollis, DF. Integration of chemical and biological oxidation processes for water treatment: review and recommendations, Environmental Progress, 1995, 14:88-103.
    [152] Gilbert, E. Biodegradability of ozonation products as a function of COD and DOC elimination by example of substituted aromatic substances, Wat. Res., 1987, 21:1273-1278.
    [153] Langlais, B, Cucurou, YA, Capdeville, B, Roques, H. Improvement of a biological treatment by prior ozonation, Ozone Sci. & Engng., 1989, 11:155-168.
    [154] Saupe, A, Wiesmann, U. Ozonization of 2, 4-dinitrotoluene and 4-nitroaniline as well as improved dissolved organic carbon removal by sequential ozonization-biodegradation, Wat. Environ. Res., 1998, 70:145-154.
    [155] Karrer, NJ, Ryhiner, G, Heinzle, E. Applicability test for combined biological chemical treatment of wastewater containing biorefractory compound, Wat. Res., 1997, 31: 1013-1020.
    [156] 周学良 主编,何海兰编写,精细化学品大全,染料卷, 2000.12,浙江科学技术出版社,杭州,272
    [157] 国家环保局.水和废水检测分析方法.中国环境科学出版社:北京,1997.
    [158] Bader, H, Hoigne, J. Determination of ozone in water by the indigo method. Wat. Res., 1981, 15:449-456.
    [159] 中华人民共和国城镇建设行业标准.臭氧发生器(CJ/T 3028.1-94),1994.
    [160] Eisenberg, G. Colorimetric determination of hydrogen peroxide. Ind. Eng. Chem., 1943, 15, 327-328.
    [161] 国家环保局.水和废水检测分析方法.中国环境科学出版社:北京,1997.
    [162] Perry RH, Green DW. Perry's chemical engineers' handbook, 7th ed. New York: McGraw-Hill, 1997.
    [163] Miller, JS, Olejnik, D. Photolysis of polycyclic aromatic hydrocarbons in water. Wat Res, 2000, 35(1):233-243.
    [164] Pajares, A, Gianotti, J, Haggi, E, Stettler, G, Amat-Guerri, F, Bertolotti, S, Criado, S, García, NA. Visible light-promoted interactions between riboflavin and 3-hydroxypyridine in aqueous solution. Dyes and Pigments, 1999; 41:233-239.
    [165] Yang, S, Tian, H, Xiao, H, Shang, X, Gong, X, Yao, S, Chen, K. Photodegradation of cyanine and merocyanine dyes. Dyes and Pigments, 2001, 49:93-101.
    [166] Bielski, BHJ, Cabelli, DE, Arudi, RL, Ross, AB. Reactivity of Hydroperoxyl/Superoxide Radicals in Aqueous Solution. J. Phys. Chem. Ref. Data, 1985, 14: 1041-100.
    [167] Koch, M, Yediler, A, Lienert, D, Insel, G, Kettrup, A. Ozonation of hydrolyzed azo dye reactive yellow 84(CI). Chemosphere, 2002, 46:109-113.
    [168] Selvaraju, C, Sivakumar, A, Ramamurthy, P. Excited state reactions of acridinedione dyes with onium salts: mechanistic details. Journal of Photochemistry and Photobiology A: Chemistry, 2001, 138:213-226.
    [169] Alfano, OM, Romero, RL, Cassano, AE. Radiation field modeling in photoreactors-Ⅰ. Homogeneous Media. Chem Eng Sci, 1986, 41(3): 421-444.
    [170] Beltran-Heredia, J, Torregrosa, J, Dominguez, JR, Peres, JA. Kinetics of the reaction between ozone and phenolic acids present in argo-industrial wastewaters. Wat. Res., 2001, 35 (4): 1077-1085.
    [171] Gagnon, G. A., Booth, S. D. J., Peldszus, S., Mutti, D., Smith, F., Huck, P. M., 1997. Carboxylic acids: formation and removal in full-scall plants. J. AWWA, 89, 88-97.
    [172] Kunz, A, Reginatto, V, Durán, N. Combined treatment of textile effluent using the sequence phanerochaete chrysosporium-ozone. Chemosphere, 2001, 44, 281-287.
    [173] Peyton, GR, Glaze, WH, Destruction of pollutants in water with ozone in combination with ultraviolet radiation. 3. Photolysis of aqueous ozone. Envir. Sci. Technol., 1988, 22, 183-189.
    [174] Grosjean, D, Whitemore, PM, Moor, CD, Cass, GR. Ozone fading of oranic colorants: products and mechanism of the reaction of ozone and curcumin. Environ. Sci. Thecnol., 1988, 22, 1357-1361.
    [175] 詹豪强,田禾.萘酚偶氮染料光化学氧化及其降解机理研究进展.染料工业,1997,34(2):7-13.
    [176] 韩德钢,高盘良.化学动力学基础.北京大学出版社:北京,2001.
    [177] Von Gunten, U. Ozonation of drinking water: part Ⅰ. Oxidation kinetics and product formation. Wat. Res., 2003, 37:1443-1467.
    [178] Christensen, H, Sehested, K, Corftzen, H. Reactions of hydroxyl radicals with hydrogen peroxide at ambient and elevated temperatures. J. Phys. Chem., 1982, 86, 1588-1590
    [179] Beltrán, FJ, Ovejero, J, García-Araya, JF, Rivas, J. Oxidation of polynuclear aromatic hydrocarbons in water. 2. UV radiation and ozonation in the presence of UV radiation, Ind. Eng. Chem. Res. 1995, 34, 1607-1615.
    [180] Morooka, S, Kusakabe, K, Hayashi, JI, Isomura, K. Decomposition and utilization of ozone in water treatment reactor with ultraviolet radiation. Ind. Eng. Chem. Res., 988, 27:2372-2377.
    
    
    [181] Braun, AM, Maurette, MT, Oliveros, E. Photochemical technology. New York: John Wiley & Sons Ltd, 1991.
    [182] Welty, JR. Fundamentals of Momentum, Heat and Mass Transfer, 3rd Edition, Wiley, New York, 1983.
    [183] Joshi, JB. Computational flow modeling and design of bubble column reactors. Chem. Eng. Sci., 2001 56:5893-5933.
    [184] Roberts, D, Danckwerts, PV. Kinetics of CO_2 absorption in alkaline solutions Ⅰ. Transient absorption rates and catalysis by arsenite, Chem. Eng. Sci., 1962, 17: 961-993.
    [185] Astarita, G, Savage, DW, Longo, JM. Promotion of CO_2 mass transfer in carbonate solutions, Chem. Eng. Sci., 1981, 36:581-588.
    [186] Giavarini, C, Moresi, M. Absorption of CO_2 in aqueous solutions: screening of catalysts for potassium carbonate solutions, Ing. Chim. Ital., 1981, 17: 21-26.
    [187] Sharma, MM, Danckwerts, PV. Catalysis by Brnsted bases of the reaction between CO2 and water, Trans. Faraday Soc., 1963, 59: 386-395.
    [188] Pohorecki, R. The absorption of CO_2 in carbonate-bicarbonate buffer solutions containing hypochlorite of catalyst on a sieve plate, Chem. Eng. Sci., 1968, 13:1447-1451.
    [189] Dean, DN, Fuchs, MJ, Schaffer, JM, Carbonell, RG. Batch absorption of CO_2 by ree and microencapsulated carbonic anhydrase, Ind. Eng. Chem. Fundam., 1977, 16: 452-458.
    [190] Alper, E, Deckwer, WD. Kinetics of absorption of CO_2 into buffer solutions containing carbonic anhydrase, Chem. Eng. Sci., 1980, 35: 549-557.
    [191] Roberts, D, Danckwerts, PV. Kinetics of CO_2 absorption in alkaline solutions Ⅰ. Transient absorption rates and catalysis by arsenite, Chem. Eng. Sci., 1962, 17: 961-993.
    [192] Matrozov, V, Kachtunov, S, Stephanov, S. Experimental Detemination of the Molecular Diffusion Journal of Applied Chemistry, USSR, 1978, 49: 1251-1255.
    [193] Hikita, H, Asai, S, Takatsu, T. Absorption of carbon dioxide into aqueous sodium hydroxide and sodium carbonate solutions. Chemical Engineering Journal, 1976, 11:131-141.
    [194] Danckwerts, PV. Gas-liquid reactions, McGraw-Hill, New York, 1970:1-245.
    [195] Alper, E, Deckwer, WD, Danckwerts, PV. Comparison of effective interfacial areas with the actual contact area for gas absorption in a stirred cell, Chem. Eng. Sci., 1980, 35: 1263-1268.
    [196] Danckwerts, PV, Sharma, MM. The absorption of carbon dioxide into solutions of alkalis and amines, Chem. Eng. J., 1966, 44: 240-244.
    [197] Joosten, GE, Danckwerts, PV. Solubility and diffusivity of nitrous oxide in equimolecular potassium carbonate-potassium bicarbonate solutions at 25℃ and 1 atm, J. Chem. Eng. Data, 1972, 17: 452-454.
    [198] Danckwerts, PV, Gillham, AJ. The design of gas absorbers Ⅰ. Methods for predicting rates of absorption with chemical reaction in packed columns and tests with 1(1/2)-inch Raschig rings, Trans. Inst. Chem. Eng., 1966, 44: 42-54.
    [199] Vázquez, G, Cancela, MA, Varela, R, Alvarez, E, Navaza, JM. Influence of surfactants on absorption of CO_2 in a stirred tank with and without bubbling, Chem. Eng. J., 1997, 67: 131-137.
    [200] Nocentini, M, Fajner, D, Pasquali, G, Magelli, F. Gas liquid mass transfer and hold-up in vessels stirred with multiple Rusthon turbines: water and water-glycerol solutions, Ind. Chem. Eng. Res., 1993, 32:19-30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700