液相臭氧化反应机理研究及在化学耗氧量测定中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
臭氧化因强大的氧化能力且不会产生二次污染,是处理水中有机污染物的理想方法。采用紫外光辐射臭氧化(O_3/UV),或利用半导体紫外光催化臭氧化(O_3/UV/光催化剂)的臭氧高级氧化技术被证明比单独臭氧化反应具有更为有效的氧化能力。随着对臭氧高级氧化技术研究的不断深入,各种技术联用方法和氧化过程理论被提出,其应用领域也不断扩大。本文系统的研究了酚类化合物O_3/UV氧化过程的动力学及其反应机理并在此基础上设计出快速监测水体中化学耗氧量(COD)的新方法,成功应用于淡水和海水实际水样的COD测定。
     全文分为六章:1.文献综述:臭氧、高级氧化技术及化学耗氧量的应用和发展;2.利用基于紫外光辅助臭氧化反应的流动注射化学发光法测定水相中溶解臭氧的方法研究;3.紫外光催化臭氧氧化的流动注射化学发光法测定酚类化合物溶液的COD方法研究;4.几种酚类化合物紫外光辅助臭氧化动力学过程研究及其反应机理探讨;5.流动注射化学发光法测定实际淡水水样和海水水样COD方法研究;6.O_3/UV/TiO_2氧化手段的研究及其在COD监测领域应用探讨。
     第一章通过文献综述,讨论了臭氧的性质、制备和水相中臭氧的应用,并归纳了水相中臭氧的检测方法:介绍了臭氧高级氧化技术的原理和应用;回顾了COD监测方法的现状及发展,并展望了未来COD监测方法研究的发展方向。
     第二章研究了一种基于臭氧氧化鲁米诺产生化学发光的现象测定水中臭氧浓度的方法。采用鲁米诺作为发光剂,对不同浓度的臭氧水溶液分析表明,其浓度与发光信号强度呈线性关系,由此可以测定浓度低至15.066μg/L的臭氧溶液。通过向反应体系中加入Co~(+2),有效的抑制了水中痕量
    
    摘要
    金属离子对鲁米诺发光的催化干扰。
     第三章介绍了一种基于臭氧氧化鲁米诺发光测定臭氧浓度而监测
    COD的新方法。选择六种酚类化合物为分析样本,利用仇/UV氧化手段
    对样本溶液消解并监测反应前后体系中氏浓度的变化,由03在反应过程
    中消耗的量来衡量样本溶液COD值。对样本化合物测定表明,与传统COD
    检测方法相比,新方法利用流动注射系统加快分析速度,完成一个样品的
    测定只需5一1伽min,且操作简单。
     第四章研究了酚类化合物臭氧化反应的动力学过程和反应机理。结果
    表明在紫外光催化条件下,酚类化合物与臭氧反应以直接臭氧氧化和间
    接·OH氧化两种方式进行,且均有较高的反应速率常数。快速的反应显
    示,O抓W氧化手段能够在较短的反应时间内将分析样品溶液彻底氧化,
    满足快速COD分析中的样品氧化消解需要。通过HPLC一MS手段得到酚类
    化合物不同反应时间的氧化产物信息,并推测出该化合物臭氧化反应机理。
    由即LC谱图表明,酚类化合物能够在较短时间被氧化完全,但彻底消解
    生成的二级反应产物则需要较长的反应时间。
     第五章利用液相臭氧氧化化学发光的COD监测方法测定采集自不同
    地区的实际水样。该监测方法的COD检测范围在0.6mg/]卜24m岁L之间,
    适合地表天然水体的COD分析,尤其对于海水分析与传统法相比具有明显
    优势。水样分析显示其COD监测结果的相对标准偏差小于10%。
     第六章初步探讨了仇几即/五仇联用技术用于氧化消解有机物。研究结
    果证明,与03川V手段相比,03/L时/Ti仇表现出更强的氧化能力,而且能
    够在更短的时间将有机物完全氧化,能够满足短时间内充分消解有机物的
    要求,在COD连续快速监测中具有研究价值和应用前景。
     本论文的贡献在于:
     1.利用臭氧氧化鲁米诺产生化学发光现象,建立了一种测定水中溶解
    
    摘要
    臭氧浓度的新方法。检测灵敏,快速,适于共存干扰较小的水体中臭氧浓
    度测定。
     2.系统研究了酚类化合物臭氧化反应,揭示了其紫外光催化臭氧化反
    应动力学速率常数,推测了酚类化合物臭氧化反应机理,充实了臭氧化反
    应理论。
     3.提出了一种应用紫外光催化臭氧氧化鲁米诺产生化学发光来测定
    水体COD含量的新方法,并成功应用于淡水和海水实际水样的COD测定.
    与传统方法相比,具有简便、快速、无二次污染、对样品消解充分的优点,
    具有应用前景。
Because of the powerful oxidation capability, no producing more toxic compounds than removed ones and neither introducing foreign matter to the medium, ozonation is an ideal technique to deal with the organic pollutants in aqueous and has been applied in COD determining. Advance oxidation processes (AOPs) referring to ozonation are the cooperation of ozonation and other oxidative means, which have been proved that it has a more powerful oxidation capability than that of ozonation alone. For example, a certain organic compound can hardly be degraded by ozonation alone, but a combination of both ozone and UV irradiation (UV/O3) or ozonation combining with semiconductor photocatalysis can improve the oxidation efficiency. It indicates that AOPs referring to ozonation should be a more prospective oxidant applied in COD determining than ozonation alone. This work studied in detailed the ozonation kinetics of phenolic compounds and their ozonation reaction mechanisms under the UV irradiation, developed a new metho
    d to determine chemical oxygen demand (COD) utilizing the oxidation technique of UV/O3 and applied this method successfully in determining of natural water samples. The dissertation consists of 6 parts: (1) A review of the application and development of the ozone technique, AOPs and the methods for determining COD. (2) Developing a new method for determining ozone in aqueous (D03) based on the ozone oxidative flow injection chemiluminescence (FI-CL) reaction. (3) the study for determining COD of the phenolic compounds utilizing flow injection chemiluminescence (FI-CL) analysis method based on the UV/O3 process. (4) Investigating of the ozonation kinetics processes and
    
    
    ozonation reaction mechanism of the phenolic compounds. (5) Determining COD of natural water samples collected from different area using the FI-CL method. (6) the investigation for the oxidation capability of Os/UV combining with TiO2 photocatalysis (Oa/UV/TiO2) and the discussion of the application of O3/UV/TiO2 in COD determining.
    In the first chapter of the thesis, more than 100 references were reviewed and the background of the research was given. The properties, generation methods, applications and monitoring for ozone in aqueous were introduced in detailed. The oxidative principle and application points referring to AOPs were reviewed. The status quo and development of the COD determination were discussed. The intending foreground for COD determining was prospected. In the end of this chapter, the new method for COD determining based on the oxidation technique of Oa/UV was put forward.
    In chapter 2, A new method for determining DO3 was built based on the phenomena that luminol can be oxidized by DO3 to produce luminescence. The experimental results show that the concentrations of DO3 have a linear relationship with the integral of the CL intensity within 100s. By this linear relationship, the unknown concentrations of DO3 of a certain water sample could be gained by measuring its CL intensity. The DO3 concentration of a drinking water sample is 0.818mg/L measured by FI-CL method and RSD is 8.54%. Compared with the result of 0.843mg/L measured by the indigo method, there is a recovery of 97.03%. By adding Co2+, the interference of CL catalyzed by trace metal existing in aqueous was sheltered effectively. NaHCO3, as the OH free radical scavenger, was introduced into the FI system to eliminate the CL that was produced by the oxidation of ?OH.
    IT
    
    In the third chapter, A new method for determining COD was developed based on the measurement of DO3 depicted in chapter 2. The oxidation means of UV/O3 was applied and the changes of the DO3 concentration in solutions were inspected by CL detector. The working curve for the COD determination was gamed by measuring the CL signals of the different concentrations of potassium biphthalate solutions. Several phenolic compounds were oxidized by UV/O3 and the results of their COD can be gained by calculating the consumption of DO3.
    In chapter 4, the ozonation kinetics processes and ozonation mechanism
引文
[1] 孔德智,于秀娟,冯玉杰.《环境工程中的高级氧化技术》[M].北京,化学工业出版社,2002,p3.
    [2] GWA Kahlbaum(ed), FV Darbishire, NV Sidgwick. The letters of Jones Jakob
    
    Berzelius and Christian Friedrich Schnbein[M]. Williams and Norgate, London, 1836-1847, p39.
    [3] J. Hoigne. In: Rice, R.G., Netzer, A. (Eds.), Handbook of Ozone Technology and Applications[M]. Chapter 12, Ann Arbor Science, Ann Arbor, Michigan, 1982, p.341.
    [4] M.D. Gurol, R. Vatistas. Oxidation of Phenolic Compounds by Ozone and Ozone-UV Radiation: A Comparative Study[J]. Water Res., 1987, 21:895-900.
    [5] B. Langlais, D.A. Rechhow, D.R. Brink. Ozone in Water Treatment: Application and Engineering[M]. vol.36-38. Lewis Publishers, Boca Raton, Florida, 1990,p43.
    [6] J. Weiss, Investigation on the Radical HO_2 in Solution[J]. Tran. Far. Soc., 1935, 31:668-676.
    [7] J.Staehelin, R.E. Buhler, J. Hoigne. Ozone Decomposition in Water Studied by Pulse Radiolysis[J]. J. Phys. Chem., 1984, 88:2560-2564.
    [8] K. Chelkowska, D. Grasso, I. Fábián, G. Gordon. Numerical Simulations of Aqueous Ozone Decomposition[J]. Ozone Sci. and Eng., 1992, 14:33-49.
    [9] P. Neta, R.E. Huie and A.B. Ross. Rate Constants for Reactions of Inorganic Radicals in Aqueous Solution[J]. J. Phys. Chem. Ref. Data, 1988, 17:1027-1247.
    [10] R.G. Rice. Ozone Reference Guide[M]. Electric Power Research Institute, St. Louis, MO., 1996.
    [11] 储金宇,吴春笃,陈万金,陈志刚.《臭氧技术及应用》[M].北京,化学工业出版社,2002,p195.
    [12] I.H. Suffet, C. Anselme, J. Mallevialle. Removal of Tastes and Odors by Ozonation[C]. AWWA Seminar on Ozonation: Recent Advances and Research Needs. Denver, CO, 1986.
    [13] L.D. DeMers, R.C. Renner. Alternative Disinfection Technologies for Small Drinking Water System[C]. AWWARF and AWWA, Denver, CO, 1992.
    
    
    [14] G. Gordon, W.J. Cooper, R.G. Rice, G.E. Pacey. Disinfectant Residual Measurement Methods[C]. Second edition. AWWARF and AWWA, Denver, CO. 1992.
    [15] IOA(International Ozone Association). Photometric Measurement of Low Ozone Concentrations in the Gas Phase[S]. Standardisation Committee-Europe, 1989.
    [16] D.Bersis, E. Vassiliou. A Chemiluminescence Method for Determining Ozone[J]. Analyst, 1966,91:499-505.
    [17] J.A. Hodgeson, K.J. Krost, A.E. O'Keeffe, R.K. Stevens. Chemiluminescent Measurement of Atmospheric Ozone. Response Characteristics and Operating Variables[J]. Anal. Chem., 1970, 42:1795-1802.
    [18] D.J. Ray, D.H. Stedman, D.J. Wendel. Fast Chemiluminescent Method for Measurement of Ambient Ozone[J]. Anal. Chem., 1986,58:598-600.
    [19] A. Ben-Jebria, S.C. Hu, J.S. Ultman. Improvements in Chemiluminescent Ozone Analyzer for Respiratory Applications[J]. Rev. Sci. Instrum., 1990, 61:3435-3439.
    [20] T. Takada, in "Chemical Sensor Technology"[J]. ed. T. Seiyama, Kodansha, Tokyo, 1989, 2:59
    [21] M.Z. Atashbar, B. Gong, H.T. Sun, W. Wlodarski, R. Lamb. Investigation on Ozone-Sensitive Ln_2O_3 Thin Films[J]. Thin Solid Films, 1999, 354:222-226.
    [22] W.R. Penrose, L. Pan, J.R. Stetter, W.O. Ollison. Sensitive Measurement of Ozone Using Amperometric Gas Sensors[J]. Anal. Chim. Acta., 1995, 313:209-219.
    [23] C.m. Birdsall, A.C. Jenkins, E. Spadinger. Iodometric Determination of Ozone[J]. Anal. Chem., 1952, 24:662-664.
    [24] J. Hoigne, H. Bader. Role of Hydroxyl Radical Reactions in Ozonation Process in Aqueous Solutions[J]. Water Res., 1976,10(2):377-386.
    [25] G. Gordon, K. Rankness, D. Vomehm, D. Wood. Limitations of the Iodometric Determination of Ozone[J]. J. AWWA., 1989, 81:72-76.
    
    
    [26] H. Bader, J. Hoigné. Determination of Ozone in Water by the Indigo Method[J]. Water Res., 1981, 15:449-456.
    [27] E. Jungreis. Spot Test Analysis[M]. Wiley, New York, 1985, Chap, 6.2.30.
    [28] P.E. Wenger, R. Duckert, C.J. Van Nieuwenburg, J. Gillis. Reagents For Qualitative Inorganic Analysis[M]. Elsevier, Amsterdam. 1948.
    [29] 线引林主译.空气采样与分析方法[M].北京:人民卫生出版社,1982,p679.
    [30] 宋钰,蔡士林,张卫强.水中臭氧的快速测定[J].卫生研究,2000,29(3):151-153.
    [31] R. Knake, P.C. Hauser. Sensitive Electrochemical Detection of Ozone[J]. Anal. Chim. Acta., 2002, 459:199-207.
    [32] R.B. Smart, R. Dormond-Herrerea, K.H. Mancy. In Situ Voltammetric Membrane Ozone Electrode[J]. Anal. Chem., 1979, 51:2315-2319.
    [33] J.H. Stanley, J.D. Johnson. Amperometric Membrane Electrode for Measurement of Ozone in Water[J]. Anal. Chem., 1997, 51:2144-2147.
    [34] G. Shiavon, G. Zotti. Amperometric Monitoring of Ozone in Gaseous Media by Gold Electrodes Supported on Ion Exchange Membranes (Solid Polymer Electrolytes) [J]. Anal. Chem., 1990, 62:293-298.
    [35] L.B. Kilham. Measurement of Dissolved Ozone and the Development of a New Meter[J]. Water Conditioning & Purification, 2002.44(1):35-42.
    [36] 薛向东,金奇庭.水处理中的高级氧化技术[J].环境保护,2001,6:13-15.
    [37] J. Beltran-Heredia, J. Tirregrisa, J.R. Dominguez, J.A. Peres. Comparison of the Degradation of p-Hydroxybenzoic Acid in Aqueous Solution by Several Oxidation Processes[J]. Chemosphere, 2001, 42:351-359.
    [38] R. Andreozzi, V. Caprio, A. Insola, R. Marotta. Advanced Oxidation Processes (AOP) for Water Purification and Recovery[J]. Catalysis Today, 1999, 53:51-59.
    [39] H.W. Prengle, Experimental Rate Constant and Reactor Considerations for the
    
    Destruction of Micropollutants and Trihalomethane Precurdors by Ozone with UV Radiations[J]. Environ. Sci. Technol., 1983, 17:743-747.
    [40] G.R. Peyton, W.H. Glaze. Destruction of Pollutants in Water with Ozone in Combination with Ultraviolet Radiation. 3. Photolysis of aqueous ozone[J]. Environ. Sci. Technol., 1988, 22:761-767.
    [41] P.L. Yue, O. Legrini. Photochemical Degradation of Organics in Water[J]. Wat. Pollut. Res. J. Canada, 1992, 27(1):123-137.
    [42] F.J. Beltran, et al. Oxidation of Mecoprop Water with Ozone and Ozone combined with hydrogen Peroxide[J]. Ind. Eng. Chem. Res., 1995, 34:123-131.
    [43] S. Guittoneau, J. De Laat, J.P. Duguet, C. Bonnel, M. Dore. Oxidation of Parachloronitrobenzene in Dilute Aqueous Solution by O_3+UV: A Comparative Study[J]. Ozone Sci.& Eng., 1990, 12(3):73-94.
    [44] N. Takahashi. Organic Compounds by Ozonation[J]. Wat.Res., 1994, 28:1563-1570.
    [45] K. Ikemizu, et al. Ozonation of Organic Refractory Compounds in Water in Combination with UV radiation[J]. J. Chem. Eng. Japan, 1987, 20(4):369-374.
    [46] 张晖,程江等,杨卓如.陈焕钦.O_3/UV法降解水中对硝基酚[J].环境化学,1996,15(4):313-319.
    [47] 吕锡武,严煦世.光化学氧化饮用水中有机优先污染物.中国环境科学,1992,12(1):71-74.
    [48] 吕锡武,孔青春.紫外-微臭氧处理饮用水中有机优先污染物[J].中国环境科学,1997,17(4):377-380.
    [49] 高洁,徐桂芹,姜安玺,于尔捷,杨义飞.光化学氧化技术去除水中有机污染物的试验研究[J].环境污染与防治,2002,24(5):272-274.
    [50] V. Beschkov, G. Bardarska, H. Gulyas, I. Sekoulov. Degradation of Triethylene Glycol Dimethyl Ether by Ozonation Combined With UV Irradiation or Hydrogen Peroxide
    
    Addition[J]. Wat. Sci. Tech., 1997, 36:131-138.
    [51] G.R. Peyton, F.Y. Huang, J. Burleson, W.H. Glaze. Destruction of Pollutants in Water with Ozone in Combination with Ultraviolet Radiation. 1. General Principles and Oxidation of Tetrachoroethylene[J]. Environ. Sci. & Technol., 1982, 16:448-453.
    [52] F.J. Beltran, J.F. Garcia-Araya, B. Acedo. Advanced Oxiation of Atrazine in Water-Ⅰ. Ozonation[J]. Water Res., 1994a, 28:2153-2164.
    [53] F.J. Beltran, J.F. Garcia-Araya, B. Acedo. Advanced Oxiation of Atrazine in Water-Ⅱ. Ozonation Combined with Ultraviolet Radiation[J]. Water Res., 1994b, 28:2165-2174.
    [54] L Sanchez, J. Peral, X. Domenech. Aniline Degradation by Combined Photocatalysis and Ozonation[J]. Applied Catalysis B: Environ., 1998, 19:59-65.
    [55] M. Mare, G. Waldner, R. Bauer, H. Jacobs and J. A. C. Broekaert. Degradation of Nitrogen Containing Organic Compounds by Combined Photocatalysis and Ozonation[J]. Chemosphere., 1999, 38(9):2013-2027.
    [56] K.Tananka, K. Abe, C.Y. Sheng, T. Hisanaga. Photocatalytic Wastewater Treatment Combined With Ozone Pretreatment[J]. Environ. Sci. Technol., 1992, 26(12):2534-2536.
    [57] 《水和废水监测分析方法(第三版)》补充篇[M].中国环境监测,1994,1:15.
    [58] T. Korenago, H. Ikatsu. Continuous-Flow Injection Analysis of Aqueous Environmental Samples for Chemical Oxygen Demand[J]. Analyst, 1981, 106:653-662.
    [59] L.C. Tian, S.M. Wu. Determination of Chemical Oxygen Demand in Aqueous Environmental Samples by Segmented Flow-Injection Analysis[J]. Anal. Chim. Acta., 1992, 261:301-305.
    [60] W. Fresenius, K.E.Quentin,W. Shneider.《水质分析》[M].张曼平译,第一版,北京,北京大学出版社,1991:271.
    [61] 俞英明.《水分析化学》[M].第一版,北京,冶金工业出版社,1993:245
    
    
    [62] A.I. Medalia. Test for Traces of Organic Matter in Water[J]. Anal. Chem., 1951, 23:1318-1320.
    [63] C.M. Gilmour, F. Merryfield, F. Burgess, L. Punkerson, K. Carswell. Persulfate Oxidizable Carbon and BOD as a Measure of Organic Pollution in Water[C]. 1960. 15th PURDUE INDUSTRIAL WASTE CONFERENCE, 143-149.
    [64] 杨先锋,但德忠.化学耗氧量(COD)测定方法的现状及最新进展[J].重庆环境科学,1997,19(04):55-59.
    [65] 吕正中,谭爱民,张磊,张心英.化学需氧量测定方法综述[J].工业水处理,2000,10:9-11.
    [66] D.G. Best, K.E. De Casseres. Determination of COD Using a Sealed-Tube Method[J]. Water Pollution Control, 1978, 77(1):138-143.
    [67] 国内简讯[J].化工环保,1999,19(3):188-189.
    [68] W.F. Jardim, J.J. Rohwedder. Chemical Oxygen Demand (COD) Using Microwave Digestion[J]. Water Res., 1989, 8:1069-1071.
    [69] Hisakuni Sato, Takeshi Ishikawa, Takeo Sato, Yukio Yokoyama. Determinaition of Low-Range with Cr(Ⅳ)-Cr(Ⅲ)-Hg(Ⅱ) for Samples of High Concentration Chloride[J]. Anal. Sci., 2001, 17:i1569-i1570.
    [70] 赵钦勋.关于标准方法测定COD_(cr)值条件的探讨[J].上海环境科学,1996,5:35-36.
    [71] 韩相奎.无汞盐化学需氧量测定方法研究[J].环境科学,1990,6:32-35.
    [72] Vaidya Bikas, S.W. Watson, S.J. Coldiron, M.D. Porter. Reduction of Chloride Ion Interference in Chemical Oxygen Demand (COD) Determinations Using Bismuth-Based Adsorbents[J]. Anal. Chim. Acta., 1997, 357:167-175.
    [73] 肖林如.低消耗和无汞污染的COD_(Cr)测定法[J].环境保护,1991,8:21-24.
    [74] P. Selvapathy, J.S. Jogabeth. A New Catalyst for COD Determination[J]. India J.
    
    Environ. Health, 1991, 33(1):96-102.
    [75] 胡国强等.在混酸溶液中用MnSO_4做催化剂快速测定COD[J].环境科学,1989,10(6):48-51.
    [76] K.C. Thompson, D. Mendham, D. Best, K. E. de Casseres. Communication. Simple Method for Minimising the Effect of Chloride on the Chemical Oxygen Demand Test Without the Use of Mercury Salts[J]. Analyst, 1986, 111(4):483-485.
    [77] R.R. McNary, M.H. Dougherty, R.W. Wolford. A Colorimetric Method for Determining Dissolved Oxygen[J]. Sewage Ind. Wastes, 1975, 29:894-898.
    [78] A.L. Messenger. Comparisons of Sealed Digestion Chamber and Standard Method COD Tests[J]. J. Water Pollut. Control Fed, 1972,44:2140-2145.
    [79] K. Purnendu, Dasgupta and Kaj Petersen. Kinetic Approach to the Measurement of Chemical Oxygen Demand with An Automated Micro Batch Analyzer[J]. Anal. Chem., 1990, 62 (04):395-402.
    [80] A.M. Jirka, M.J. Carter. Micro Semi-Automated Analysis of Surface and Wastewaters for Chemical Oxygen Demand[J]. Anal. Chem., 1975, 47(08): 1397-1402.
    [81] T. Korenaga. Flow Injection Analysis using Potassium Permanganate: An approach for Measuring Chemical Oxygen Demand in Organic Wastes and Waters[J]. Anal. Lett., 1980, 13(A11):1001-1011.
    [82] T. Korenaga, H. Ikatsu. The determination of Chemical Oxygen Demand in Wastewaters with Dichromate By Flow Injection Analysis[J]. Anal. Chim. Acta., 1982, 141:301-309.
    [83] J.M.H. Appleton, J.F. Tyson, R.P. Mounce. The Rapid Determination of Chemical Oxygen Demand in Wastewaters and Effluents By Flow Injection Analysis[J]. Anal. Chim. Acta., 1986, 179:269-278.
    [84] M. Novic, B. Pihlar, M. Duler. Use of Flow Injection Analysis Based on Iodometry for
    
    Automation for Dissolved Oxygen (Winkler method) and Chemical Oxygen Demand(dichromate method) Determinations[J]. Fresenius'Z. Anal. Chem., 1988, 332(07):750-755.
    [85] M.L. Balconi, M. Borgarello, R. Ferraroli, F. Realini. Chemical Oxygen Demand Determination in Well and Liver Waters by Flow-Injection Analysis Using a Microwave Oven During the Oxidation Step[J]. Anal. Chim. Acta., 1992, 261:295-299.
    [86] 杨泽玉,胡涌刚.化学发光-化学需氧量测定新方法[J].分析化学,2003,31(12):1430-1432.
    [87] B.X. Li, Z.J. Zhang, J. Wang, C.L. Xu. Chemiluminescence System for Automatic Determination of Chemical Oxygen Demand Using Flow Injection Analysis[J]. Talanta, 2003, 61:651-658.
    [88] C. Comninellis. Electrocatalysis in the Electrochemical Conversion/Conbustion of Organic Pollutants for Wastewater Treatment[J]. Electrochim. Acta., 1994, 39(11/12):1857-1862.
    [89] K.H. Lee, T. Ishikawa, S. McNiven, Y. Nomura, S. Sasaki, Y. Arikawa, et. al. Chemical Oxygen Demand Sensor Employing a Thin Layer Electrochemical Cell[J]. Anal. Chim. Acta., 1999, 386:211-220.
    [90] 袁洪志.COD的极谱法研究[J].环境科学与技术.1994,64(02):26-28.
    [91] U. Pilz, M. Werner. Ein Potentiostatisches Verfahren zur empfindlichen Bestimmung des chemischen Sauerstoffbedarfs (CBS)[J]. Z. Wasser Abwasser Forch, 1988, 21:203-208.
    [92] 朱洪涛,曾芳.化学需氧量测定方法的研究进展[J].工业安全与环保,2003,29(7):17-19.
    [93] Yoon-Chang Kim, Satoshi sasaki, Kazuyoshi Yano, Kazunori Ikebukuro, Kazuhi Hashimoto and Isao Karube. Relationship Between Theoretical
    
    Oxygen Demand and Photocatalytic Chemical Oxygen Demand of Special Classes of Organic Chemicals[J]. Analyst, 2000, 125 (11):1915-1918.
    [94] Y.C. Kim, K.H. Lee, S. Sasaki, K. Hashimoto, K. Ikebukuro, I. Karube. Photocatalytic Sensor for Chemical Oxygen Demand Determination Based on Oxygen Electrode[J]. Anal. Chem., 2000, 72(14):3379-3382.
    [95] 李国刚,水质化学需氧量(COD)在线自动分析仪的发展现状[J].A rid Environmental Monitoring, 2001,3(12):220-223.
    [96] H.V. Drushel. Determination of Nitrogen in Petroleum Fractions by Combustion with Chemiluminescent Detection of Nitricoxide[J]. Anal. Chem., 1977, 49(07):932-939.
    [97] F.A. Thomas, D.J. Ronald. A Rapid, Precise and Sensitive Method for the Determination of Total Nitrogen in Natural Waters[J]. Mar. Chem., 1998, 60(04):227-234.
    [98] R. Winterhalter, P. Need, D. Grossmann, A. Kolloff, O. Horie, G. Moortgat. Products and Mechanism of the Gas Phase Reaction of Ozone with β-Pinene[J]. Journal of Atmospheric Chemistry, 2000, 32(5):165-197.
    [99] W. Bruening, F.J.M. Concha. Seletive Detector for Gas Chromatography Based on the Chemiluminescence of Ozone Reactions[J]. J. Chromatography, 1975, 112:253-265.
    [100] R. Arkinson, S.M. Aschmann, W.P.L. Carter, A.M. Winer, J.N.Jr. Pitts. Kinetics of OH Radicals With n-Alkanes at 299K[J]. International Journal of Chemical Kinetics, 1982, 112:253-265.
    [101] Marinela Colina, P.H.E. Gardiner. Simultaneous Determination of Total Nitrogen, Phosphorus and Surphur by Means of Microwave Digestion and Ion Chromatography[J]. J. Chromatography A, 1999, 847:285-290.
    [102] 范志杰.我国海洋倾废活动的发展历程[J].交通环保,1994,15(05):19-24.
    [103] P.K.S. Shin, W.K.C. Lam. Development of a Marine Sediment Pollution Index[J].
    
    Environmental Pollution, 2001, 113 (03):281-291.
    [104] 牟晓燕,杨永亮,李春燕,殷效彩,薛允传,贾建军.山东半岛荣成湾月湖环境特征研究[J].青岛大学学报,1999,14(4):56-59.
    [105] 张泽勇.大化棉花岛排渣场工程的投入使用对大连湾水质影响的分析[J].辽宁师范大学学报,1999,22(3):220-223.
    [106] Soo Park, Gyung; Yun Park, Soung. Long-Term Trends and Temporal Heterogeneity of Water Quality in Tidally Mixed Estuarine Waters[J]. Marine Pollution Bulletin, 2000, 40(12): 1201-1209.
    [107] 关胜,郝电,王玉杰,马天,王斌,但德忠.化学需氧量(COD)在线自动监测仪开发应用及最新进展[J].四川环境,2002,21(3):24-29.
    [108] PRIVATINSTITUT FUER INFORMATIK. Instantaneous of Chemical Oxygen Demand of Effluent or Usable Water, by Measurement of Uptake of Highly Active Oxygen e.g. Injected Ozone(P). Euro Pat., DE19855865, 2000.
    [109] 殷忠斌,曹红杰,庄峙厦,孙大海,陈曦,李伟.海洋监测化学、生物传感器及集成技术探讨[M].厦门,厦门大学出版社,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700