多相催化电解处理硝基苯和苯酚废水
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,由于电化学技术在废水治理方面的优势,该技术崭露出良好的应用前景,多相催化技术在环境废水的处理方面的应用研究也越来越深入。本文将电化学与多相催化有机结合起来,以复极固定床电解槽(BPBC)为反应器,用负载金属氧化物的多相催化剂取代传统反应器的绝缘填料,构建了多相催化电解耦合体系。分别以硝基苯和苯酚为电解底物,考察了不同催化剂填料存在情况下,有机物在多相催化电解耦合体系中的降解情况。主要得出如下结论:
     采用BPBC分别处理硝基苯和苯酚废水,电解硝基苯的优化条件:电解电压40 V、支持电解质Na_2SO_4浓度为1000 mg·L~(-1)、pH值为10、水力停留时间45 min:硝基苯的去除率为61.4%;电解苯酚废水的优化条件:电解电压为25 V、支持电解质Na_2SO_4浓度为1000 mg L~(-1)、pH值为2.5;100 mg L~(-1)的苯酚电解45 min,去除率为42.6%;BPBC对硝基苯和苯酚的降解过程符合一级动力学模型。
     多相催化电解耦合工艺处理硝基苯废水的优化工艺条件为:电解电压40 V、支持电解质Na_2SO_4浓度为500 mg·L~(-1)、pH值为10、水力停留时间45 min。经过对硝基苯降解效果的评价,筛选出了实验范围内的最佳催化剂为Fe_2O_3/γ-Al_2O_3。在用催化剂Fe_2O_3/γ-Al_2O_3为填料时,硝基苯的降解过程符合一级动力学模型;硝基苯和TOC的去除率分别为75.1%和39.8%。在引入多相催化剂后,硝基苯的处理效果有了显著的提高,硝基苯和TOC的去除率分别提高了13.7%和12.6%。硝基苯电解后,出水的可生化性有了显著的提高,BOD_5/COD_(cr),由0.06升高到0.307。
     用HPLC和GC-MS对硝基苯电解出水的产物进行分析,得到的产物有苯酚、苯胺、对氨基苯酚等物质,推测硝基苯在多相催化电解耦合工艺中的降解途径为:硝基苯可由电化学氧化直接分解,也可以由电解产生的次生氧化物间接氧化分解;除电化学氧化,也存在硝基苯电化学还原,生成苯胺、对氨基苯酚等物质,产物再进一步分解直至矿化;电解过程中硝基苯部分会矿化。
     多相催化电解耦合工艺处理苯酚废水的优化工艺条件为:电解电压25 V、支持电解质Na_2SO_4浓度为1000 mg·L~(-1)、pH值为2.5、水力停留时间45 min。筛选出实验范围内处理苯酚的最优催化剂为Fe_2O_3/ZSM-5。在优化实验条件下,以催化剂Fe_2O_3/ZSM-5为多相催化电解耦合工艺反应器的绝缘填料,苯酚的降解过程符合一级动力学模型;多相催化电解耦合工艺处理苯酚的效果比传统的BPBC有了明显的提高,苯酚的去除率从42.6%提高到83.5%,COD的去除率从22.3%提高到43.4%,多相催化电解耦合工艺比传统的BPBC电解苯酚的COD去除效率增加了近一倍。
In recent years, electrochemical technology has many advantages in removing pollutants from wastewater. Heterogeneous catalytic technology has been used in the treatment of environmental wastewater. In this study, with the combination of electrochemistry and heterogeneous catalysis in the bipolar packed bed cell, the electric nonconducting particle was replaced by catalyst and heterogeneous catalytic reactions occurred in an electrochemical reactor. And a novel electrochemical heterogeneous catalytic reactor was constituted by combination of electrochemistry and heterogeneous catalytic process. Nitrobenzene and phenol were selected as treatment objects by the new process. The degradation of the organic was investigated and primary conclusion was as followed.
    The traditional bipolar packed bed cell was used to treat nitrobenzene and phenol from wastewater. The optimal conditions of nitrobenzene electrolysis were determined as: applied potential of 40 V, Na_2SO_4 concentration of 1000 mg L~(-1) and pH 10. Under optimal conditions nitrobenzene removal was 61.4%. And the optimal conditions of phenol electrolysis were determined as: applied potential of 25 V, Na_2SO_4 concentration of 1000 mg L~(-1) and pH 2.5. Under optimal conditions phenol removal was 42.6%. Both the apparent kinetics on nitrobenzene and phenol removal can be expressed as the pseudo-first order reaction.
    Treatment of nitrobenzene wastewater by electrochemical heterogeneous catalytic process, the optimal conditions of nitrobenzene removal were as: applied potential of 40 V, Na_2SO_4 concentration of 500 mg L~(-1), pH 10 and 45 min of HRT. By evaluation of nitrobenzene degradation, the best catalyst was selected as Fe_2O_3/γ-Al_2O_3. With the filling of Fe_2O_3/γ-Al_2O_3, the apparent kinetics on nitrobenzene removal can be expressed as the pseudo-first order reaction and nitrobenzene and TOC removals were 75.1% and 39.8%, respectively. With the introduction of catalyst, the nitrobenzene and TOC removals were significant increased by 13.7% and 12.6%, respectivly. After electrolysis, the biodegradablity of the effluent was greatly increased and BOD_5/COD_(Cr) increased from 0.06 to 0.307. In addition, intermediate and ultimate products were analyzed with HPLC and GC-MS, which included aniline, phenol and p-aminophenol, etc. The possible mechanism of nitrobenzene degradation includes the reduction of nitrobenzene at cathode, direct anodic oxidation and indirect oxidation by cathodic byproducts, and partial mineralization of nitrobenzene.
    Treatment of phenol wastewater by electrochemical heterogeneous catalytic process, the optimal conditions of phenol removal were determined as: applied potential of 25 V, Na_2SO_4 concentration of 1000 mg L~(-1), pH 2.5 and 45 min of HRT. By evaluation of phenol degradation,
引文
[1] 王连生.环境健康化学[M].北京:科学出版社,1994,61-67
    [2] 赵军.O_3氧化处理苯胺、硝基苯废水的试验研究[J].环境保护科学,1997,23(3):12-14
    [3] Latifoglu A. , Gurol M. D. . The effect of humic acids on nitrobenzene oxidation by ozonation and O_3/UV processes [J]. Water Res. 2003, 37 (8) : 1879-1889.
    [4] Contreras S. , Rodriguez M. , Chamarro E. , et al. . Oxidation of nitrobenzene by O_3/UV: the influence of H_2O_2 and Fe (Ⅲ) Experiences in a pilot plant [J]. Water Science & Technology. 2001, 44 (5) : 39-46
    [5] 石枫华,马军.O_3/H_2O_2与O_3/Mn氧化工艺去除水中难降解有机污染物的对比研究[J].环境科学.2004,25(1):72-77
    [6] 田依林,李明玉,马同森等.Fenton试剂氧化水中芳香族化合物的机理[J].污染防治技术.2003,16(1):12-15
    [7] Chamarro E. , Marco A. , Esplugas S. . Use of Fenton reagent to improve organic chemical biodegradability [J]. Water Res. , 2001, 35 (4) : 1047-1051
    [8] 黄晓东,徐寿昌.用芬顿试剂预氧化提高硝基苯废水的可生化性[J].江汉石油学院学报,1994,16(3):74-78
    [9] 傅厚暾,赵俐敏,冯娟等.Fenton试剂-超声波降解硝基苯产物的分析[J].四川环境,2005,24(3):12-14
    [10] Chen B. , Yang C. , Goh N. K. . Photodegradation of nitroaromatic compound in aqueous solutions in the UV/H_2O_2 process [J]. J. Environ. Sci. (China). 2005, 17 (6) : 886-893
    [11] Rodriguez, M. , Kirchner A. , Contreras, et al. . Influence of H_2O_2 and Fe (Ⅲ) in the photodegradation [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2000, 133: 123-127
    [12] 胡德文,程沧沧.紫外/双氧水和亚铁离子体系对硝基苯光降解的研究[J].重庆环境科学,1999,21(3):34-36
    [13] Tada H. , Ishida T. , Takao A. , et al. . Kinetic and DFT studies on the Ag/TiO_2 photocatalyzed selective reduction of nitrobenzene to aniline [J]. Chemphyschem, 2005, 6 (8) : 1537-1543
    [14] 程沧沧,肖忠海,胡德文等.玻璃负载TiO_2薄膜光降解制药废水的研究[J].环境科学与技术,2000,92(4):5-7
    [15] 赵东风,赵朝成.超临界水氧化技术处理硝基苯废水的研究[J].重庆环境科学,2001,23(3):45-48
    [16] Mantha R. , Taylor K. E, Biswas N. , et al. . A Continuous System for Fe~0 Reduction of Nitrobenzene in Synthetic Wastewater [J]. Environmental Science and Technology, 2001, 35 (15) : 3231-3236
    [17] Hung H. M. , Ling F. H. and Hoffmann M. R. . Kinetics and mechanism of the enhanced reductive degradation of nitrobenzene by elemental iron in the presence of ultrasound [J]. Environmental Science and Technology, 2000, 34 (9) : 1758-1763
    [18] 徐中其,陆晓华.活性炭纤维在硝基苯水溶液中的吸附和再生[J].华中理工大学学报,2000,28(7):102-104
    [19] 毛连山,赵泉珍,林中祥.硝基苯废水的治理[J].环境污染与防治,2000,22(6):22-25
    [20] 顾曼华,沈小强,沈学优等.有机膨润土吸附硝基苯的性能及其在废水处理中的应用[J].水处理 技术,1994,20(4):236-239
    [21] 林中祥,程康华.萃取法去除硝基苯生产废水中的硝基酚[J].环境导报,2000,(2):18-20
    [22] 沙耀武,赵文超.含硝基苯或硝基氯苯的废水处理的研究[J].精细化工,1996,13(5):57-58
    [23] Nishino S. F. and Spain J. C. . Oxidative pathway for the biodegradation of nitrobenzene by Comamonassp. Strain J S 765 [J]. Appl. Environ. Microbiol. , 1995, 61 (6) : 2308-2313
    [24] 周集体,黄丽萍,王竞等.芳香族硝基化合物生物降解代谢研究现状与展望[J].大连理工大学学报,2000,(增刊):46-54
    [25] 孙艳,钱世钧.芳香族化合物生物降解的研究进展[J].生物工程进展,2001,21(1):42-45
    [26] 晁福寰,李君文,郑金来.苯胺、硝基苯和三硝基甲苯生物降解研究进展[J].微生物通报,2001,28(5):85-88
    [27] 韦朝海,任源,谢波等.硝基苯与苯胺类废水生物降解协同作用研究[J].环境科学研究,1999,12(3):10-13
    [28] 王竞,周集体,张劲松等.假单胞菌JX165及其完整细胞对硝基苯的好氧降解[J].中国环境科学,2001,21(2):144-147
    [29] Orshansky F. , Narkis N. . Evaluation of toxic organics removal by simultaneous adsorption and biodegradation [C]. Proceedings of the Industrial Waste Conference, 1997. 1: 159-171
    [30] 任源,李湛江,吴超飞等.硝基苯废水的厌氧-好氧基本实验与工艺理论分析[J].应用与环境生物学报,1999,(增刊):14-17
    [31] 蔡天明.微电解-生化工艺在硝基苯废水处理中的协同作用[J].环境工程,2001,(12):28-30
    [32] 敦香会,李劲,叶齐政.脉冲放电等离子体处理硝基苯废水的实验研究[J].电力环境保护,2001,17(2):37-38
    [33] 齐军.电流体直流放电降解水中硝基苯的研究[J].环境科学,2001,22(5):99-101
    [34] 朱先军,吴仲达,王红森.酸性溶液中离子注入钯的玻璃电极上硝基苯的电化学还原[J].应用化学,1996,13(4):30-33
    [35] 李玉平,曹宏斌,张懿.硝基苯在碳纳米管修饰电极上的电化学行为及其分析与应用[J].环境化学,2005,24(3):315-317
    [36] 宋卫锋,谢光炎,林美强.DSA类电极催化降解硝基苯及其动力学研究[J].上海环境科学,2002,21(6):353-357
    [37] 傅敏,丁培道,蒋永生等.超声波与电化学协同作用降解硝基苯溶液的实验研究[J].应用声学,2004,23(5):36-39
    [38] 戴猷元.中空纤维膜的传质性质及其过程强化[J].膜科学与技术,2003,23(4):129-133.
    [39] Colon, G. , Hidalgo M. C. , Navio J. A. . Photocatalytic behaviour of sulphated TiO_2 for phenol degradation [J]. Applied catalysis B: Enviromental, 2003, 45 (1) : 39-45
    [40] 林春绵,周红艺,潘志彦等.超临界水氧化法降解苯酚的研究[J].环境科学研究,2000,13(2):1-2.
    [41] Modell M. . Processing methods for the oxidation of organics in supercritical water [P]. US Patent: 4, 543, 190, 1985-09-24
    [42] Helmut S. , Johannes A. . Supercritical water oxidation: state of the art [J]. Chem. Eng. Technol. , 1999, 22 (11) : 903-908
    [43] Casal V. , Schmidt H. , Suwox A. . Facility for the destruction of chlorinated hydrocarbon [J], J. Supercrit. Fluids, 1998, 13: 269-276
    [44] 丁军委,陈丰秋,吴素芳,等.超临界水氧化法处理含酚废水[J].环境污染与防治,2000,22(1):1-3.
    [45] 谭亚军,蒋展鹏,祝万鹏,骆武山.有机污染物湿式氧化降解中Cu系列催化剂的稳定性[J].环境科学,2000,21(7):82-85
    [46] De Leitenburg C. , Goi D. , Primavera A. . et al. , Wet Oxidation of Acetic Acid Catalyzed by Doped Ceria [J]. Applied Catalysis B: Environmental. 1996, 11 (1) : 29-35
    [47] 祝万鹏,杨志华,王利.亚铁—过氧化氢氧化法处理染料中间体H酸生产废液的研究[J].中国环境科学,1995,15(5):368-372
    [48] 谭世语,古昌红,周志明,朱廷霞.Fenton试剂处理三硝基间苯二酚铅废水的研究[J].污染防治技术,1998,(6):13-14
    [49] 王丙坤,北尾,高岭等.采用Fenton试剂处理废水中难降解的苯胺类化合物[J].环境化学,1987,6(5):80-83
    [50] Bossmann S. H. , Oliveros E. , Gob S. , et al. . New evidence against hydroxyl radicals as reactive intermediates in the thermal and photochemical enhanced Fenton reaction [J]. J. Phys. Chem. A, 1998, 102 (28) : 5542-5550
    [51] Zeep R. G. , Faust B. C. , Hoigine J. . Hydroxyl radical formation in aqueous reaction (pH3-8) of iron (Ⅱ) with hydrogen peroxide: the photo-Fenton reaction [J]. Environmental Science and Technology, 1992, 26 (3) : 313-319
    [52] Zheng Z. W. , Lei L. C. , Xu S. J. , et al. . Heterogeneous UV/Fenton catalytic degradation of wastewater containing phenol with Fe-Cu-Mn-Y catalyst [J]. J. Zhejiang Univ. SCI. , 2004, 5 (2) : 206-211
    [53] Tang W. Z. , Tassos S. . Oxidation kinetics and mechanisms of trihaiomethances by Fenton's reagent [J]. Wat. Res. , 1997, 31 (5) : 1117-1125
    [54] Lin Sh. H. , Lin Ch. M. and Leu H. G. . Operating characreristica and kinetics study of surfactant wastewater treatment by Fenton oxidation [J]. Water Res. , 1999, 33 (7) : 1735-1741
    [55] Scott M. A. , William J. H. , and Robin F. H. . Degradation of atrazine by Fenton's reagent: condition optimization and product quantification [J]. Environmental Science and Technology, 1995, 29 (8) : 2083-2090
    [56] Lu M. C. , Chen J. N. and Chang C. P. . Oxidation of dichlorvos with hydrogen peroxide using ferrous ion as catalyst [J]. J. Hazard Mat. , 1999, 65 (3) : 277-288
    [57] Kou W. G. . Decolorizing dye wastewater with Fenton reagent [J]. Water Res. , 1992, 26 (7) : 881-886
    [58] David L. S. and Anders W. A. , Oxidation of chlorobenzene with Fenton reagent [J]. Environmental Science and Technology, 1991, 25 (4) : 777-782
    [59] Lipzynska K. E. . Drgradation of nitrobenzene and nitrophenols in homogeneous aqueous solution [J]. Water Pollut. Res. J. Can. , 1992, 27: 97-122
    [60] Maciel R. , Sant Anna Jr. G. L. , and Dezotti M. . Phenol removal from high salinity effluents using Fenton's reagent and photo-Fenton reactions [J]. Chemosphere, 2004, 57 (7) : 711-719
    [61] He F. , Lei L. C. . Degradation kinetics and mechanisms of phenol in photo-Fenton process [J]. J. Zhejiang Univ. SCI. , 2004, 5 (2) : 198-205
    [62] Gherardini L. , Comninellis C. , and Vatistas N. . Electrochemical oxidation of para-chlorophenol on Ti/SnO_2-PbO_2 electrodes: introduction of a parameter for the estimation of their efficiency [J]. Ann. Chim. , 2001, 91 (3-4) : 161-168
    [63] 董海,郑志坚,缪飚,郑成法.Sn02电极电催化降解废水中酚[J].复旦学报(自然科学版),1998,37(3):287-290.
    [64] Martinez-Huitle C. A. , Quiroz M. A. , Comninellis Ch. , et al. . Electrochemical incine-ration of chloranilie acid using Ti/IrO_2, Pb/PbO_2 and Si/BDD electrodes [J]. Electrochimica Acta. , 2004, 50 (4) : 949-956
    [65] Polcaro A. M. , Palmas S. , Renoldi F. et al. . On the performance of Ti/SnO2 and Ti/PbO_2 anodes in electrochemical degradation of 2-chlorophenolfor wastewater treatment [J]. J. Appl. electrochem. , 1999, 29 (2) : 147-151
    [66] 周明华,吴祖成,王大晕.几种难生化芳香化合物的电催化降解研究—结构对降解活性的影响[J].浙江大学学报(工学版),2003,37(1):73-77
    [67] Fockedey E. , and Van Lierde A. . Coupling of anodic and cathodic reactions for phenol electrooxidation using three-dimensional electrodes [J]. Water Res. , 2002, 36 (16) : 4169-4175
    [68] Brillasa E. , Mura E. , Sauledaa R. , et al. . Aniline mineralization by AOP's: anodie oxidation, photocatalysis, electro-Fenton and photoelectro-Fenton processes [J]. Applied Catalysis B: Environmental, 1998, 16 (1) : 31-42
    [69] Amadelli R. , De Battisti A. , Girenko D. V. , et al. . Electrochemical oxidation of trans 3, 4-dihydroxy cinnamicacid at PbO2 electrodes: direct electrolysis and ozonemediated reactions compared [J]. Electrochimica Acta, 2000, 46 (2-3) : 341-347
    [70] Xiong Y. , He C. , Karlsson Hans T, et al. . Performance of three-phase three-dimensional electrode reactor for the reduction of COD in simulated wastewater containing phenol [J]. Chemosphere, 2003, 50 (1) : 131-136
    [71] Polcaro A. M. , Palmas S. , Renoldi F. , et al. . Three-dimensional electrodes for the electrochemical combustion of organic pollutants [J]. Electrochimica Acta, 2000, 46 (2-3) : 389-394
    [72] 刘守新,陈广胜,陈孝云,陈曦,孙承林.Ag/TiO_2对含酚废水的光电催化降解[J].应用化学,2005,22(8):840-843
    [73] 冯玉杰,李晓岩,尤宏,丁凡等.电化学技术在环境工程中的应用[M].北京:化学工业出版社,2002
    [74] 孙德智,于秀娟,冯玉杰.环境工程中的高级氧化技术[M].北京:化学工业出版社,2002.169-204
    [75] Panizza M. , Cerisola G. , and Bocca C. . Electrochemical treatment of wastewater containing polyaromatie organic pollutants [J]. Water Res. , 2000, 34 (9) : 2601-2605
    [76] Vlyssides A. G. , Loizidou M. , Karlid P. K. , et al. . Electrochemical oxidation of a textile dye wastewater using a Pt/Ti electrode [J]. J. Hazard. Mat. B, 1999, 70 (1-2) : 41-52
    [77] Comninellis C. , and Nerini A. . Anodic oxidation of phenol in the presence of NaCl for wastewater treatment [J]. J. Appl. Electrochem, 1995, 25 (1) : 23-29
    [78] Drogui P. , Elmaleh S. and Rumeau M. . Hybrid process microfiltration electroperoxidation for water treatment [J]. Journal of Membrane Science, 2001, 186 (1) : 123-132
    [79] 吴越.催化化学[M].北京:科学出版社,2000,1297-1298
    [80] Grimm J. H. , Simon U. , Sanderson R. D. , et al. . Characterization of doped tin dioxide anodes prepared by a sol gel technique and their application in an SPE reactor [J]. J. Appl. Electrochem. , 2000, 30 (3) : 293-302
    [81] Correa-Lozano B. , Comninellis Ch. , and De Battisti A. . Preparation of SnO_2-Sb_2O_5 films by the spray surpluses technique [J]. J. Appl. Electrochem. , 1996, 26 (1) : 83-89
    [82] Vicent F. , Morallon E. and Quijada C. . Characterization and stability of doped SnO2 anodes [J]. J. Appl. Electrochem. , 1998, 28 (6) : 607-612
    [83] Do J. S. , and Yeh W. C. . In situ degradation of formaldehyde with electrogenerated hypochlorit Ion [J]. J. Appl. Electrochem. , 1995, 25 (5) : 483-489
    [84] Feng J. , Houk L. L. , and Johnson D. C.. Electrocatalysis of anodic oxygen transfer reaction: The electrochemical incineration of benzoquinone [J]. J. Electrochem. Soc. , 1995, 142 (1) : 26-36
    [85] 梁镇海,许文林,孙彦平.焦化含酚废水在Ti/PbO_2电极上的氧化处理[J].稀有金属材料与工程,1996,25(1):37-40
    [86] Zanta C. L. P. S. , Boodts J. F. C. and De Andrade A. R. . Electrochemical behaviour of olefins: Oxidation at ruthenium titanium dioxide and iridium titanium dioxide coated electrodes [J]. J. Appl. Electrochem. , 2000, 30 (4) : 467-474
    [87] Motheo A. J. and Pinhedo L. . Electrochemical degradation of humic acid [J]. Science of the Total Environment, 2000, 256 (1) : 67-76
    [88] Alves V. A. , Boodts J. F. C. and Da Silva L. A. . Surface characterisation of IrO_2/TiO_2/CeO_2 oxide electrodes and faradaic impedance investigation of the oxygen evolution reaction from alkaline solution [J]. Electrochimica Acta, 1998, 44 (8-9) : 1525-1534
    [89] Troster I. , Fryda M. , herrmann D. , et al. . Electrochemical advanced oxidation process for water treatment using Dia-Chem. Electrodes [J]. Diamond and Related Materials, 2002, 11 (3-6) : 640-645
    [90] Gandini D. , Michaud P. A. , Haenni W. et al. . Oxidation of carboxylic acids at boron doped diamond electrodes for wastewater treatment [J]. J. Appl. Electrochem. , 2000, 30 (12) : 1345-1350
    [91] Iniesta J. , Michaud P. A. , Panizza M. , et al. . Electrochemical oxidation of phenol at boron doped diamond electrode [J]. Electrochimica Acta, 2001, 46 (23) : 3573-3578
    [92] Iniesta J. , Michaud P. A. , Panizza M. , et al. . Electrochemical oxidation of 3-methylpyridine at a boron doped diamond electrode: Application to electro-organic synthesis and wastewater treatment [J]. Electrochemistry Communications, 2001, 3 (7) : 346-351
    [93] Bellagamba R. , Michaud P. A. , Comninellis Ch. , et al. . Electro-combustion of polyacrylates with boron2doped diamond anodes [J]. Electrochemistry Communications, 2002, 4 (2) : 171-176
    [94] Kraft A. , Stadelmann M. , and Kirstein W. , Use of diamond electrodes for electrolytic water treatment and sterilization by anodic oxidation [J]. Galvanotechnik, 2000, 91 (2) : 334-339
    [95] 朱宏丽,王书惠.三元电极电解在水处理中的应用[J].环境科学,1985,6(6):36-40
    [96] Kirk D. W. , Sharifian H. and Foulkes F. R. . Anodic oxidation of aniline for wastewater treatment [J]. J. Appl. Electrochem. , 1985, 15 (2) : 285-292
    [97] Smith V. , De Sucre and Watkinson A. P. . Anodic oxidation of phenol for wastewater treatment [J]. J. of Chem. Eng. Can. , 1981, 59 (1) : 52-59
    [98] Comninellis Ch. . Electrocatalysis in the electrochemical conversion/combussion of organic pollutants for waste water treatment [J]. Electrochemica Acta, 1994, 39(11-12) : 1857-1862.
    [99] Beck F. and Schulz H. . Cr-Ti-Sb oxide composite anodes: Electro-organic oxidation [J]. J. Applied Electrochem. , 1987, 17 (5) : 914-924.
    [100] Do J. S. and Chen C. P. . In situ oxidative degradation of formaldehyde with hydrogen peroxide electrogenerated on the modified graphite [J]. J. Appl. Electrochem. , 1994, 24 (9) : 936-942.
    [101] Do J. S. and Chen C. P. . Kinetics of situ degradation of formaldehyde with electrogenerated hydrogen peroxide [J]. Industrial & Engineering Chemistry Research, 1994, 33 (2) : 387-394.
    [102] Do J. S. and Yeh W. C. . In situ paired electro-oxidative degradation of formaldehyde with electrogenerated hydrogen peroxide and hypochlorite ion [J]. J. Appl. Electrochem. , 1998, 28 (7) : 703-710.
    [103] Brillas E. , Bastide R. M. and Llosa E. . Electrochemical destruction of aniline and 4-Chloroaniline for wastewater treatment using a carbon-PTFE O_2-fed cathode [J]. J. Electrochem. Soc. , 1995, 142 (6) : 1733-1741.
    [104] 熊英健,范娟,朱锡海.三维电极电化学水处理技术研究现状及方向[J].工业水处理,1998,18(1):5-8.
    [105] 陈武,李凡修,梅平.废水处理的电化学方法研究进展[J].湖北化工,2001,(1):10-12.
    [106] Ismail M. I. . Electrochemical reactors: their science and technology part A [M]. Elsevier Science Publishers B. V. , 1989.
    [107] 周抗寒,周定.复极性固定床电解槽内电极电位分布[J].环境化学,1994,13(4):318-322.
    [108] 周抗寒,周定.用涂膜活性炭提高复极性电解槽电解效率[J].环境科学,1994,15(2):38 40
    [109] 刘业翔.功能电极材料及其应用[M].长沙:中南工业大学出版社,1996.11:18-21.
    [110] 许海梁,杨卫身,周集体等.偶氮染料废水的电解处理[J].化工环保,1999,19(1):32-36
    [111] 刘振宇,王栋,周集体等.微电解法处理阴离子表面活性剂废水的研究[J].环境工程,1998,16(2):24-27
    [112] An T. C. , Zhu X. H. and Xiong Y. . Feasibility study of photo-electrochemical degradation of methylene blue with three-dimensional electrode photo-catalytic reactor [J]. Chemosphere, 2002, 46 (5) : 897-903
    [113] Xiong Y. and Karlsson Hans T. . An experimental investigation of chemical oxygen demand removal from the wastewater containing oxalic acid using three-phase three-dimensional electrode reactor [J]. Advances in Environmental Research, 2002, 7: 139-145
    [114] 冀小元,吕越峰.染料中间体废水多相催化臭氧氧化中几种催化剂的筛选研究[J].工业水处理,1996,16(5):20-22.
    [115] 郭国瑞,钟海山.电解催化氧化法处理造纸液[J].轻工环保,1995,1:67-71.
    [116] Chiang L. C. , Chang J. E. and Wen T. C. . Indirect oxidation effect in electrochemical oxidation treatment of landfill leach ate [J]. Water Res. , 1995, 29 (2) : 671-678.
    [117] Szpykowicz L. , Juzzolino C. , Kaul S. N. , et al. . Electrochemical Oxidation of Dyeing Baths Bearing Disperse Dyes [J], Ind. Eng. Chem. Res. , 2000, 39: 3241-3248
    [118] 马淳安,苏为科,王焕华.电化学还原合成对氨基苯酚的研究[J].浙江工学院学报,1992,(1):1-7
    [119] 马淳安,张文魁,黄辉等.硝基苯的电还原特性研究[J].电化学,1999,5(4):395-400
    [120] 周明华,吴祖成.含酚模拟废水的电催化降解[J].化工学报,2002,53(1):40-44
    [121] Tennaloon C. L. K. , Bhardwaj R. C. and Bockris J. O'M. . Electrochemical treatment of human waste in a packed bed reactor [J]. J. Appl. Electrochem. 1996, 26 (1) : 18-29
    [122] Card J. C. , Valentin G. and Storck A. . The activated carbon electrode: a new experimentally verified mathematical model for the potential distribution [J]. J. Electrochem. Soc. 1990, 137: 2736-2745
    [123] 赵国华,李明利,祁源等.苯酚在金刚石电极上的电化学氧化降解过程[J].中国环境科学,2005,25(3):370-374
    [124] 王辉,于秀娟,孙德智等.两种电解体系对苯酚降解效果的对比[J].中国环境科学,2005,25(1):80-83
    [125] 林海波,刘小波,孙智权等,Ti/PbO_2和Ti/Ru-Ti-Sn氧化物涂层电极上苯酚的电化学氧化和降解[J].高等学校化学学报,2005,26(9):3573-3578
    [126] 周明华,吴祖成,汪大晕.不同电催化工艺下苯酚的降解特性[J].高等学校化学学报,2003,24(9):1637-1641
    [127] Iniesta J. , Michaud P. A. , Panizza M. , et al. . Electrochemical oxidation of phenol at carbon doped diamond electrode [J]. Electrochemica Acta, 2001, 46 (23) : 3573-3578
    [128] Maluleke M. A. and Linkov V. M. . Partial electrochemical oxidation of phenol on ceramic based fiat-sheet type electromembrane reactors [J]. Separation and Purification Technology, 2003, 32: 377-385
    [129] 周明华,吴祖成,汪大晕.难生化降解芳香化合物废水的电催化处理[J].环境科学,2003,24(2):121-124

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700