基于处理循环式准好氧垃圾渗滤液的电化学方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对模拟循环式准好氧垃圾填埋场渗滤液具有有机物浓度较低、可生化性差、氨氮浓度低,矿化度高(表现为氯离子浓度高)等特点,在实验室尺度范围内着重研究阳极材料对这类渗滤液电解去除效果的影响,氯离子在电解处理过程中的形态转化以及渗滤液中某些难生物降解或有毒有机物在氯离子体系中的电解氧化动力学及电解氧化途径;初步探讨了电解过程中渗滤液的可生化性与溶解性有机物分子量分布变化的关系;对比分析了以电化学技术作为全处理和预处理该类渗滤液的工艺条件和处理效果,为电化学技术在处理难降解有机废水中的应用提供理论依据和技术参数。
     通过小试实验比较深入地探讨了阳极材料对垃圾渗滤液电解处理效果的影响。实验结果表明,①在用β-PbO_2阳极电解处理过程中,电解质的氧化还原反应速率较快,阳极上流过的电流最大,电催化性能最好:②阳极材料不同,在相同情况下对渗滤液中各项指标的去除效果不同。电解处理氯离子含量较高的渗滤液时应选用Ru-Ir/Ti阳极,它能促进CIO~-的生成,有利于有机物的降解,对COD去除效果最好;电解处理氯离子含量很低的渗滤液时,宜选用电催化性能较好的β-PbO_2阳极;③采用不同阳极材料进行电解处理时,渗滤液中有机物分子量分布变化的趋势不同。当用PbO_2阳极电解处理时,随着电解时间的增加,各种有机物的比例变化不明显:当分别用Ru-Ir/Ti阳极和MMO阳极电解处理时,可使分子量小于2×10~3u有机物的比例从67.6%分别上升到77.6%和87.2%。
     渗滤液中氯离子在电解处理中的作用主要从渗滤液中氯离子初始浓度的作用、氯离子在电解过程中的形态转化及在氯离子体系中典型有机物的电解氧化特性三个方面进行了探讨。研究表明:①当渗滤液中氯离子初始浓度在0~12.5g/L时,渗滤液中有机物的去除负荷(消耗单位能量所去除的有机物量)随着Cl~-初始浓度的增大而增大;当渗滤液中氯离子初始浓度大于12.5g/L及电解时间较长时,氯离子初始浓度对有机物去除负荷的作用效果不明显。在相同的条件下,当电解处理高COD渗滤液时,氯离子初始浓度对有机物去除负荷的影响程度更大;②渗滤液中的氯元素在电解处理过程中的主要存在形态为Cl~-、CIO~-和Cl_2,在实验所用的电解条件下,平均有85.8%的氯以Cl~-形式和CIO~-形式留在电解液中,平均有3.95%的氯以Cl_2形式从渗滤液中逸出,若在不利的条件下电解,会使氯气逸出的比例增加到23.1%;③当渗滤液中大分子的腐植酸和小分子的苯酚分别在氯离子体系中电解氧化时都能得到很好地去除和降解,电解过程中CIO~-产生的间接氧化作用不仅可有效地破坏腐植酸的大分子结构,使它降解为小分子量的有机物,而且还可增加苯酚的氧化速率。直接氧化对有机物的降解作用很差,当电解处理这类废水时,添加一定量的Cl~-促进CIO~-的生成很有必要。苯酚和腐植酸在氯离子体系中的电解产物除了有CO_2这样的小分子气体外,还生成了有机氯中间体和最终产物,这可能会限制电化学氧化法的应用,在电解处理含氯的有机废水时必须考虑有机氯的形成和控制问题。
     通过小试实验对电解过程中渗滤液的可生化性与渗滤液中溶解性有机物分子量分布变化的关系也进行了初步探讨。实验结果表明,①在电解处理时渗滤液中分子量大于100×10~3u有机物的分解,可使渗滤液BOD_5/COD从0.011提高到0.152。②对分子量小于100×10~3u的有机物进行生物处理时,其去除量与生物处理时的有机负荷及有机物的组成有关,与有机物分子量的大小没有直接关系。
     通过小试实验探讨了电化学一步法和电化学—生物复合法处理垃圾渗滤液的工艺条件。研究结果表明:①当用Ru-Ir/Ti阳极一步法电解处理垃圾渗滤液时,去除COD的最佳条件为pH 9,电解时间60min,氯离子浓度8.8g/L,电流密度9 mA/cm~2。在此条件下电解处理垃圾渗滤液,可使垃圾渗滤液的COD从1360mg/L降低至89 mg/L,达到国家一级排放标准(GB16889—1997);②电流密度越小或电解时间越长,越有助于渗滤液可生化性的提高,强碱性条件下电解不利于渗滤液可生化性的提高,β-PbO_2阳极和MMO阳极的电解预处理效果相当。用MMO阳极电解预处理垃圾渗滤液的适宜条件是电流密度3A/dm~2,pH9,氯离子初始浓度8.8g/L,电解时间40min,极板间距2cm。在此条件下电解处理垃圾渗滤液,可使渗滤液BOD_5/COD的比值从0.093提高至0.32。对电解预处理后的垃圾渗滤液用SBR工艺进行生物处理。在温度25℃,有机负荷0.15kgCOD/kgSS,曝气时间5h的工艺条件下处理渗滤液,可有效地降低渗滤液的COD。渗滤液经过电解预处理-生物处理后可使COD从1360mg/L降到275mg/L,达到国家二级排放标准(GB16889—1997)。③就COD的去除效果而言,电化学—生物复合处理法比电化学一步处理法差,但电化学—生物复合处理法具有较低的运行成本。
The characteristics of analogy recycling semi-aerobic landfill leachate is that the COD concentration and the ammonia-N concentration are low, the biodegradability is poor, the degree of mineralization is great, it manily express that the chlorine ion concentration is great. Base on the leachate characteristics,in the lab test range, mainly study the influence of anode material on the treatment result,study the conversation of chlorine ion during the electrolytic treatment,study the electrolytic oxidation kinetics of inhibition biodegradation or toxic organic matters in the chlorine ion regime . The relationship between the biodegradability of leachate and the the molecular weight distribution of dissolved organic matters is also discussed preliminarily. Contrast study the technological condition and the treatment result which use electrolytic technology as full-treatment and pre-treatment for this leachate.Provided a theoretic base and. technical parameters for the application of electrochemical technology to treat for inhibition biodegradation organic wastewater.
     The influence of anode material on the result of electrolytic treatment is discussed for leachate from lab test. It shows that (1)when useβ-PbO_2 anode to electrolytic treat for the leachate, the oxidation -reduction reaction rate of electrolyte and electro-catalytic permormance is the greatest, the current of anode is the greatest, (2)if the anode material is different ,the removal result of every index is also different .when use Ru-Ir/Ti anode to electrolytic leachate, it can accelerate the Cl~-to oxidize into ClO~- which can produce indirect oxidation to accelerate the degradation of organic, so the COD removal result is the best. When treat the leachate concluding the little Cl~-, to use theβ-PbO_2 anode is suitble.(3) the trend of the molecular weight distribution is different if the anode material is different. When useβ-PbO_2 anode, with increasing the electrolytic time, the radio of all kinds of organic matters change little; when separately use Ru-Ir/Ti anode and MMO anode ,the radio of organic matters that molecular weight are below 2×10~3u can increase from 67.6% to 76.6% and 87.2% separately.
     The chlorine ion functions during the electrolytic treatment leachate discusses from three spheres that is the function of chlorine, the morphological conversion of chlorine ion and the electrolytic oxidation characteristics of typical organic matters. The experiment result shows that(1)when the initial chloride ion concentration in the leachate is in 0-12. 5g/L, the removal load of organic matters increase with increasing the initial chloride ion concentration in the leachate. If the initial chloride ion concentration was over 12.5g/L and the electrolytic time is longer, the influence degree of initial chloride ion concentration is little. When treats high concentration leachate, the influence degree of initial chloride ion concentration on the removal load of organic matters is greater. (2) in the electrolytic test condition, the mainly morphological of chloride ion was mainly Cl~-, residual chloride and Cl_2, the average content of Cl~- morphological and residual chloride morphological is 85.8% and the average content of Cl_2 which gave out from the leachate is3.95%.If electrolytic leachate in the bad condition, the content of Cl_2 which gave out can increase to 23.1%. (3)when electrolysis leachate in the Cl~- system, the humic acid and phenol can be removed and degraded. The indirect oxidation of ClO~- can not only make the high molecular weight organics degrade to low molecular weight organics, but also increase the removal rate of phenol. The ability of direct oxidation organic matters is bad. When electrolytic treatment this kind wastewater , it is necessary to add some Cl~- in order to improve the formation of ClO~- .The electrolytic production are the middle matters of organic chloride and final matters of organic chloride besides dicarbonate . This may limit the application of electrochemical technology .Must consider the production and control of organic chloride when electrolysis organic wastewater concluding chloride ion.
     The relationship between the biodegradability of leachate and the the molecular weight distribution of dissolved organic matters is also discussed by lab test. It shows that(1) the degradation of the organic matters that molecular weight are above 100×10~3u can increase the BOD_5/COD of leachate from 0.011 into 0.152. (2)when use biology technology treat leachate, the removal of the organic matters which molecular weight are below 100×10~3u relate to the organic load and the organic composition. It hasn't direct relationship to its molecular weight.
     The technological condition of treatment leachate when use alone electrochemical technology and electrochemical-biology complex technology respectively is also studied. The result shows that (1)when use Ru-Ir/Ti anode to treat leachate ,the best technological condition of removal COD is that pH is 9,the electrolytic time is 60min, chloride ion concentration is 8.8g/L and the current density is 9 mA/cm~2. The COD of leachate can be deduced from 1360mg/L to 89 mg/L and be satisfied for the one grade discharge standard (GB16889—1997),when electrolytic in this condition.(2) if the current density is smaller or the electrolytic time is longer ,it help to increase the biodegradability of leachate .Electrolytic treatment in the base condition is bad to increase the biodegradability ,the treatment result ofβ-PbO_2 anode is idential to MMO anode. When use MMO anode to electrolytic pre-treat the leachate, the suitable technological condition is that pH is 9,the electrolytic time is 40min, chloride ion concentration is 8.8g/L ,the interval of electrode is 2cm and the current density is 3mA/cm~2. The BOD_5/COD of leachate can increase from 0.093 to 0.32. Use SBR technological to treat the leachate after treated by electrolytic. When treat the leachate in the condition of that temperature is 25℃, the organic matter load is 0.15kgCOD/kgSS,the reaction time is 5 h, the COD of leachate can be deduced effectively .The COD can be deduced from 1360mg/L to 275mg/L and be satisfied for the two grade discharge standard (GB16889—1997) .(3) in the removal of COD, electrochemical-biology complex technology is worse than the alone electrochemical technology, but it has little running cost.
引文
1.刘盛萍,蔡敬民,吴克.城市生活垃圾处理现状及对策探讨.合肥学院学报(自然科学版).2005,15(4):53-58
    2.朱兰保,盛蒂.我国城市生活垃圾处理现状及其对策.环境卫生工程.2006,14(3):35-37
    3.张益,赵由才.生活垃圾焚烧技术.北京:化学工业出版社,2000:8
    4.宗凯,孙建业.城市生活垃圾的现状分析与对策探讨.辽宁城乡环境科技.2000,20(1):6-9
    5.张乐观,朱新锋.我国生活垃圾的处理现状及发展趋势.工业安全与环保.2006,32(9):37-39
    6.屈志云,王敬民,刘涛.我国城市生活垃圾处理技术方式的选择.环境卫生工程.2006,14(3):58-60
    7.李国刚,曹杰刚,汪志国.我国城市生活垃圾处理处置的现状与问题.环境保护.2002(4):35-38
    8.于晓华,李建国,何品晶,等.生物反应器技术及其应用.环境保护.2003,(2):24-26
    9. Intergovernmental Panel on Climate Change. The supplementary report to the IPCC scientific assessment, published for the intergovernmental panel on climate change (IPCC),world meteorological organization/united nations environment program. Cambridge: Cambridge University Press, 1992
    10.王明星.大气化学.北京:气象出版社,1999
    11.杜吴鹏,高庆先,张恩琛.中国城市生活垃圾排放现状及成分分析.环境科学研究.2006,19(5):85-90
    12.聂永丰.我国生活垃圾处理技术现状及发展方向探讨.环境经济.2005,(10):30-35
    13.樋壮太郎.废弃物最终处置场地计划和建设.上海:同济大学出版社,2000,8-15
    14.曹霞,刘丹.对城市生活垃圾填埋处置技术的思考.四川环境.2004,23(3):60-63
    15. Soutaro Higuchi. The current state and future of landfill management in Japan. INTEP (International Environmental Planning Center) Newsletter. 1993, (3): 9-14
    16.周北海,王琪,松藤康司,等.我国填埋场改造及发展方向的探讨.环境科学研究.2000,13(3):12-15
    17. Park Sangchul, Kusuda Tetsuya, Shimaoka Takayuki,et al. Simulation of behavior of pollutants in semi-aerobic landfill layers. Haikibutsu Gakkai Ronbunshi. 1997, 8(4): 147-156
    18. Shimaoka Takayuki, Matsufuji Yasushi, Hanashima Masataka. Mechanism of self-stabilization of semi-aerobic landfill. Solid Waste Association of North America Presents Proceedings from the Annual Landfill Symposium, 5th, Austin, TX, United States. 2000, June 27-30, 171-184
    19. Shimaoka Takayuki,Park Sangchul, Miyawaki Kentaro, et al. Decomposition process and control of municipal solid wastes in a landfill.Proc.-ISWA Int. Congr. Exhib., 7th, Volume 2, Ⅱ/255-Ⅱ/256
    20. Kim Youngkyu, Yang Go Su. A novel design for anaerobic chemical oxygen demand and nitrogen removal from leachate in a semiaerobic landfill. Journal of the Air & Waste Management Association. 2002, 52(10): 1139-1152
    21. Matsuto T.,Tanaka N.,Koyama K.Stabilization. Mechanism of leachate from semi-aerobic sanitary landfills of organic-rich waste. In: Proceedings Sardinia 91,Third Internation Landfill Symposium.Vol. 1,CISA,Cagliari. 1991: 876-888
    22. M.Hanashima.Pollution control and stabilization process by semiaerobic landfill type: the Fukuoka method.In: Proceedings Sardinia 99,Seventh International Waste Management and Landfill Symposium.Vol. 1,CISA,Cagliari. 1999:313-325
    23.刘春尧,刘培培.准好氧填埋场渗滤液COD衰减规律研究.武汉市经济管理干部学院学报.2004,(6):167-168
    24.张陆良,刘丹.准好氧填埋场早期渗滤液特征浅析.四川环境.2004,23(3):28-32
    25. Sue-Huai Gau, Jing-Dong Chow. Landfill leachate characteristics and medeling of municipal solid wastes combined with incinerated residuals.Journal of Hazardous Materials. 1998, (5): 249-259
    26. J.D.chow. Study on the characterization of leachates from semiaerobic landfill.Thesis of MS, Tamkang University. R.O.C,1988
    27. Hamidi Abdul Aziz,Mohd Suffian Yusoff, Mohd Nordin Adlan, et al. Physico-chemical removal of iron from semi-aerobic landfill leachate by limestone filter.Waste Management. 2004, (24): 353-358
    28. Tanaka Nobutoshi, Matsuto Toshihiko,Kim Youngkyu. Air flow rate in leaehate collection pipe of semi-aerobic landfills: Theoretical study on pipe network Haikibutsu Gakkai Ronbunshi. 1997, 8(1): 1-8
    29. Matsufuji Yasushi, Kobayashi Hideki, Tanaka Ayako, et al. Generation of greenhouse effect gases by different landfill types and methane gas control. Proc.-ISWA Int. Congr. Exhib., 7th, Volume 1, Ⅰ/230-Ⅰ/237
    30.于晓华,李国建,何品晶,等.城市垃圾渗滤液场内循环处理的探讨.新疆环境保护.2003,25(1):24-27
    31.王琪,董路,李妲,等.垃圾填埋场渗滤液回流技术的研究.环境科学研究.2000,13(3):1-5
    32.花坞正孝.废弃物最终处分场动向技术上问题点.废弃物学会志.1993,4(1):3-9
    33. Shimaoka Takayuki, Hanashima Masataka, Matsufuji Yasushi,et al. Numerical simulation of self-purification capacity in a recirculatory semi-aerobic landfill layer with solid waste. Fukuoka Daigaku Kogaku Shuho. 1993,50:49-61
    34.郭广慧,陈玉成.城市生活垃圾渗滤液处理技术的研究.环境科学与管理.2006,31(1):138—141
    35.刘东,喻晓,罗毅.城市生活垃圾填埋场渗滤液特性分析.环境科学与技术.2006,29(6):54—56
    36. Chedly Tizaoui, Latifa Bouselmi, Loubna Mansouri, et al.landfill leachate treatment with ozone and ozone/hydrogen peroxide systems. Journal of Hazardous Materials.2007,140 (1-2,9): 316—324
    37.冯旭东,刘芳,郭明曼.垃圾渗滤液生物处理出水臭氧氧化的研究.环境污染与防治.2005,27(5):387—391
    38.黄报远,金腊华,卢显妍,等.臭氧氧化对垃圾填埋场后期渗滤液的预处理研究.环境污染治理技术与设备.2006,7(4):104—107
    39.沈小星,陈哲铭,方士.老龄垃圾渗滤液混凝—催化臭氧氧化工艺研究.浙江大学学报(农业与生命科学版).2006,32(4):449~454
    40. Daniele M. Bila, A.Filipe Montavao, Aiessandra C, et al.Ozonation of a landfill leachate: evaluation of toxicity removal and biodegradability improvement.Journal of Hazardous Materials.2005,B117: 235-242
    41.高艳娇,黄继国,聂广正.Fenton氧化法深度处理垃圾渗滤液.工业用水与废水.2005,36(6):39—41
    42.孟玢,李静,王蕾.Fenton氧化处理垃圾渗滤液生化工艺出水的影响因素研究.天津城市建设学院学报.2004.10(1):41—45
    43. Antonio Lopez, Michele Pagano, Angela Volpe. Fenton's pre-treatment of mature landfill leachate.Chemosphere.2004, (54): 1005-1010
    44. Hui Zhang, Daobin Zhang,Jiayong Zhou. Removal of COD from landfill leaehate by electro-Fenton method. Journal of Hazardous Materials.2006, 135 (1-3, 31): 106~111
    45.涂淑玲,汪先明.TiO_2光催化氧化深度处理垃圾渗滤液的研究.江西化工.2004,(4):137—140
    46.陈天安,陈元刚.晚期垃圾渗滤液综合物理化学法改性预处理技术可行性研究.污染防治技术.2004,17(2):13—15
    47.舒慧,赵由才.氧化剂在低浓度难降解垃圾渗滤液中的试验研究.苏州科技学院学报(工程技术版).2003,16(1):30—35
    48.夏庆余,孔健健,郑曦.高铁酸盐深度处理垃圾渗滤液.水处理技术.2005,31(7):58—60
    49.渠永生,夏立江,赵凤秋.农业环境科学学报.2006,25(增刊):632—63
    50.徐冰峰,王琳.吴国娟聚铁预处理垃圾渗滤液研究.昆明理工大学学报(理工版).2005,30(2):70—74
    51.王汉道,肖继波,陈立权.磷酸铵镁—混凝深度处理垃圾渗滤液实验研究.环境科学与技术.29(4):83—85
    52. Amokrane A., Cornel C., Veron J. Landfill leachates pretreatment by coagulation-fiocculation. Water Research. 1997,31 (11): 297-336
    53.李鱼,朱岚,刘亮.催化湿法氧化处理垃圾渗滤液的经济性初步分析.四川环境.2006,25(2):90—93
    54. Li CHoung-Chiang. Indiect oxidation effect in electrochemical oxidation treatment of landfill ieachate. Wat. Resvol. 1995, 29: 671-678
    55.徐金球.超声空化及其组合技术降解焦化废水的研究.昆明理工大学博士论文.2002,06
    56.余以雄,罗亚田,查振林.垃圾渗滤液深度处理方法研究.辽宁化工.2004,33(4):609—613
    57.聂永丰,岳东北,许亚东,等.渗滤液膜处理浓缩液的蒸发处理技术.中国城市环境卫生.2006.(4):18—22
    58.周爱姣,陶涛.高压脉冲放电等离子体处理垃圾渗滤波.武汉城市建设学院学报.2001,18(3-4):44—47
    59. S.H Gau,F S Chang.Improved Fenton method to remove recalcitrant orgnics in landfill leachate. Wat. Sci.Tch. 1996,34 (7-8): 455~462
    60.富磊,徐晓军.Fenton试剂和化学沉淀法联合处理垃圾渗滤液.净水技术.2004,23(1):13~15.
    61. Evan Diamadopouioos. Characterization and tretment of recirculation-stabilized leachate. Wat.Res.,1994,28 (12): 2439~2445
    62. F.Javier Rivas. Stabilized leachates: sequential coagulation-flocculation chemical oxidation process. Journal of Hazardous Materials. 2004,B116:95-102
    63. F. Javier Rivas. Stabilized leachates: ozone-activated carbon treatment and kinetics. Water Research. 2003, (37): 4823~4824
    64.程洁红,李尔杨,李定龙.Fenton-混凝法在垃圾渗滤液预处理中的试验研究.江苏石油化工学院学报.2002,14(2):27~29
    65.熊忠,林衍.混凝-Fenton-SBR处理垃圾渗滤液的影响因素研究.城市环境.2002,16(4):19~20
    66. Daniele M.Bila, A.Filipe Montalvao, Alessandra C. Silva,et al.Ozonation of a landfill leachate: evaluation of toxicity removal and biodegradability improvement. Journal of Hazardous Materials. 2005,B117:235~242
    67. Lidia Szpyrkowicz, Santosh N.Kaul, Rao N Neti. Influence of anode material on electrochemical oxidation for the treatment of tannery wastewater. Water Research.2005, (39): 1601-1613
    68. L. Szpyrkowicz, J. Naumczyk, F. Zilio-Grandi.Electrochemical treatment of Tannery wastewater using Ti/Pt/Ir electrodes. Water Res. 1995, (29): 517-524
    69. K. Vijayaraghavan, T.K. Ramanujam, N. Balasubramanian. In situhypochlorous acid generation for treatment of tannery wastewaters. Environ. Eng. 1998, (124): 887-891
    70.李川,夏洁,王玉峥.微电解处理对染料废水脱色的影响.南京林业大学学报(自然科学版).2004,28(1):87-88
    71.王爱民,杨立红,张素娟,等.电化学方法治理含染料废水的现状与进展.工业水处理.2001,21(8):4—7
    72. A.G. Vlyssides,M. Loizidou, P.K. Karlis. Electrochemical oxidation of a textile dye wastewater using a Pt/Ti electrode Journal of Hazardous Materials. 1999,(B70): 41-52
    73. A.G. Vlyssides, D. Papaioannou, M. Loizidoy, P.K. Karlis. Testing an electrochemical method for treatment of textile dye wastewater. Waste Management. 2000, (20): 569—574
    74. Marina Gotsi, Nicolas Kalogerakis, Eiefteria Psillakis. Electrochemical oxidation of olive oil mill wastewaters. Water Research. 2005,(39): 4177-4187
    75. C.J. Israilides, A.G. Viyssides, V.N. Mourafeti, et aI.Olive oil wastewater treatment with the use of an electrolysis system. Bioresource Technol. 1997, 61: 163-170
    76.刘剑,马鲁铭,赖世华.催化铁内电解/生物膜法处理化工废水.中国给水排水.2004,20(11):55—57
    77.徐文英,周荣丰,高廷耀,等.混合化工废水处理工艺的研究.给水排水.2003,29(5):52—55
    78. J. Naumczyk, L. Szpyrkowicz, F. Zilio-Grandi. Electrochemical treatment of textile wastewater. Water Sci. Tech. 1996, (34): 17-24
    79. C. Comnineilis, A. Nerini. Anodic oxidation of phenol in the presence of NaCl for wastewater treatment. J. Appl. Electrochem. 1995 (25): 23-28
    80. J. Iniesta, J. Gonzalez-Garcia, E. Exposito, et al.Influence of chloride ion on electrochemical degradation of phenol in alkaline medium using bismuth doped and pure PbO_2 anodes. Water Res. 2001 (35): 3291-3300
    81.李庭刚,陈坚,张国平.电化学氧化法处理高浓度垃圾渗滤液的研究.上海环境科学.2003,22(12):892~897
    82.李庭刚,李秀芬,陈坚.渗滤液中有机化合物在电化学氧化和厌氧生物组合系统中的降解.环境科学.2004,25(5):172—176
    83.杨云军,李庭刚,堵国成,等.电解氧化法预处理垃圾渗滤液.环境科学研究.2003,16(6):53—57
    84.李伟东,赵东风,梅成效.电解氧化处理难降解垃圾渗滤液研究.浙江化工.2006,37 (7):14—17.
    85.王德义.催化电解氧化与SBR法联合处理垃圾渗滤液的实验研究.烟台大学学报(自然科学与工程版).2006,19(3):216—254
    86.陈卫国.电催化系统—电生物炭接触氧化床处理垃圾渗滤液.中国环境科学.2002,22(2):2146—2149
    87.杨继东,赵勇胜,赵晓波.电絮凝预处理垃圾渗滤液的可行性研究.环境工程.2006,24(5):29—31
    88.魏平方,邓勇,王春宏,等.电化学氧化法处理垃圾渗滤液.化学与生物工程.2005,(3):50—52
    89.王敏,阳小敏.SBR法处理垃圾渗滤液出水的电解氧化实验.环境卫生工程.2002,10(2):68—71
    90.李小明,王敏,矫志奎.电解氧化处理垃圾渗滤液研究.中国给水排水.2001,17(8):14—17
    91.王敏,阳小敏,陈昭宜.催化电解法去除渗滤液中COD、NH_3—N的动力学研究.环境污染与防治.2003,25(4):211—214
    92.王敏,李小明.催化电解法处理垃圾渗滤液的研究.环境科学与技术.2002,25(2):17—19
    93.朱晓君,高廷耀,宋洁.垃圾渗滤液催化电解氧化深度处理的研究.净水技术.2005,24(3):7—11
    94.王鹏,刘伟藻,方汉平.电化学氧化与厌氧技术联用处理垃圾渗沥水.环境科学.2001,22(5):70—73
    95.王汉道,曾其炉,戴东平.三维电极法深度处理环保发电厂垃圾渗滤液的实验研究.环境技术.2005,23(2):34—36
    96.高艳娇,黄继国,陈鸿汉.生物接触氧化—电絮凝工艺处理垃圾渗滤液研究.环境科学与技术.2006,29(3):92—93
    97.朱凡,李平,吴锦华.铁炭微电解法削减老龄垃圾渗滤液的毒性研究.中国给水排水.2006,22(11):83—87
    98.王锋,周恭明.铁—碳微电解法预处理老龄垃圾填埋场渗滤液的研究.环境污染治理技术与设备.2004,5(3):63—65.
    99.焦斌权,李晓红,卢义玉,等.电解氧化预处理晚期垃圾渗滤液时的电流效率.重庆大学学报(自然科学版).2006,29(3):128—130
    100.罗阳春,王家德,陈建孟,等.电催化氧化技术提高垃圾渗滤液可生化性的研究.水处理技术.2005,31(5):73—76
    101.焦斌权,李晓红,卢义.电化学法改善晚期渗滤液可生化性试验研究.重庆建筑大学学报.2005,27(4):81—83
    102.薛俊峰,何品晶,邵立明,等.氨氮难降解渗滤液电解氧化处理的特性.同济大学学报(自然科学版),2005,33(12):1630—1635.
    103.王敏,阳小敏.催化电解法去除渗滤液中COD和NH_3-N的电耗研究.给水排水.2003,29(3):13-17
    104. Yang Deng,James D. Englehardt. Electrochemical for landfill leachate treatment. Waste Management. 2007,27 (3): 380-388
    105. Peterson BuenoMoraes, Rodnei Bertazzoli. Electrodegradation of landfill leachate in a flow electrochemical reactor. Chemosphere.2005,58:41~46
    106. Nakayama, Norio. Electrode apparatus with perforated conductor electrode. Eur. Pat. Appl. EP 1008662 A1 14 Jun 2000, 13 pp.
    107. Watanabe, Tsuneo. Treatment of landfill water by electrolysis and magnetic separation. Teion Kogaku. 2002,37(7): 328-330
    108. Leu Min-Her, Chang Juu-En Proc. Removal of metals from landfill enriched-leachate with electrolytic process. Solid Waste Technol. Manage., 1999,15th, 4E/1-4E/8
    109. Sugimoto, Akitoshi.Apparatus for treatment of landfill leachate by chemical precipitation. Jpn. Kokai Tokkyo Koho JP 2002011498 A2 15 Jan 2002, 14 pp.
    110. Hartel Georg Habil, Nikolai Ulrich,Soldner Uwe, et al.Process and apparatus for electrolytically adjusting the pH and the redox potential of fluids such as wastewaters. Eur. Pat. Appl. EP 1065170A1 3 Jan 2001, 35 pp.
    111. Takahashi Kazuyoshi,Miki Kohei.Water treatment method and apparatus for removing pollutants by electrolysis. Jpn. Kokai Tokkyo Koho JP 2002018443 A2 22 Jan 2002, 6 pp.
    112. Chiang L.C., Chang J.E., Chung C.T., Electrochemical oxidation combined with physical-chemical pretreatment processes for the treatment of refractory landfill leachate. Environmental Engineering Science. 2001,18 (6): 369-379
    113. Leu Min-Her, Chang Shu-Jiun, Chen Sy-Yn,et aI.Removal of enriched-leachate from RO unit for landfill ieachate with electrolytic process. Proc. Int. Conf. Solid Waste Technol. Manage. 1998,14th, 3A.3/1-3A.3/8
    114. Matsubara, Kiwamu,Hirota, et al. Organic wastewater treatment for COD removal and denitrification using electrolytic means.Jpn. Kokai Tokkyo Koho JP 2004255247 A2 16 Sep 2004, 12 pp.
    115. Wang P., Lau W.C.I., Fang H.P.H.,. Landfill leachate treatment by anaerobic process and electrochemical oxidation. Environmental Science. 2001,22 (5): 70-73
    116. Kim Jong-Shik, Song Sea-Dal, Kongop. A study on landtill leachate treatment with electrolysis. Hwahak. 2001,12(4): 439-443
    117. Tsai C. T., Lin S. T., Shue Y. C., et al. Electrolysis of soluble organic matter in leachate from landfills. Water Res. 1997,31(12): 3073-3081
    118. Cossu R., Polcaro A.M., Lavagnolo M.C.,et al. Electrochemical treatment of landfill leachate: oxidation at Ti/PbO_2 and Ti/SnO_2 anodes. Environmental Science and Technology. 1998,32 (22): 3570-3573
    119. Vlyssides A.G., Karlis P.K., Mahnken G.,. Influence of various parameters on the electrochemical treatment of landfill leachates. Journal of Applied Electrochemistry.2003,33 (2): 155-159
    120. Chiang L.C., Chang J.E., Wen T.C.,. Electrochemical treatability of refractory pollutants in landfill ieachate. Hazardous Waste &Hazardous Materials.1995,12 (1): 71-82
    121. L.C. Chiang, J.E. Chang, T.C. Wen. Indirect oxidation effect in electrochemical oxidation treatment of landfill leachate.Water Res. 1995, (29): 671-678
    122. Lin S.H., Chang C.C.,. Treatment of landfill leachate by combined electro-Fenton oxidation and sequencing batch reactor method. Water Research. 2000,34 (17): 4243-4249
    123. Vlyssides A.,et al.Treatment of leachate from a domestic solid waste sanitary landfill by an electrolysis system. Environmental Technology. 2001,22(12): 1467-1476
    124.冯玉洁,李小岩.电化学技术在环境工程中的应用.北京:化学工业出版社,2002
    125.杨辉,卢文庆.应用电化学.北京:科学出版社,2001:43.
    126. A.G. Vlyssides, P.K. Karlis, N. Rori, et al. Electrochemical treatment in relation to pH of domestic wastewater using Ti/Pt electrodes.Journal of Hazardous Materials. 2002,B95:215-226
    127.居明.李晓宣.处理苯胺废水的电化学研究.环境污染治理技术与设备.2002,3(9):28-30
    128.董秉直,曹达文,范瑾初,等.天然原水有机物分子量分布的测定.给水排水.2000,26(1):29-32
    129.王辉,于秀娟,孙德智,等.两种电解体系对苯酚降解效果的对比.中国环境科学.2005,25(1):80-83
    130. D.Rajkumar, K.Palanivelu. Electrochemical treatment of industrial wastewater. Journal of Hazardous Materials. 2004, (B 113): 123-129
    131.徐涛,肖贤明,刘红英.UV/H_2O_2光化降解水中邻二氯苯的反应机理.中国环境科学.2004,24(5):547-551
    132. Xiao-yan Li, Yu-hong Cui, et al. Reaction and mechanisms of the electrochemical degradation of phenol on different electrodes. Water Research. 2005,39:112-119.
    133.金鹏康,王晓昌,王洪波,等.水中腐植酸的臭氧化特性研究.西安建筑科技大学学报.2000,32(4):334—338
    134. M. V. Cheshire, P. A. Cranwell, C. P. Falshaw, et al.Humic acid—Ⅱ: Structure of humic acids.Tetrahedron. 1967,23 (4): 1669-1682
    135.金鹏康,王晓昌,白帆.腐植酸臭氧氧化和过氧化氢催化氧化处理特性比较.环境化学.2005,24(5):533—538
    136.薛俊峰,何品晶,邵立明,等.渗滤液循环回灌厌氧填埋层前后的分类表征.水处理技术.2005,31(6):24-27
    137.汤贵兰,蓝伟光,张烨,等.焦炭和废铁屑微电解预处理垃圾渗滤液的研究.环境污染治理技术与设备.2006,7(11):121-123
    138. E. Gilbert. Biodegradability of ozonation products as a function of COD and DOC elimination by the example ofhumic acids. Water Research. 1988,22 (1): 123-126
    139. J. Swietlik, A. Dbrowska, U. Raczyk-Stanisawiak, et al. Reactivity of natural organic matter fractions with chlorine dioxide and ozone. Water Research.2004,38(3): 547-558
    140. Chih-Hsiang Liao, Ming-Chun Lu,Shyh-Hsiung Su,et al. Role of cupric ions in the H_2O_2/UV oxidation of humic acids. Chemosphere. 2001,44 (5): 913-919
    141. Miray Bekbolet, Ferhan Cecen, Güihan Ozkosemen. Photocatalytic oxidation and subsequent adsorption characteristics of humic acids. Water Science and Technology. 1996,34 (9): 65-72
    142. Radwan Al-Rasheed, David J. Cardin. Photocatalytic degradation of humic acid in saline waters: Part 2. Effects of various photocatalytic materials.Applied Catalysis A: General. 2003,246 (1): 39-48
    143. Gen-Shuh Wang, Chih-Hsiang Liao, Fang-Jui Wu. Photodegradation of humic acids in the presence of hydrogen peroxide.Chemosphere.2001,42 (4): 79-387
    144. Artur J. Motheo,Laerte Pinhedo. Electrochemical degradation of humic acid.The Science of The Total Environment. 2000,256 (1): 67-76
    145. U.Schümann, P.Gründler.Electrochemical degradation of organic substances at PbO_2 anodes: monitoring by continuous CO_2 measurements.Water Research. 1998, 32 (9): 2835-2842
    146. X. Z. Li, F. B. Li, C. M. Fan,Y. P. Sun. Photoelectrocatalytic degradation of humic acid in aqueous solution using a Ti/TiO_2 mesh photoelectrode.Water Research. 2002,36 (9): 2215-2224
    147. Anastasios I. Zouboulisa, Xiao-Li Chai, loannis A Katsoyiannis. The application of bioflocculant for the removal of humic acids from stabilized landfill leachates. Journal of Environmental Management. 2004,(70): 35-41
    148. Chiang L.C., Chang J.E., Wen T.C. Destruction of refractory humic acid by electromechanical oxidation process. Water Science and Technology. 2000,42 (3): 225-232
    149.Pinhedo L., Pelegrini R., Bertazzoli R., et al. Photoelectrochemical degradation of humic acid on a (TiO_2)_(0.7)(RuO_2)_(0.3) dimensionally stable anode. Appl. Catal. 2005, B : 57,75-81

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700