微波液相放电等离子体特性及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微波液相放电技术是一项新兴等离子体产生技术,由于其较大的空间分布和较高的等离子体密度越来越备受关注。目前,世界上对微波液相放电基本特性及其在环境和制氢领域的应用研究鲜有报道。本文对微波液相放电电极设计方法、电极结构特性、液相放电机理及特性、放电光谱特性、微波液相放电技术在污染物处理和氢气制取领域的应用等方面进行了研究。所取得的主要研究成果如下:
     第一,设计了一种匹配良好的微波液相放电电极,电极由内到外依次为内导体、陶瓷管、硅胶和外导体。同时,对反应器内理化环境对电极匹配的影响特性进行研究证明:水的电导率、pH值、外界压强对驻波比(SWR)的影响不明显,而随着温度的增加,SWR不断增大;电极所处液体相对介电常数对SWR的影响最大。
     第二,对微波液相放电特性研究结果表明:等离子体区域面积和OH自由基发射光谱强度的变化趋势具有良好的对应关系。微波功率的增大和温度的提高有利于维持等离子体的持续产生,而外界压强和电导率的增大会使等离子体淬灭现象越来越明显;悬浮电极能够有效增强放电强度;OH自由基光谱相对强度随外界压强的增大而减弱,随功率的增大而增强;在温度为25℃时,OH自由基光谱相对强度出现最大值;OH自由基光谱相对强度随着电导率的增大出现先增强后减弱的趋势。
     第三,通过研究损耗因子对微波液相放电的影响机理得出:在微波频率一定的条件下,介质相对介电常数、温度、电导率是影响微波与液体耦合的三个主要因素。HFSS模拟结果发现当有气泡存在时,原位于内电极尖端与陶瓷管之间间隙处的最强电场区域已经转移至气泡底部。通过调整放电电极的放置方式,发现气泡走向对放电有一定影响,结合软件模拟和理论分析得出微波液相放电过程实际为电极内导体尖端气泡被强电场击穿过程。
     第四,利用微波液相放电技术对亚甲基蓝溶液进行了脱色实验研究。结果发现:亚甲基蓝的脱色率随着功率的增大而增大;在pH值为6-8范围内,亚甲基蓝的脱色率随pH值的增大而减小,在酸性溶液条件下亚甲基蓝的脱色效果最好,处理12min,即可达到97.81%;当亚甲基蓝的初始浓度为12.5mg/L时,亚甲基蓝获得了最大脱色率,最大能量效率为120mg/kWh。
     第五,利用微波液相放电技术对低碳醇(甲醇和乙醇)进行了分解制氢。结果显示:甲醇和乙醇溶液放电气相产物主要包括氢气、一氧化碳、乙炔和二氧化碳。随着功率的增大,放电产生的总气体流量和氢气流量都显著增加,而随着醇溶液浓度的增大,放电产生的总气体流量和氢气流量都出现先增加后减小趋势。随着功率的增大,氢气比例和一氧化碳比例都有所提高,其它气体的比例有明显的下降;当醇溶液浓度为8%时,氢气比例和一氧化碳比例都出现了最大值,而其它气体的比例则出现最低值。随着功率的增大,放电产氢能量效率都有显著地提高,且在同一功率下,乙醇的制氢能量效率都要高于甲醇的制氢能量效率。随着醇溶液体积分数的增大,制氢能量效率则出现先增大后减小趋势,且在8%体积分数时获得最大值。本文中微波液相放电醇类制氢最大氢气流量、最大氢气纯度及最大能量效率分别为215nL/min,64.55%和74.26NL/kWh。
Microwave discharge in liquid is a new plasma technology and becomes more and more concerned due to its large spatial distribution and high density of plasma. At present, there are few reports about the characteristics of plasma and application in the field of pollution treatment and hydrogen production. In this paper, the design method of electrode of microwave discharge in liquid, characteristic of electrode structure, mechanism and characteristic of microwave discharge in liquid, spectral characteristic of discharge, application of microwave discharge in liquid in the field of pollution treatment and hydrogen production are studied. The main results are as follows:
     First, a new style electrode of microwave discharge in liquid is designed, which consists of inner electrode, ceramic tube, silicone and outer electrode in turn from inside to outside. At the same time, the effects of physical and chemical properties of liquid in the reactor on matching properties of microwave discharge are studied. The results show that the SWR increases as the water temperature rise, while the pH, pressure and conductivity have no effects on the SWR. The main cause for the change of the SWR is the change of the relative dielectric constant of liquid.
     Second, the characteristic of microwave discharge in liquid is studied. The results show that:the change of plasma area is well corresponding with that of the emission intensity of OH radicals. The increase of microwave power and temperature is beneficial to maintain the generation of plasma, while the increase of external pressure and conductivity make the quenching of plasma more and more frequent. Suspension electrode can enhance the intensity of discharge effectively. The emission intensity of OH radicals decreases with the increase of pressure, but increases with the increase of power. The emission intensity of OH radicals is seen to attain the maximum value at the temperature of25℃. The emission intensity of OH radicals increases firstly and then decreases gradually with the increasing conductivity.
     Third, by studying the influence mechanism of loss factor on microwave discharge in liquid, it can be got that:when the microwave frequency is fixed, the relative dielectric constant of medium, temperature, conductivity are main factors of injection efficiency of microwave energy. The results of HFSS simulation show that when there is a bubble, the area of strongest electric field is located at the bottom of the bubble, instead of the gap between the inner electrode tip and the ceramic tube. By adjusting placed mode of the electrode, it is found that the movement of bubble has influence on the discharge. Combined with the simulation and theoretical analysis, it is concluded that the process of microwave discharge in liquid is actual the breakdown of bubble over the electrode tip by strong electric field.
     Fourth, in the paper, methylene blue is decolorized using plasma which is generated by microwave discharge in liquid. The results show that the decolorization rate of methylene blue increases with increasing of microwave power, but decreases with increasing pH in the range of6-8. A maximum decolorization rate of97.81%is obtained in the acidic solution with12minutes treatment. When the initial concentration is12.5mg/L, the decolorization of methylene blue reaches the maximum value, and the max energy efficiency can reach120mg/kWh.
     Fifth, hydrogen is produced from low carbon alcohol (methanol and ethanol) by microwave discharge in liquid. The results show that the gaseous product of discharging in methanol and ethanol solution mainly includes hydrogen, carbon monoxide, acetylene and carbon dioxide. The flow rates of total gaseous product and hydrogen in the process of discharge increase with the increase of power, while that increase firstly and then decrease with the increase of concentration of low carbon alcohol solution. The proportions of the hydrogen and carbon monoxide increase with the increase of power, but the proportion of other gases decreases significantly. When the concentration of low carbon alcohol solution is8%, the proportions of the hydrogen and carbon monoxide reach a maximum value, while the proportion of other gases have a minimum value. The energy efficiency of hydrogen production improves significantly as the power increase, and the energy efficiency of hydrogen produced from ethanol is higher than that from methanol in the condition of same power. The energy efficiency of hydrogen production increases firstly and then decreases with the increase of concentration of low carbon alcohol solution. When the concentration of low carbon alcohol solution is8%, the energy efficiency of hydrogen production reaches the maximum value. In this paper, the maximum flow rate of hydrogen, the maximum proportions of hydrogen and the maximum energy efficiency are215mL/min,64.55%and74.26NL/kWh respectively.
引文
[1]孙冰.液相放电等离子体及其应用.北京:科学出版社,2013.
    [2]Sugiarto A T, Ohshima T, Sato M. Advanced oxidation processes using pulsed streamer corona discharge in water. Thin Solid Films,2002,407(1-2):174-178.
    [3]Sharma A K, Locke B R, Arce P, et al. A preliminary study of pulsed streamer corona discharge for the degradation of phenol in aqueous solutions. Hazardous Waste and Hazardous Materials,2009,10(2):209-219.
    [4]Njatawidjaja E, Tri Sugiarto A, Ohshima T, et al. Decoloration of electrostatically atomized organic dye by the pulsed streamer corona discharge. Journal of Electrostatics,2005,63(5):353-359.
    [5]Mok YS, Jo J 0, Lee H J, et al. Application of dielectric barrier discharge reactor immersed in wastewater to the oxidative degradation of organic contaminan. Plasma Chemistry and Plasma Processing,2007,27(1):51-64.
    [6]Marotta E, Ceriani E, Shapoval V, et al. Characterization of plasma-induced phenol advanced oxidation process in a DBD reactor. The European Physical Journal Applied Physics,2011,55(1):13811.
    [7]Biljana P. Dojcinovica, Goran M. Roglicb, Bratislav M. Obradovicc, et al. Decolorization of reactive textile dyes using water falling film dielectric barrier discharge. Journal of Hazardous Materials,2011,192(2):763-771.
    [8]Chen G L, Zhou M Y, Chen S H, et al. The different effects of oxygen and air DBD plasma byproducts on the degradation of methyl violet 5BN. Journal of Hazardous Materials,2009,172(2-3):786-791.
    [9]Li X, Chen J, Gao L, et al. Enhanced degradation of phenol by carbonate ions with dielectric barrier discharge. IEEE Transactions on Plasma Science,2012, 40(1):112-117.
    [10]Kim KS, Yang CS, Mok YS. Degradation of veterinary antibiotics by dielectric barrier discharge plasma. Chemical Engineering Journal,2013,219(1):19-27.
    [11]Sugiarto A T, S Ito, T Ohshima, et al. Oxidative decoloration of dyes by pulsed discharge plasma in water. Journal of Electrostatics,2003,58(1-2):135-145.
    [12]Zhang Y, Zhou M, Hao X, et al. Degradation mechanisms of 4-chlorophenol in a novel gas-liquid hybrid discharge reactor by pulsed high voltage system with oxygen or nitrogen bubbling. Chemosphere,2007,67(4):702-711.
    [13]Ghezzar M R, Abdelmalek F, Belhadj M, et al. Enhancement of the bleaching and degradation of textile wastewaters by Gliding arc discharge plasma in the presence of TiO2 catalyst. Journal of Hazardous Materials,2009,164(2-3):1266-1274.
    [14]Marouf-Khelifa K, Abdelmalek F, Khelifa A, et al. Reduction of nitrite by sulfamic acid and sodium azide from aqueous solutions treated by gliding arc discharge. Separation and Purification Technology,2006,50(3):373-379.
    [15]Yan J H, Liu Y N, Bo Z, et al. Degradation of gas-liquid gliding arc discharge on Acid Orange Ⅱ. Journal of Hazardous Materials,2008,157(2-3):441-447.
    [16]Ghezzar M R, Belhadj M, Abdelmalek F, et al. Non-Thermal Plasma degradation of wastewater in presence of titanium oxide by gliding arc discharge. International Journal of Environment and Waste Management,2008,2(4-5):458-470.
    [17]Ando T, Tanaka J, Ishii M, et al. Diffuse reflectance Fourier-trans form infrared study of the plasma-fluorination of diamond surfaces using a microwave discharge in CF4. Journal of the Chemical Society, Faraday Transactions,1993,89(16):3105-3109.
    [18]Schulz U, Munzert P, Kaiser N, et al. Surface modification of PMMA by DC glow discharge and microwave plasma treatment for the improvement of coating adhesion. Surface and Coatings Technology,2001,143(1):507-511.
    [19]Vennekamp M, Bauer I, Groh M. Formation of SiC nanoparticles in an atmospheric microwave plasma. Beilstein Journal of Nanotechnology,2011,2:665-673.
    [20]解宏端,朱小梅,孙冰.微波等离子体处理PFCs的研究.河北大学学报自然科学版,2007,51(27):98-101.
    [21]Ono S, Teii S, Suzuki Y. Effect of gas composition on metal surface cleaning using atmospheric pressure microwave plasma. Thin Solid Films,2009,518(3):981-986.
    [22]Wei B, Luo Z Y, Xu F, et al. Study of emission spectroscopy of OH radicals in pulsed corona discharge. Spectroscopy and Spectral Analysis,2010,30(2):293-296.
    [23]Hattori Y, Mukasa S, Toyota H, et al. Continuous synthesis of magnesium-hydroxide, zinc-oxide, and silver nanoparticles by microwave plasma in water. Materials Chemistry and Physics,2011,131 (1-2):425-430.
    [24]Hattori Y, Mukasa S, Nomura S, et al. Optimization and analysis of shape of coaxial electrode for microwave plasma in water. Journal of Applied Physics,2010,107(6): 063305.
    [25]Nomura S, Toyota H, Mukasa S, et al. Microwave plasma in hydrocarbon liquids. Applied Physics Letters,2006,88(21):211503.
    [26]Sato S, Mori K, Ariyada O, et al. Synthesis of nanoparticles of silver and platinum by microwave-induced plasma in liquid. Surface and Coatings Technology,2011, 206(5):955-958.
    [27]Toyota H, Nomura S, Takahashi Y, et al. Submerged synthesis of diamond in liquid alcohol plasma. Diamond and Related Materials,2008,17(11):1902-1904.
    [28]Ishijima T, Hotta H, Sugai H, et al. Multibubble plasma production and solvent decomposition in water by slot-excited microwave discharge. Applied Physics Letters, 2007,91 (12):121501.
    [29]Wang B, Sun B, Zhu X M, et al. Effect of reactor parameters on matching properties of microwave discharge in liquid. Journal of Physics:Conference Series,2013, 418(1):012099.
    [30]Chin Y. H., Dagle R., Hu J. L., et al. Steam reforming of methanol over highly active Pd/ZnO catalyst. Catalysis Today,2002,77(1-2):79-88.
    [31]Homy C, Kiwi-Minsker L, Renken A. Micro-structured string-reactor for autothermal production of hydrogen. Chemical Engineering Journal,2004,101(1-3): 3-9.
    [32]Huang T J, Wang S W. Hydrogen production via partial oxidation of methanol over copper-zinc catalysts. Applied Catalysis,1986,24(1-2):287-297.
    [33]Reitz T L, Lee P I, Czaplewski K F, et al. Time-resolved XANES investigation of CuO/ZnO in the oxidative methanol reforming reaction. Journal of Catalysis, "2001, 199 (2):193-201.
    [34]Reitz T L, Ahmed S, Krumpelt M, et al. Characterization of CuO/ZnO under oxidizing conditions for the oxidative methanol reforming reaction. Journal of Molecular Catalysis A-Chemical,2000,162(1-2):275-285.
    [35]Basile A, Gallucci F, Paturzo L. Hydrogen production from methanol by oxidative steam reforming carried out in a membrane reactor. Catalysis Today,2005,104 (2-4): 251-259.
    [36]Jones P M, May J A, Reitz J B, et al. Electron spectroscopic studies of CH30H chemisorption on CuO and ZnO single-crystal surfaces:xnethoxide bonding and reactivity related to methanol synthesis [J], Journal of the American Chemical Society, 1998,120(7):1506-1516.
    [37]Yu J, Qi L, Jaroniec M. Hydrogen production by photocatalytic water splitting over Pt/TiO2 nanosheets with exposed(001)facets. Journal of Physical Chemistry C,2010, 114(30):13118-13125.
    [38]Lv K, Zuo H, Sun J, et al. (Bi, C and N) Codoped TiO2 nanoparticles. Journal of Hazardous Materials,2009,161:396-401.
    [39]魏子栋,洪燕,李兰兰等.HTMAB对碳电极上电解水的促进作用.化工学报,2004,55(S1):265-268.
    [40]Ishihara T, Jirathiw Athanakul N, Zhong H. Intermediate temperature solid oxide electrolysis cell using LaGaO3 based perovskite electrolyte. Energy & Environmental Science,2010,3(5):665-672.
    [41]Taguchi F, Chang J D, Tadiguchi S, et al. Efficient hydrogen production from starch by a bacterium isolated from termites. Journal of Fermentation and Bioengineering,1992,73(3):244-245.
    [42]Karube I, Urano N, Matsunaga T, et al. Hydrogen production from glucose by immobilized growing cells of clostridium butyricum. Applied Microbiology and Biotechnology,1982,16(1):5-9.
    [43]Chang J S, Lee K S, Lin P J. Biohydrogen production with fixed-bed bioreaclors. International Journal of Hydrogen Energy,2002,27(11):1167-1174.
    [44]Wu K J, Chang C F, Chang J S. Simultaneous production of biohydrogen and bioethanol with fluidized-bed and packed-bed bioreactors containing immobilized anaerobic sludge. Process Biochemistry,2007,42(7):1165-1171.
    [45]Guo W Q, Ren N Q, Wang X J, et al. Biohydrogen production from ethanol-type fermentation of molasses in an expanded granular sludge bed (EGSB) reactor. International journal of hycirogen energy,2008,33(19):4981-4988.
    [46]Cavalcante de Amorim E L, Barros A R, Rissato Zamario Ui Damianovic M H, et al. Anaerobic f luidized bed reactor with expanded clay as support for hydrogen production through dark fermentation of glucose. International Journal of Hydrogen Energy,2009, 34(2):783-790.
    [47]刘敏,陈滢,任南琪.利用不同类型种泥启动生物制氢反应器的试验研究.四川大学学报(工程科学版),2009,41(1):86-90.
    [48]史继祥.连续流生物制氢反应系统的启动及产氢微生物的强化:(博士学位论文).厦门:厦门大学,2007.
    [49]Paulmier T, Fulcheri L. Use of non-thermal plasma for hydrocarbon reforming. Chemical Engineering Journal,2005,106(1):59-71.
    [50]Aubry 0, Met C, Khacef A, et al. On the use of a nonthermal plasma reactor for ethanol steam reforming. Chemical Engineering Journal,2005,106(3):241-247.
    [51]Sarmiento B, Javier Brey J, Viera I G, et al. Hydrogen production by reforming of hydrocarbons and alcohols in a dielectric barrier discharge. Journal of Power Sources,2007,169(1):140-143.
    [52]Du C, Li H, Zhang L, et al. Hydrogen production by steam-oxidative reforming of bio-ethanol assisted by Laval nozzle arc discharge. International Journal of Hydrogen Energy,2012,37(10):8318-8329.
    [53]Czernichowski A. Glid arc assisted preparation of the synthesis gas from natural and waste hydrocarbons gases. Oil & Gas Science and Technology,2011,56(2):181-198.
    [54]Prieto G, Okumoto M, Shimano K, et al. Reforming of heavy oil using nonthermal plasma. IEEE Transactions on Industry Applications,2001,37(5):1464-1467.
    [55]Sekine Y, Urasaki K, Kado S, et al. Nonequilibrium pulsed discharge:a novel method for steam reforming of hydrocarbons or alcohols. Energy and Fuels,2004, 18(2):455-459.
    [56]Yanguas-Gil A, Hueso JL, Cotrino J, et al. Reforming of ethanol in a microwave surface-wave plasma discharge. Applied Physics Letters,2004,85(18):4004-4006.
    [57]Wang Y F, Tsai C H, Chang W Y, et al. Methane steam reforming for producing hydrogen in an atmospheric pressure microwave plasma reactor. International Journal of Hydrogen Energy,2010,35(1):135-140.
    [58]Chernyak VY, Olszewski SV, Yukhymenko W, et al. Plasma-assisted reforming of ethanol in dynamic plasmaliquid system:experiments and modeling. IEEE Transactions on Plasma Science,2008,36(6):2933-2939.
    [59]Moisan M, Zakrzewski Z. Plasma sources based on the propagation of electromagnetic surface waves. Journal of Physics D:Applied Physics,1991, 24(7):1025-1028.
    [60]Oliveira C, Souza Corre'a J A, Gomes M P, et al. Hyperthermal hydrogen atoms in argon-hydrogen atmospheric pressure microplasma jet. Applied Physics Letters,2008, 93(4):041503.
    [61]Hu Y P, Li G S, Yang Yi Y D, et al. Hydrogen generation from hydro-ethanol reforming by DBD plasma. International Journal of Hydrogen Energy,2012,37(1):1044-1047.
    [62]Bundaleska N, Tsyganov D, Saavedra R, et al. Hydrogen production from methanol reforming in microwave "tornado"-type plasma. International Journal of Hydrogen Energy,2013,38(22):9145-9157.
    [63]Sekiguchi H, Mori Y. Steam plasma reforming using microwave discharge. Thin Solid Films,2003,435(1-2):44-48.
    [64]Yan Z C, Chen L, Wang H L. Hydrogen generation by glow discharge plasma electrolysis of methanol solutions. International Journal of Hydrogen Energy,2009, 34(1):48-55.
    [65]Wang B W, Lv Y J, Zhang X, et al. Hydrogen generation from steam reforming of ethanol in dielectric barrier discharge. Journal of Natural Gas Chemistry,2011, 20(2):151-154.
    [66]Indarto A. Hydrogen production from methane in a dielectric barrier discharge using oxide zinc and chromium as catalyst. Journal of the Chinese Institute of Chemical Engineers,2008,39(1):23-28.
    [67]Zou J J, Zhang Y P, Liu C J. Hydrogen production from partial oxidation of dimethyl ether using corona discharge plasma. International Journal of Hydrogen Energy,2007, 32(8):958-964.
    [68]Jimenez M, Rinco'n R, Marinas A, et al. Hydrogen production from ethanol decomposition by a microwave plasma:Influence of the plasma gas flow. International Journal of Hydrogen Energy,2013,38(21):8708-8719.
    [69]Chen W H, Lin B J. Hydrogen production and thermal behavior of methanol autothermal reforming and steam reforming triggered by microwave heating. International Journal of Hydrogen Energy,2013,38(24):9973-9983.
    [70]王丽.等离子体催化氨分解制氢的协同效应研究:(博士学位论文).大连:大连理工大学,2013.
    [71]李慧青,邹吉军,张月萍等.电晕放电等离子体甲醇分解制氢.化工学报,2004,55(12):1989-1993.
    [72]陶晶亮熊源泉.辉光放电低温等离子体分解乙醇水溶液制氢.物理化学学报,2013,29(1):205-211.
    [73]Henriques J, Bundaleska N, Tatarova E. Microwave plasma torches driven by surface wave applied for hydrogen production. International Journal of Hydrogen Energy,2011, 36(1):345-354.
    [74]Lin K C, Lin Y C, Hsiao Y H. Microwave plasma studies of Spirulina algae pyrolysis with relevance to hydrogen production. Energy,2013,64(1):567-574.
    [75]Taghvaei H, Jahanmiri A. Hydrogen production through plasma cracking of hydrocarbons:Effect of carrier gas and hydrocarbon type. Chemical Engineering Journal,2013,226(6):384-392.
    [76]Tanabe S, Matsuguma H, Okitsu K, et al. Generation of hydrogen from methanol in a dielectric barrier discharge plasma system. Chemistry letters,2000, 29(10):1116-1117.
    [77]Li H Q, Zou J J, Zhang Y P, et al. Plasma methanol decomposition using corona discharges. Journal of Chemical Industry and Engineering (China),2004,55(12): 1989-1993.
    [78]Lv Y J, Yan W J, Hu S H. Hydrogen production by methanol decomposition using gliding arc gas discharge. Journal of Fuel Chemistry and Technology,2012,40(6): 698-706.
    [79]竹涛,李海蓉,袁钰等.变频电源下非平衡等离子体技术降解甲苯的实验研究.高电压技术,2012,38(7):1623-1628.
    [80]商克峰,鲁娜,李杰等.用气相沿面放电生成臭氧方式降解偶氮染料废水的影响因素分析.高电压技术,2012,38(7):1636-1641.
    [81]Manoj Kumar Reddy P, Ramaraju B, Subrahmanyam Ch. Degradation of malachite green by dielectric barrier discharge plasma. Water Science & Technology,2013, 67(5):1097-1104.
    [82]Hijosa-Valsero M, Molina R, Bayona J M. Assessment of a dielectric barrier discharge plasma reactor at atmospheric pressure for the removal of bisphenol A and tributyltin. Environmental Technology,2014,35(11):1418-1426.
    [83]Tichonovas M, Krugly E, Racys V, et al. Degradation of various textile dyes as wastewater pollutants under dielectric barrier discharge plasma treatment. Chemical Engineering Journal,2013,229(8):9-19.
    [84]Kim K S, Yang C S, Mok Y S. Degradation of veterinary antibiotics by dielectric barrier discharge plasma. Chemical Engineering Journal,2013,219(3):19-27.
    [85]Gao J, Chen L, He Y Y, et al. Degradation of imidazolium-based ionic liquids in aqueous solution using plasma electrolysis. Journal of Hazardous Materials,2014, 265(1):261-270.
    [86]李雪辰,赵欢欢,贾鹏英等.常压空气中大间隙介质阻挡放电特性.高电压技术,2013,39(4):876-882.
    [87]李娅西,邵先军,彭兆裕等.介质阻挡放电对橙汁灭菌及其品质的影响.高电压技术,2012,38(1):211-216.
    [88]王晓静,张晓星,孙才新等.大气压介质阻挡放电对多壁碳纳米管表面改性及其气敏 特性.高电压技术,2012,38(1):223-228.
    [89]Finke B, Schroder K, Ohl A, et al. Structure retention and water stability of microwave plasma polymerized films from allylamine and acrylic acid. Plasma Processes and Polymers,2009,6(S1):S70-S74.
    [90]Wang B, Sun B, Zhu X M, et al. Degradation of methylene blue by microwave discharge plasma in liquid. Contributions to plasma physics,2013,53(9):697-702.
    [91]陈轶鸿,孙琰,肖良勇.宽带天线阻抗匹配网络设计中的实频法.电子学报,1997,25(3):19-24.
    [92]孙冰,王波,朱小梅,等.微波液相放电等离子体的产生方法及形成机理.高电压技术,2014,40(4):1235-1241.
    [93]申玉双,赵海燕,翟学良.钛酸钡陶瓷在交变电场中的介电损耗分析.河北师范大学学报(自然科学版),2004,28(5):491-495.
    [94]李翰如.电介质物理导论.成都:成都科技大学出版社,1990.
    [95]孙冰,高志鹰,内爱等.多针-板脉冲放电气液混合反应器气液中活性物质的生成和转移特性.高电压技术,2013,39(1):109-116.
    [96]王波,孙冰,朱小梅,等.微波液相等离子体发射光谱研究.光谱学与光谱分析,2014,34(5):1-4.
    [97]曹善勇.Ansoft HFSS磁场分析与应用实例.北京:中国水利水电出版社,2010.
    [98]Sun B, Sato M, Clements J S, et al. Optical study of active species produced by a pulsed streamer corona discharge in water. Journal of Electrostatics,1997,39(3): 189-202.
    [99]Sun B, Kunitomo S, Igarashi C, et al. Characteristics of ultraviolet light and radicals formed by pulsed discharge in water. Physics D:Applied Physics,2006,39(17): 3814-3820.
    [100]周泽存.高电压技术.北京:中国电力出版社,2004.
    [101]马乃祥.长间隙放电.北京:中国电力出版社,1998.
    [102]殷之文.电介质物理学.北京:科学出版社,2005.
    [103]Magureanu M, Piroi D, Gherendi F, et al. Decomposition of methylene mlue in water by corona discharges. Plasma Chemistry and Plasma Processing,2008,28(6): 677-688.
    [104]Huang F M, Chen L, Wang H L, et al. Analysis of the degradation mechanism of methylene blue by atmospheric pressure dielectric barrier discharge plasma. Chemical Engineering Journal,2010,162(1):250-256.
    [105]Hong J, Sun C, Yang S G, et al. Photocatalytic degradation of methylene blue in TiO2 aqueous suspensions using microwave powered electrodeless discharge lamps. Journal of Hazardous Materials.2006,133(1-3):162-166.
    [106]朱丽楠,马军,杨世东.气液两相放电对亚甲基兰脱色效能的影响研究.高电压技术,2007,33(2):132-135.
    [107]黄芳敏,王红林,严宗诚等.介质阻挡放电等离子体对亚甲基蓝的降解.环境科学与技术,2010,33(2):35-38.
    [108]张祥龙,王毅,胡小吐.流光放电等离子体液相氧化降解亚甲基蓝.高电压技术,2011,37(6):1512-1520.
    [109]Luis 0. de B. Benetoli, Cadorin B M, Cicero da S. Postiglione, et al. Effect of temperature on methylene blue decolorization in aqueous medium in electrical discharge plasma reactor. Journal of the Brazilian Chemical Society,2011, 22(9):1669-1678.
    [110]Manoj Kumar Reddy P, Rama Raju B, Karuppiah J, et al. Degradation and mineralization of methylene blue by dielectric barrier discharge non-thermal plasma reactor. Chemical Engineering Journal,2013,217(2):41-47.
    [111]Maehara T, Nishiyama K, Onishi S, et al. Degradation of methylene blue by radio frequency plasmas in water under ultraviolet irradiation. Journal of Hazardous Materials,2010,174(1-3):473-476.
    [112]Naum P, Adi V, Alterkop B A, et al. Submerged arc breakdown of methylene blue in aqueous solutions. Plasma Chemistry and Plasma Processing,2012,32(5):933-947.
    [113]Mayr L, Lorenz H, Armbruster M, et al. The catalytic properties of thin film Pd-rich GaPd2 in methanol steam reforming. Journal of Catalysis,2014,309(1): 231-240.
    [114]Sun J, Karim A M, Zhang H, et al. Carbon-supported bimetallic Pd-Fe catalysts for vapor-phase hydrodeoxygenation of guaiacol. Journal of Catalysis,2013, 306(10):47-57.
    [115]Friedrich M, Penner S, Heggen M, et al. High C02 selectivity in methanol steam reforming through ZnPd/ZnO teamwork. Angewandte Chemie International Edition,2013, 52(26):4389-4392.
    [116]Herdem M S, Farhad S, Dincer I, et al. Thermodynamic modeling and assessment of a combined coal gasification and alkaline water electrolysis system for hydrogen production. International Journal of Hydrogen Energy,2014,39(7):3061-3071.
    [117]Santos D M F, Amaral L, Sljukic B, et al. Electrocatalytic activity of nickel-cerium alloys for hydrogen evolution in alkaline water electrolysis. Journal of the electrochemical society,2014,161(4):F386-F390.
    [118]Parrondo J, Arges CG, Niedzwiecki M, et al. Degradation of anion exchange membranes used for hydrogen production by ultrapure water electrolysis. Rsc Advances, 2014,4(19):9875-9879.
    [119]Wang M Y, Wang Z, Gong X Z, et al. The intensification technologies to water electrolysis for hydrogen production-A review. Renewable and sustainable energy reviews,2014,29(1):573-588.
    [120]Martin M, Hourng L W. Effects of magnetic field and pulse potential on hydrogen production via water electrolysis. International Journal of Hydrogen Energy,2014, 38(1):106-110.
    [121]Cai J L, Wu Q, Wang G C, et al. Fermentative hydrogen production by a new mesophilic bacterium Clostridium sp 6A-5 isolated from the sludge of a sugar mill. Renewable Energy,59(11):202-209.
    [122]Nyilasi A, Molnos E, Lanyi S, et al. Photofermentative production of hydrogen from organic acids by the purple sulfur bacterium Thiocapsa roseopersicina. International Journal of Hydrogen Energy,2013,38(14):5535-5544.
    [123]Merugu R, Rudra M P P, Badgu N, et al. Factors influencing the production of hydrogen by the purple non-sulphur phototrophic bacterium Rhodopseudomonas acidophila KU001. Microbial Biotechnology,2012,5(6):674-678.
    [124]Jayasinghearachchi H S, Sarma P M, Lal B. Biological hydrogen production by extremely thermophilic novel bacterium Thermoanaerobacter mathranii A3N isolated from oil producing well. International Journal of Hydrogen Energy,2012, 37(7):5569-5578.
    [125]Rincon R, Jimenez M, Munoz J, et al. Hydrogen Production from Ethanol Decomposition by Two Microwave Atmospheric Pressure Plasma Sources:Surfatron and TIAGO Torch. Plasma Chemistry and Plasma Processing,2014,34(1):145-157.
    [126]Song L J, Li X H. Hydrogen production from partial oxidation of dimethyl ether by plasma-catalyst reforming. Journal of Central South University,2013, 20(12):3764-3769.
    [127]Reddy E L, Biju V M, Subrahmanyam C. Production of hydrogen and sulfur from hydrogen sulfide assisted by nonthermal plasma. Applied Energy,2012,95(7):87-92.
    [128]Putra A E E, Nomura S, Mukasa S, et al. Hydrogen production by radio frequency plasma stimulation in methane hydrate at atmospheric pressure. International Journal of Hydrogen Energy,2012,37(21):16000-16005.
    [129]Henriques J, Bundaleska N, Tatarova E, et al. Microwave plasma torches driven by surface wave applied for hydrogen production. International Journal of Hydrogen Energy,2011,36(1):345-354.
    [130]http://www.me.berkeley.edu/gri_mech/version30/files30/grimech30.dat
    [131]Chang F W, Roselin L S, Ou T C. Hydrogen production by partial oxidation of methanol over bimetallic Au-Ru/Fe203 catalysts, Applied Catalysis A:General,2008, 334 (1-2):147-155.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700