不同微结构的光催化材料的制备及其光催化还原CO_2性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
探索高效、廉价和实用的半导体光催化还原CO2技术成为了当前社会最关心的热点课题之一。虽然半导体的开发、反应体系的完善和反应条件的优化等各个方面都取得了重大的进展,但是目前光催化还原CO2技术面临转化效率低、产物选择性难以控制等问题。光催化效率和产物选择性主要是由光催化材料结构和反应体系条件决定的,因此,对传统紫外光响应半导体材料和新型可见光响应半导体材料进行微结构的调控和优化,增强其光电性能,研究其微结构与光催化活性之间的关系是光催化还原CO2领域的关键而具有挑战性的课题。为此,本论文开展了不同微结构的光催化材料的制备及其光催化还原CO2性能研究。获得的主要实验现象和研究结论归纳如下:
     (1)以十六烷基三甲基溴化胺(CTAB)为模板剂,200℃水热处理选择性合成了单斜相BiVO4微米片,并证实了其在碱性悬浮体系中可见光催化还原CO2选择性产CH3OH的性能和长效稳定性,对比研究了催化剂用量和NaOH浓度对光催化活性的影响。发现BiVO4微结构和反应条件是决定产物选择性的主要因素。另外,NaOH起到了两个关键的作用:能溶解更多的CO2促进反应底物和催化剂的接触;以及悬浮体系中OH-能捕获光生空穴,有效地分离光生电子-空穴,提高光催化活性。上述结果为具有特定微结构的半导体材料的设计和优化、并研究其微结构与光催化活性之间的构效关系等提供了一些新的思路。
     (2)采用尿素和三聚氰胺为原料高温热解合成了具有不同微结构的g-C3N4。由尿素热解所合成的u-g-C3N4呈现孔径约40nm的多孔薄片状结构,而由三聚氰胺热解所合成的m-g-C3N4呈大片的层状结构并只含少量的介孔,其比表面积仅为u-g-C3N4的1/10。与m-g-C3N4相比,u-g-C3N4在光催化还原CO2悬浮体系中表现出更好的催化活性和不同的产物选择性,即:u-g-C3N4的主要还原产物为CH3OH和C2H5OH,而m-g-C3N4的主要产物为C2H5OH。通过对比研究m-g-C3N4和(?)m-g-C3N4对反应物的吸附能力和光激发电荷转移性能,证实了g-C3N4的微结构不同是导致其光催化还原CO2的反应活性和还原产物的选择性不同的内在原因。光催化剂活性位点的分布和光生载流子的转移及分离效率在整个光催化还原CO2反应过程中起到决定性作用,即:比表面积大和晶粒尺寸小有利于反应底物的吸附和光生载流子的分离,其协同作用促进了m-g-C3N4表现出更好的光催化活性和不同的产物选择性。上述结果为今后优化半导体的微结构、改善光催化还原CO2性能以及调控产物的选择性提供了有益的借鉴和新的思路。
     (3)采用改进的水热法分别合成了暴露{001}晶面锐钛矿TiO2纳米片和{010}晶面锐钛矿TiO2纳米棒。纳米片宽度约200nm,厚度约10nm,其主导晶面{001}占到总表面积的91%;而纳米棒直径约100nm,长约1000nm,其主导晶面{010}所占到总表面积的93%。负载Pt前后的样品在光催化还原CO2气相体系中的主要还原产物为CH4。其中,TiO2-010的光催化活性高于TiO2-001,而在负载Pt纳米粒子后,TiO2-001-1%Pt的光催化还原CO2的反应活性则优于TiO2-010-1%Pt。即Pt纳米粒子对TiO2-001和TiO2-010的光催化活性显得尤为重要。通过对比研究了TiO2-001和TiO2-010及其负载Pt后产物的表面与CO2的结合方式、吸附性能、光激发载流子分离以及Pt纳米粒子存在状态等因素,发现较好的CO2吸附性能和光生载流子分离效率是TiO2-010表现出比TiO2-001更好的光催化活性的主要原因。负载Pt后,由于Pt纳米粒子在Ti02-001分散均匀且Pt颗粒大小均一(约4-5nm),致使它具有良好的电子转移性能,有效地抑制了光生电子-空穴的复合,进而表现出更好的光催化活性;而由于Pt纳米粒子在TiO2-010上团聚严重,且团聚体尺寸大,导致Pt团聚体成为电子和空穴复合中心,减少光电子寿命,因此TiO2-010-1%Pt表现出较低的光催化活性。上述结果对今后高效光催化材料的微纳结构的设计及其性能优化等研究具有重要的理论指导意义。
The development of highly efficient, low-cost and practical photocatalytic reduction of CO2over semiconductor became one of the most hot topic in modern times. Many significant progresses have been made in the exploitation of semiconductor, improvement of reaction system and optimization of reaction conditions, but the conversion efficiency is low and it is difficult to control the selectivity of products, which are also critical issues for photocatalytic reduction of CO2. It is well known that photocatalytic efficiency and product selectivity closely depend on photocatalyst structure and reaction system. Therefore, the control and optimization of microstructure is the most effective means to improve the performance of the traditional ultraviolet response and novel visible response photocatalysts. And research of the relationship between the materials microstructure and their photocatalytic activity is a key and challenging issue in the field of photocatalytic reduction of CO2. In this case, we carried out the investigations into different microstructure synthesis and the activity of photocatalytic reduction of CO2over catalytic materials. The main contents and conclusion are as follows:
     1. Monoclinic lamellar BiVO4powers were prepared through a hydrothermal process by using cetyltrimethylammonium bromide (CTAB) as a template-directing reagent at200℃. The obtained lamellar BiVO4was used as photocatalyst for the reduction of CO2in the NaOH solution, and exhibited a selective methanol production and long-term stability under visible-light irradiation. The effects of the photoreaction conditions such as the amount of BiVO4and NaOH concentration on the photocatalytic activity were investigated. And it can be concluded that the microstructure of materials and reaction conditions are the main factors to product selectivity. It is found that adding NaOH solution in the BiVO4suspension can dissolve more CO2, and the OH-serves as a stronger hole-scavenger that can effectively improve charge separation and enhance photocatalytic activity. These results offer some good ideas for designing special structure photocatalytic materials, and research on the relationship between their microstructure and photocatalytic activity.
     2. Two kinds of graphitic carbon nitride (g-C3N4) were synthesized through a pyrolysis process of urea or melamine. The product derived from the urea (denoted as u-g-C3N4) shows mesoporous flake-like structure, and the pore sizes is~40nm, while m-g-C3N4(from melamine) only shows flaky morphology without obvious porous structures. The BET specific surface area of u-g-C3N4is ten times higher than that of m-g-C3N4. Compared with m-g-C3N4, it was found that the obtained u-g-C3N4showed better photocatalytic activity and different products selectivity under visible light. The u-g-C3N4as photocatalyst can result in the formation of a mixture containing CH3OH and C2H5OH, while m-g-C3N4only leads to the selective of C2H5OH. The adsorption of reactants and photogenerated carrier separation were investigated comparatively by using m-g-C3N4and u-g-C3N4, respectively. It was confirmed that the above different photocatalytic activity and selectivity for the formation of organic fuels were due to the differences in microstructure of u-g-C3N4and m-g-C3N4. And the distribution of active site and transfer of photogenerated carrier played a decisive role in photocatalytic reduction of CO2. Compared with m-g-C3N4, u-g-C3N4with smaller grain size and larger surface area was advantageous to the photogenerated carrier separation and adsorption of reactants, which showed better performance and different products selectivity in the present photocatalytic CO2reduction system. The present findings could offer some new ideas for the optimizing the microstructure of semiconductor, improving their photocatalytic activity, and controlling the selectivity of products.
     3. Anatase TiO2nanosheet with exposed{001} facets (denoted as TiO2-001) and nanorod with exposed{010} facets (denoted as TiO2-010) were synthesized by using modified hydrothermal methods. TiO2-001is composed of nanosheets with size of ca.200nm×10nm and ca.91%exposed percentage of {001} facets, while the TiO2-010is mainly composed of nanorods with particle size of ca.1000nm×100nm and ca.93%exposed percentage of {010} facets. Primary experiments showed that CH4was the main product from the gaseous CO2photoreduction system. It was found that TiO2-010without Pt-loading showed a higher photocatalytic CO2reduction activity than TiO2-001; while TiO2-010-1%Pt displayed a lower photoactivity than TiO2-001-1%Pt. This indicated that the Pt nanoparticles on TiO2-001and TiO2-010played a very important role in photocatalytic activity. The combination of catalyst surface and CO2, CO2adsorption capacity, the photoinduced carrier separation and the exist state of Pt nanoparticles were investigated comparatively before and after Pt-loading, respectively. It was confirmed that the better photocatalytic CO2reduction activity of TiO2-010might stem from its higher CO2adsorption capability and more efficient charge transfer property than TiO2-001. After Pt-loading, the highly uniform smaller Pt nanoparticles (4-5nm) on TiO2-001surfaces can effectively transfer the photogenerated electrons to restrain the carrier recombination, and then enhance the photoactivity, while Pt aggregates with larger size on the TiO2-010can not only trap electrons but also consume holes, thus serving as recombination centres reduce the life of photoelectron, and then show lower photoactivity. These results offer an important theoretical guidance for designing special micro and nanostructure photocatalytic materials with highly effective photocatalytic activity.
引文
[1]B. Schrader. Greenhouse gas emission policies in the UK and Germany:influences and responses. Eur. Environ.,2002,12,173-184.
    [2]X. J. Zhang, F. Han, B. Shi, S. Farsinezhad, G. P. Dechaine, K. Shankar. Photocatalytic conversion of diluted CO2 into light hydrocarbons using periodically modulated multiwalled nanotube arrays. Angew. Chem.,2012,124,12904-12907.
    [3]IEA. Emissions Baselines Estimating the Unknown,IEA,2009.
    [4]Y. kaya. Impact of Carbon Dioxide Emission Control on GNP Growth:Interpretation of Proposed Scenarios. Intergovernmental Panel on Climate Change/Response Strategies Working Group:May 1989.
    [5]T. Inoue, A. Fujishima, S. Konishi, K. Honda. Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powers. Nature,1979,277,637-638.
    [6]Y. T. Liang, B. K. Vijayan, K. A. Gray, M. C. Hersam. Minimizing graphene defects enhances titania nanocomposite-based photocatalytic reduction of CO2 for improved solar fuel production. Nano Lett., 2011,11.2865.
    [7]A. Dhakshinamoorthy, S. Navalon. A. Corma, H. Garci. Photocatalytic CO2 reduction by TiO2 and related titanium containing solids. Energy Environ. Sci.,2012.5.9217-9233.
    [8]C. H. Li, F. Wang, J. C. Yu. Semiconductor/biomolecular composites for solar energy applications. Energy Environ. Sci.,2011,4,100-113.
    [9]M. R. Hoffmann, J. A. Mossb, M. M. Baum. Artificial photosynthesis:semiconductor photocatalytic fixation of CO2 to afford higher organic compounds. Dalton Trans.,2011,40,5151-5158.
    [10]S. C. Roy, O. K. Varghese, M. Paulose, C. A. Grimes. Toward solar fuels:photocatalytic conversion of carbon dioxide to hydrocarbons. ACS nano,2010,4,1259-1278.
    [11]P. Usubharatana, D. McMartin, A. Veawab, P. Tontiwachwuthikul. Photocatalytic process for CO2 emission reduction from industrial flue gas streams. Ind. Eng. Chem. Res.,2006,45,2558-2568.
    [12]N. Sutin, C. Creutz and E. Fujita, Photo-induced generation of dihydrogen and reduction of carbon dioxide using transition metal complexes. Comments Inorg. Chem.1997,19,67-92.
    [13]J. M. Lehn, R. Ziessel. Photochemical generation of carbon monoxide and hydrogen by reduction of carbon dioxide and water under visible light irradiation. Proc. Nat1. Acad. Sci. USA,1982,79, 701-704.
    [14]J. Schneider, H. F. Jia, J. T. Muckerman. E. Fujita. Thermodynamics and kinetics of CO2, CO, and H+ binding to the metal centre of CO2 reduction catalysts. Chem. Soc. Rev.,2012,41,2036-2051.
    [15]H. Yoneyama. Photoreduction of carbon dioxide on quantized semiconductor nanoparticles in solution. Catal. Today,1997,39,169-175.
    [16]M. Mikkelsen, M. Jorgensen, F. C. Krebs. The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy Environ. Sci.,2010,3,43-81.
    [17]P. D. Tran, L. H. Wong, J. Barber, J. S. C. Loo. Recent advances in hybrid photocatalysts for solar fuel production. Energy Environ. Sci.,2012,5,5902-5918.
    [18]A. J. Morris, G. J. Meyer, E. Fujita. Molecular approaches to the photocatalytic reduction of carbon Dioxide for solar fuels. Acc. Chem. Res.,2009,42,1983-1994.
    [19]E. Fujita. Photochemical Carbon Dioxide Reduction with Metal Complexes. Coord. Chem. Rev.,1999, 185-186,373-384.
    [20]H. Takeda, K. Koike, H. Inoue, O. Ishitani. Development of an efficient photocatalytic system for CO2 reduction using rhenium(1) complexes based on mechanistic studies. J. Am. Chem. Soc.,2008,130, 2023-2031.
    [21]S. Kuwabata, H. Uchida, A. Ogawa, S. Hirao, H. Yoneyama. Selective photoreduction of Carbon Dioxide to methanol on titanium dioxide photocatalysts in propylene carbonate solution. J. Chem. Soc. Chem. Commun.,1995,829-830.
    [22]K. Koci, L. Obalova, L. Matejova, D. Placha, Z. Lacny, J. Jirkovsky, O. Solcova. Effect of TiO2 particle size on the photocatalytic reduction of CO2. Appl. Catal., B,2009,89,494-502.
    [23]S. Kaneco, Y. Shimizu, K. Ohta, T. Mizuno. Photocatalytic reduction of high pressure carbon dioxide using TiO2 powders with a positive hole scavenger. J. Photochem. Photobiol. A,1998,115,223-226.
    [24]T. Mizuno, K. Adachi, K. Ohta, A. Saji. Effect of CO2 pressure on photocatalytic reduction of CO2 using TiO2 in aqueous solutions. J. Photochem. Photobiol. A,1996,98,87-90.
    [25]Q. D. Truong, T. H. Le, J. Y. Liu, C. C. Chung, Y. C. Ling. Synthesis of TiO2 nanoparticles using novel titanium oxalate complex towards visiblelight-driven photocatalytic reduction of CO2 to CH3OH. Appl. Catal, A,2012,437-438.28-35.
    [26]Z. Goren, I. Willner. Selective photoreduction of CO2/HCO3-to formate by aqueous suspensions and colloids of Pd-TiO2. J. Phys. Chem.,1990,94,3784-3790.
    [27]T. Yui, A. Kan, C. Saitoh, K. Koike, T. Ibusuki, O. Ishitani. Photochemical Reduction of CO2 Using TiO2:effects of organic adsorbates on TiO2 and deposition of Pd onto TiO2. ACS Appl. Mater. Interfaces,2011,3,2594-2600.
    [28]W. Kim, T. Seok, W. C. Nafion layer-enhanced photosynthetic conversion of CO2 into hydrocarbons on TiO2 nanoparticles. Energy Environ. Sci.,2012,5,6066-6070.
    [29]O. Ola, M. M. Valer, D. Liu, S. Mackintosh, C. W. Lee, J. C. S. Wu. Performance comparison of CO2 conversion in slurry and monolith photoreactors using Pd and Rh-TiO2 catalyst under ultraviolet irradiation,Appl. Catal., B,2012,126,172-179.
    [30]K. Koci, K. Mateju, L. Obalova, S. Krejcikova, Z. Lacny, D. Placha, L.Capek, A. Hospodkova, O. Solcova. Effect of silver doping on the TiO2 for photocatalytic reduction of CO2. Appl. Catal., B, 2010,96,239-244.
    [31]I. H. Tseng, W. C. Chang, J. C. S. Wu. Photoreduction of CO2 using sol-gel derived titania and titania-supported copper catalysts. Appl. Catal., B,2002,37,37-48.
    [32]N. Sasirekha, S. J. S. Basha, K. Shanthi. Photocatalytic performance of Ru doped anatase mounted on silica for reduction of carbon dioxide. Appl. Catal., B,2006,62,169-180.
    [33]P. L. Richardson, M. L. N. Perdigoto, W. Wang, R. J. G. Lopes. Manganese-and copper-doped titania nanocomposites for the photocatalytic reduction of carbon dioxide into methanol. Appl. Catal., B, 2012,126,200-207.
    [34]I. H. Tseng, J. C. S. Wu, H. Y. Chou. Effects of sol-gel procedures on the photocatalysis of Cu/TiO2 in CO2 photoreduction. J. Catal,2004,221,432-440.
    [35]S. Y. Qin, F. Xin, Y. D. Liu, X. H. Yin, W. Ma. Photocatalytic reduction of CO2 in methanol to methyl formate over CuO-TiO2 composite catalysts. J. Colloid Interface Sci.,2011,356,257-261.
    [36]M. A. Asi, C. He, M. H. Su, D. H. Xia, L. Lin, H. Q. Deng, Y. Xiong, R. L. Qiu, X. Z. Li. Photocatalytic reduction of CO2 to hydrocarbons using AgBr/TiO2 nanocomposites under visible light. Catal. Today,2011,175,256-263.
    [37]Slamet, H. W. Nasution, E. Purnama, S. Kosela, J. Gunlazuardi. Photocatalytic reduction of CO2 on copper-doped Titania catalysts prepared by improved-impregnation method. Catal. Commun.,2005, 6,313-319.
    [38]Q. D. Truong, J. Y. Li, C. C. Chung, Y. C. Ling. Photocatalytic reduction of CO2 on FeTiO3/TiO2 photocatalyst. Catal. Commun.,2012,19,85-89.
    [39]X. Li, H. L. Liu, D. L. Luo, J. T. Li, Y. Huang, H. Li, Y. P. Fang, Y. H. Xu, L. Zhu. Adsorption of CO2 on heterostructure CdS(Bi2S3)/TiO2 nanotube photocatalyst and their photocatalytic activities in the reduction of CO2 to methanol under visible light irradiation. Chem. Eng. J.2012,108,151-158.
    [40]W. H. Lee, C. H. Liao, M. F. Tsai, C. W. Huang, J. C. S. Wu. A novel twin reactor for CO2 photoreduction to mimic artificial photosynthesis. Appl. Catal., B,2013,132,445-451.
    [41]Y. Y. Liu, B. B. Huang, Y. Dai, X. Y. Zhang, X. Y. Qin, M. H. Jiang, M. H. Whangbo. Selective ethanol formation from photocatalytic reduction of carbon dioxide in water with BiVO4 photocatalyst. Catal. Commun..2009.11.210-213.
    [42]H. F. Cheng, B. B. Huang. Y. Y. Liu, Z. Y. Wang, X. Y. Qin, X. Y Zhang, Ying Dai. An anion exchange approach to Bi2WO6, hollow microspheres with efficient visible light photocatalytic reduction of CO2 to methanol. Chem. Commun.,2012,48,9729-9731.
    [43]P. W. Pan, Y. W. Chen. Photocatalytic reduction of carbon dioxide on NiO/InTaO4 under visible light irradiation. Catal. Commun.,2007,8,1546-1549.
    [44]C. W. Tsai, H. M. Chen, R. S. Liu, K. Asakura, T. S. Chan. Ni@NiO core-shell structure-modified nitrogen-doped InTaO4 for solar-driven highly efficient CO2 Reduction to Methanol. J. Phys. Chem. C, 2011,115,10180-10186.
    [45]Z. H. Zhao, J. M. Fan, Z. Z. Wang. Photo-catalytic CO2 reduction using sol-gel derived titania-supported zinc-phthalocyanine J. Clean. Prod.,2007,15,1894-1897.
    [46]T. W. Woolerton, S. Sheard, E. Pierce, S. W. Ragsdale, F. A. Armstrong. CO2 photoreduction at enzyme-modified metal oxide nanoparticles. Energy Environ. Sci.,2011,4,2393-2399.
    [47]T. W. Woolerton, S. Sheard, E. Reisner, E. Pierce, S. W. Ragsdale, F. A. Armstrong. Efficient and Clean Photoreduction of CO2 to CO by Enzyme-Modified TiO2 Nanoparticles Using Visible Light. J. Am. Chem. Soc.,2010,132,2132-2133.
    [48]B. R. Eggins, J. T. S. Irvine, E. P. Murphy, J. Grimshaw. Formation of two-Carbon acids from carbon dioxide by photoreduction on cadmium sulphide. J. Chem. Soc., Chem. Commun.,1988,1123-1124.
    [49]H. Fujiwara, H. Hosokawa, K. Murakoshi, Y. Wada, S. Yanagida. Surface characteristics of ZnS nanocrystallites relating to their photocatalysis for CO2 reduction. Langmuir.1998,14,5154-5159.
    [50]J. Y. Liu, B. Garg, Y. C. Ling. CuxAgyInzZnkSm solid solutions customized with RuO2 or Rh1.32Cr0.66O3 co-catalyst display visible light-driven catalytic activity for CO2 reduction to CH3OH. Green Chem.,2011,13,2029-2031.
    [51]C. H. An, J. H. Wang, C. Qin, W. Jiang, S. T. Wang, Y. Li, Q. H. Zhang. Synthesis of Ag@AgBr/AgCl heterostructured nanocashews with enhanced photocatalytic performance via anion exchange. J. Mater. Chem.,2012,22,13153-13158.
    [52]C. H. An, J. H. Wang, W. Jiang, M. Y. Zhang, X. J. Ming, S. T. Wang, Q. H. Zhang. Strongly visible-light responsive plasmonic shaped AgX:Ag (X=C1, Br) nanoparticles for reduction of CO2 to methanol. Nanoscale,2012,4,5646-5650.
    [53]J. Grodkowski, P. Neta. Copper-catalyzed radiolytic reduction of CO2 to CO in aqueous solutions. J. Phys. Chem. B,2001,105,4967-4972.
    [54]L. Cao, S. Sahu, P. Anilkumar, C. E. Bunker, J. Xu, K. A. S. Fernando, P. Wang, E. A. Guliants, K. N. Tackett, Ⅱ, Y. P. Sun. Carbon Nanoparticles as Visible-Light Photocatalysts for Efficient CO2 Conversion and Beyond. J. Am. Chem. Soc.,2011,133,4754-4757.
    [55]B. Vijayan, N. M. Dimitrijevic, T. Rajh, K. Gray. Effect of calcination temperature on the photocatalytic reduction and oxidation processes of hydrothermally synthesized titania nanotubes. J. Phys. Chem. C,2010,114,12994-13002.
    [56]L. J. Liu, H. L. Zhao, J. M. Andino, Y. Li. Photocatalytic CO2 reduction with H2O on TiO2 nanocrystals:comparison of anatase, rutile, and brookite polymorphs and exploration of surface chemistry. ACS Catal.,2012,2,1817-1828.
    [57]M Anpo. H. Yamashita, K. Ikeue, Y. Fujii, S. G. Zhang, Y. Ichihashi, D. R. Park, Y. Suzuki, K. Koyano, T. Tatsumi. Photocatalytic reduction of CO2 with H2O on Ti-MCM-41 and Ti-MCM-48 mesoporous zeolite catalysts. Catal. Today,1998,44,327-332.
    [58]H. Yamashita, Y. Fujii, Y. Ichihashi, S. G. Zhang, K. Ikeue, D. R. Park, K. Koyano, T. Tatsumi, M. Anpo. Selective formation of CH3OH in the photocatalytic reduction of CO2 with H2O on titanium oxides highly dispersed within zeolites and mesoporous molecular sieves. Catal. Today,1998,45, 221-227.
    [59]K. Ikeue, H. Yamashita, M. Anpo. Photocatalytic reduction of CO2 with H2O on Ti-β zeolite photocatalysts:effect of the hydrophobic and hydrophilic properties. J. Phys. Chem. B,2001,105, 8350-8355.
    [60]P. Pathak, M. J. Meziani, Y. Li, L. T. Cureton, Y. P. Sun. Improving photoreduction of CO2 with homogeneously dispersed nanoscale TiO2 catalysts. Chem. Commun.,2004,1234-1235.
    [61]P. Pathak, M. J. Meziani, L. Castillo, Y. P. Sun. Metal-coated nanoscale TiO2 catalysts for enhanced CO2 photoreduction. Green Chem.,2005,7,667-670.
    [62]W. N. Wang, J. Park, P. Biswas. Rapid synthesis of nanostructured Cu-TiO2-SiO2 composites for CO2 photoreduction by evaporation driven self-assembly. Catal. Sci. Technol.,2011,1,593-600.
    [63]J. Pan, X. Wu, L. Z. Wang, G. Liu, G. Q. (Max) Lu, H. M. Cheng. Synthesis of anatase TiO2 rods with dominant reactive{010} facets for the photoreduction of CO2 to CH4 and use in dye-sensitized solar cells. Chem. Commun.,2011,47,8361-8363.
    [64]W. Jiao, L. Z. Wang, G. Liu, G. Q. (Max) Lu, H. M. Cheng. Hollow anatase TiO2 single crystals and mesocrystals with dominant{101} facets for improved photocatalysis activity and tuned reaction preference. ACS Catal.,2012,2,1854-1859.
    [65]Q. H. Zhang, W. D. Han, Y. J. Hong, J. G. Yu. Photocatalytic reduction of CO2 with H2O on Pt-loaded TiO2 catalyst. Catal. Today,2009,148,335-340.
    [66]W. N. Wang, W. J. An, B. Ramalingam, S. Mukherjee, D. M. Niedzwiedzki, S. Gangopadhyay, P. Biswas. Size and structure matter:enhanced CO2 photoreduction efficiency by size-resolved ultrafine Pt Nanoparticles on TiO2 Single Crystals. J. Am. Chem. Soc.,2012,134,11276-11281.
    [67]M. Anpo, H. Yamashita, Y. Ichihashi, Y. Fujii, M. Honda. Photocatalytic reduction of CO2 with H2O on titanium oxides anchored within micropores of zeolites:effects of the structure of the active sites and the addition of Pt. J. Phys. Chem. B,1997,101,2632-2636.
    [68]W. B. Hou, W. H. Hung, P. Pavaskar, A. Goeppert, M. Aykol, S. B. Cronin. Photocatalytic conversion of CO2 to hydrocarbon fuels via plasmon-enhanced absorption and metallic interband transitions. ACS Catal,2011,1,929-936.
    [69]C. Y. Zhao, L. J. Liu, Q. Y. Zhang, J. Wang, Y. Li. Photocatalytic conversion of CO2 and H2O to fuels by nanostructured Ce-TiO2/SBA-15 composites. Catal. Sci. Technol,2012,2,2558-2568.
    [70]X. K. Li, Z. J. Zhuang, W. Li, H. Q. Pan. Photocatalytic reduction of CO2 over noble metal-loaded and nitrogen-doped mesoporous TiO2. Appl. Catal., A,2012,429-430,31-38.
    [71]Q. Y. Zhang, Y. Li, E. A. Ackerman, M. G.-Josifovska, H. L. Li. Visible light responsive iodine-doped TiO2 for photocatalytic reduction of CO2 to fuels. Appl. Catal., A,2011,400,195-202.
    [72]Y. G. Wang, B. Li, C. L. Zhang, L. F. Cui, S. F. Kang, X. Li, L. H. Zhou. Ordered mesoporous CeO2-TiO2 composites:Highly efficient photocatalysts for the reduction of CO2 with H2O under simulated solar irradiation. Appl. Catal., B,2013,130-131,277-284.
    [73]W. G. Tu, Y. Zhou. Q. Liu, Z. P. Tian, J. Gao, X. Y. Chen, H. T. Zhang, J. G. Liu, Z. G. Zou. Robust hollow spheres consisting of alternating titania nanosheets and graphene nanosheets with high photoactivity for CO2 conversion into renewable fuels. Adv. Fund. Mater.,2012,22,1215-1221.
    [74]Y. J. Yuan, Z. T. Yu, J. Y. Zhang, Z. G. Zou. A copper(Ⅰ) dye-sensitised TiOvbased system for efficient light harvesting and photoconversion of CO2 into hydrocarbon fuel. Dalton Trans.,2012,41, 9594-9597.
    [75]T. V. Nguyen, J. C. S. Wu, C. H. Chiou. Photoreduction of CO2 over Ruthenium dye-sensitized TiO2-based catalysts under concentrated natural sunlight Catal. Commun.,2008,9,2073-2076.
    [76]C. J. Wang, R. L. Thompson, J. Baltrus, C. Matranga. Visible light photoreduction of CO2 using CdSe/Pt/TiO2 heterostructured Catalysts. J. Phys. Chem. Lett.,2010,1,48-53.
    [77]C. J. Wang, R. L. Thompson, P. Ohodnicki, J. Baltrus, C. Matranga. Size-dependent photocatalytic reduction of CO2 with PbS quantum dot sensitized TiO2 heterostructured photocatalysts. J. Mater. Chem.,2011,21,13452-13457.
    [78]T. V. Nguyen, J. C. S. Wu. Photoreduction of CO3 in an optical-fiber photoreactor:Effects of metals addition and catalyst carrier. Appl. Catal., A,2008,335,112-120.
    [79]X. H. Xia, Z. J. Jia. Y. Yua, Y. Liang, Z. Wang, L. L. Ma. Preparation of multi-walled carbon nanotube supported TiO2 and its photocatalytic activity in the reduction of CO2 with H2O. Carbon, 2007,45,717-721.
    [80]K. Xie, N. Umezawa, N. Zhang, P. Reunchan, Y. J. Zhang, J. H. Ye. Self-doped SrTiO3-σ photocatalyst with enhanced activity for artificial photosynthesis under visible light. Energy Environ. Sci.,2011,4,4211-4219.
    [81]Q. Liu, Y. Zhou. J. H. Kou, X. Y. Chen, Z. P. Tian, J. Gao, S. C. Yan, Z. G. Zou. High-yield synthesis of ultralong and ultrathin Zn2GeO4 nanoribbons toward improved photocatalytic reduction of CO; into renewable hydrocarbon fuel. J. Am. Chem. Soc.,2010,132,14385-14387.
    [82]S. C. Yan, L. J. Wan, Z. S. Li, Z. G. Zou. Facile temperature-controlled synthesis of hexagonal Zn2GeO4 nanorods with different aspect ratios toward improved photocatalytic activity for overall water splitting and photoreduction of CO2. Chem. Commun.,2011,47,5632-5634.
    [83]N. Zhang, S. X. Ouyang, P. Li, Y. J. Zhang, G. C. Xi, T. Kako, J. H. Ye. Ion-exchange synthesis of a micro/ mesoporous Zn2GeO4 photocatalyst at room temperature for photoreduction of CO2. Chem. Commun.,2011,47,2041-2043.
    [84]N. Zhang, S. X. Ouyang, T. Kako, J. H. Ye. Mesoporous zinc germanium oxynitride for CO2 photoreduction under visible light. Chem. Commun.,2012,48,1269-1271.
    [85]Q. Liu, Y. Zhou, Y. Ma, Z. G. Zou. Synthesis of highly crystalline In2Ge2O7 (En) hybrid sub-nanowires with ultraviolet photoluminescence emissions and their selective photocatalytic reduction of CO2 into renewable fuel. RSC Advances,2012,2,3247-3250.
    [86]S. C. Yan, S. X. Ouyang, J. Gao, M. Yang, J. Y. Feng, X. X. Fan, L. J. Wan, Z. S. Li, J. H. Ye, Y. Zhou, Z. G. Zou. A Room-Temperature Reactive-Template Route to Mesoporous ZnGa2O4 with Improved Photocatalytic Activity in Reduction of CO2. Angew. Chem. Int. Ed.,2010,49,6400-6404.
    [87]S. C. Yan, H. Yu, N. Y. Wang, Z. S. Li, Z. G. Zou. Efficient conversion of CO2 and H2O into hydrocarbon fuel over ZnAl2O4-modified mesoporous ZnGaNO under visible light irradiation. Chem. Commun.,2012,48,1048-1050.
    [88]H. Park, J. H. Choi, K. M. Choi, D. K. Lee, J. K. Kang. Highly porous gallium oxide with a high CO2 affinity for the photocatalytic conversion of carbon dioxide into methane. J. Mater. Chem.,2012,22, 5304-5307.
    [89]J. W. Lekse, M. K. Underwood, J. P. Lewis, C. Matranga. Synthesis, characterization, electronic Structure, and photocatalytic behavior of CuGaO2 and CuGa1-xFexO2 (x=0.05,0.10,0.15,0.20) delafossites. J. Phys. Chem. C,2012,116,1865-1872.
    [90]P. Li, S. X. Ouyang, G. C. Xi, T. Kako, J. H. Ye. The Effects of Crystal Structure and Electronic Structure on Photocatalytic H2 Evolution and CO2 Reduction over Two Phases of Perovskite-Structured NaNbO3. J. Phys. Chem. C,2012,116,7621-7628.
    [91]P. Li, S. X. Ouyang, Y. J. Zhang, T. Kako, J. H. Ye. Surface-coordination-induced selective synthesis of cubic and orthorhombic NaNbO3 and their photocatalytic properties. J. Mater. Chem. A,2013,1, 1185-1191.
    [92]X. K. Li, W. Li, Z. J. Zhuang, Y. S. Zhong, Q. Li, L. Y. Wang. Photocatalytic reduction of carbon dioxide to methane over SiO2-pillared HNb3O8. J. Phys. Chem. C,2012,116,16047-16053.
    [93]X. K. Li, H. Q. Pan, W. Li, Z. J. Zhuang. Photocatalytic reduction of CO2 to methane over HNb3O8 nanobelts. Appl. Catal, A,2012,413-414,103-108.
    [94]Z. D. Li, Y. Zhou, J. Y. Zhang, W. G. Tu, Q. Liu, T. Yu, Z. G. Zou. Hexagonal nanoplate-textured micro-octahedron Zn2SnO4:combined effects toward enhanced efficiencies of dye-Sensitized solar cell and photoreduction of CO2 into hydrocarbon fuels. Cryst. Growth Des.,2012,12,1476-1481.
    [95]Z. Y. Wang, H. C. Chou, J. C. S. Wu, D. P. Tsai, G. Mu. CO2 photoreduction using NiO/InTaO4 in optical-fiber reactor for renewable energy. Appl. Catal., A,2010,380,172-177.
    [96]P. Y. Liou, S. C. Chen, J. C. S. Wu, D. Liu, S. Mackintosh, M. M. Valer, R. Linforth. Photocatalytic CO2 reduction using an internally illuminated monolith photoreactor. Energy Environ. Sci.,2011,4, 1487-1494.
    [97]X. Y. Chen, Y. Zhou, Q. Liu, Z. D. Li, J. G. Liu, Z. G. Zou. Ultrathin, single-crystal WO3 nanosheets by two-dimensional oriented attachment toward enhanced photocatalystic reduction of CO2 into hydrocarbon fuels under visible light. ACS Appl. Mater. Interfaces,2012,4,3372-3377.
    [98]Y. P. Xie, G. Liu, L. C. Yin, H. M. Cheng. Crystal facet-dependent photocatalytic oxidation and reduction reactivity of monoclinic WO3 for solar energy conversion. J. Mater. Chem.,2012,22, 6746-6751.
    [99]Y. Zhou, Z. P. Tian, Z. Y. Zhao, Q. Liu, J. H. Kou, X. Y. Chen, J. Gao, S. C. Yan, Z. G. Zou. High-yield synthesis of ultrathin and uniform Bi2WO6 square nanoplates benefitting from photocatalytic reduction of CO2 into renewable hydrocarbon fuel under visible light. ACS Appl. Mater. Interfaces,2011,3,3594-3601.
    [100]G. H. Dong, L. Z. Zhang. Porous structure dependent photoreactivity of graphitic carbon nitride under visible light. J. Mater. Chem.,2012,22,1160-1166.
    [101]H. C. Hsu, I. Shown, H. Y. Wei, Y. C. Chang, H. Y. Du, Y. G. Lin, C. A. Tseng, C. H. Wang, L. C. Chen, Y. C. Lin, K. H. Chen. Graphene oxide as a promising photocatalyst for CO2 to methanol conversion. Nanoscale,2013,5,262-268.
    [102]H. Yamashita, N. Kamada, H. He, K. I. Tanaka, S. Ehara, M. Anpo. Reduction of CO2 with H2O on TiO2(100) and TiO2(110) single crystals under UV-irradiation. Chem. Lett.,1994,23,855-858.
    [103]F. Saladin, I. Alxneit. Temperature dependence of the photochemical reduction of in CO2 the presence of H2O at the solid/gas interface of TiO2. Chem. Soc. Faraday Trans.,1997.93,4159-4163.
    [104]G. Q. Guan, T. Kida, A. Yoshida. Reduction of carbon dioxide with water under concentrated sunlight using photocatalyst combined with Fe-based catalyst. Appl. Catal., B,2003,41,387-396.
    [105]N. M. Dimitrijevic, B. K. Vijayan, O. G. Poluektov, T. Rajh, K. A. Gray, H. Y. He, P. Zapol. Role of water and carbonates in photocatalytic transformation of CO2 to CH4 on titania. J. Am. Chem. Soc. 2011,133,3964-3971.
    [106]J. Wei, X. Tan, T. Yu, L. Zhao. Characterization of Y/TiO2 nanoparticles and their reactivity for CO2 photoreduction. Appl. Mech. Mater.,2011,55-57,1506-1510.
    [107]L. M. Xue, F. H. Zhang, H. J. Fan, X. F. Bai. Preparation of C doped TiO2 photocatalysts and their photocatalytic reduction of carbon dioxide. Adv. Mater. Res.,2011,183-185,1842-1846.
    [108]L. Liu, W. L. Fan, X. Zhao, H. G. Sun, P. Li, L. M. Su. Surface dependence of CO2 adsorption on Zn2GeO4. Langmuir,2012,28,10415-10424.
    [109]Y. Li, W. N. Wang, Z. L. Zhan, M. H. Woo. C. Y. Wu. P. Biswas. Photocatalytic reduction of CO2 with H2O on mesoporous silica supported Cu/TiO2 catalysts. Appl. Catal., B,2010,100,386-392.
    [110]H. F. Shi, X. K. Li, D. F. Wang, Y. P. Yuan, Z. G. Zou, J. H. Ye. NaNbO3 nanostructures:facile synthesis, characterization, and their photocatalytic properties. Catal. Lett.,2009,132,205-212.
    [111]X. C. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen, M. Antonietti. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater.,2009,8,76-80.
    [1]T. Inoue, A. Fujishima, S. Konishi, K. Honda. Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powers. Nature,1979,277,637-638.
    [2]J. Pan, X. Wu, L. Z. Wang, G. Liu, G. Q. (Max) Lu, H. M. Cheng. Synthesis of anatase TiO2 rods with dominant reactive{010} facets for the photoreduction of CO2 to CH4 and use in dye-sensitized solar cells. Chem. Commun.,2011,47,8361-8363.
    [3]P. Pathak, M. J. Meziani, Y. Li, L. T. Cureton, Y. P. Sun. Improving photoreduction of CO2 with homogeneously dispersed nanoscale TiO2 catalysts. Chem. Commun.,2004,1234-1235.
    [4]Q. D. Truong, T. H. Le, J. Y. Liu, C. C. Chung, Y. C. Ling. Synthesis of TiO2 nanoparticles using novel titanium oxalate complex towards visiblelight-driven photocatalytic reduction of CO2 to CH3OH. Appl. Catal., A,2012,437-438,28-35.
    [5]B. R. Eggins, J. T. S. Irvine, E. P. Murphy, J. Grimshaw. Formation of two-Carbon acids from carbon dioxide by photoreduction on cadmium sulphide. J. Chem. Soc., Chem. Commun.,1988,1123-1124.
    [6]M. Anpo, H. Yamashita, K. Ikeue, Y. Fujii, S. G. Zhang,Y. Ichihashi, D. R. Park, Y. Suzuki, K. Koyano, T. Tatsumi. Photocatalytic reduction of CO2 with H2O on Ti-MCM-41 and Ti-MCM-48 mesoporous zeolite catalysts. Catal. Today,1998,44,327-332.
    [7]D. J. Fermin, E. A. Ponomarev, L. M. Peter. A kinetic study of CdS photocorrosion by intensity modulated photocurrent and photoelectrochemical impedance spectroscopy. J. Electroanal. Chem., 1999,473,192-203.
    [8]D. Meissner, C. Benndorf, R. Memming. Photocorrosion of cadmium sulfide analysis by photoelectron spectroscopy. Appl. Surf. Sci.,1987,27,423-426.
    [9]W. J. Luo, Z. S. Yang, Z. S. Li, J. Y. Zhang, J. G. Liu, Z. Y. Zhao, Z. Q. Wang, S. C. Yan, T. Yu, Z. G. Zou. Solar hydrogen generation from seawater with a modified BiVO4 photoanode. Energy Environ. Sci.,2011,4,4046-4051.
    [10]B. P. Xie, C. He, P. X. Cai, Y. Xiong. Preparation of monoclinic BiVO4 thin film by citrate route for photocatalytic application under visible light. Thin Solid Films,2010,518,1958-1961.
    [11]S. Tokunaga, H. Kato, A. Kudo. Selective preparation of monoclinic and tetragonal BiVO4 with scheelite structure and their photocatalytic properties. Chem. Mat.,2001,13,4624-4628.
    [12]A. Kudo, K. Omori, H. Kato. A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties. J. Am. Chem. Soc.,1999,121,11459-11467.
    [13]J. Suo, L. F Liu, F. L. Yang. Preparation of supported Cu-BiVO4 photocatalyst and its application in oxidative removal of toluene in air. Chin. J. Catal.,2009,30,323-327.
    [14]K. Shantha, G. N. Subbanna, K. B. R. Varma. Mechanically activated synthesis of nanocrystalline powders of ferroelectric bismuth vanadate. J. Solid State Chem.,1999,142,41-47.
    [15]S. Kohtani, M. Koshiko, A. Kudo, K. Tokumura, Y. Ishigaki, A. Toriba, K. Hayakawa, R. Nakagaki. Photodegradation of 4-alkylphenols using BiVO4 photocatalyst under irradiation with visible light from a solar simulator. Appl. Catal., B,2003,46,573-586.
    [16]L. Zhou, W. Z. Wang, L. Zhang, H. L. Xu, W. Zhu. Single-crystalline BiVO4 microtubes with square cross-sections:Microstructure, growth mechanism, and photocatalytic property. J. Phys. Chem. C, 2007,111,13659-13664.
    [17]J. Q. Yu, A. Kudo. Effects of structural variation on the photocatalytic performance of hydrothermally synthesized BiVO4. Adv. Funct. Mater.,2006,16,2163-2169.
    [18]Y. Zheng, J. Wu, F. Duan, Y. Xie. Gemini surfactant directed preparation and photocatalysis of m-BiV04 hierarchical frameworks. Chem. Lett.,2007,36,520-521.
    [19]D. N. Ke, T. Y. Peng, L. Ma, P. Cai, P. Jiang. Photocatalytic water splitting for O2 production under visible-light irradiation on BiVO4 nanoparticles in different sacrificial reagent solutions. Appl. Catal., A 2008,350,111-117.
    [20]D. N. Ke, T. Y. Peng, L. Ma, P. Cai, K. Dai. Effects of hydrothermal temperature on the micro-structures of BiVO4 and its photocatalytic O2 evolution activity under visible light. Inorg. Chem.,2009, 48,4685-4691.
    [21]Y. Y. Liu, B. B. Huang, Y. Dai, X. Y. Zhang, X. Y. Qin, M. H. Jiang, M. H. Whangbo. Selective ethanol formation from photocatalytic reduction of carbon dioxide in water with BiVO4 photocatalyst. Catal. Commun.,2009,11,210-213.
    [22]I. H. Tseng, W. C. Chang, J. C. S. Wu. Photoreduction of CO2 using sol-gel derived titania and titania-supported copper catalysts. Appl. Catal., B,2002,37,37-48.
    [23]H. Yamashita, H. Nishiguchi, N. Kamada, M. Anpo. Photocatalytic reduction of CO2 with H2O on TiO2 and Cu/TiO2 catalysts, Res. Chem. Interme.,1994,20,825-833.
    [24]S. Kaneco, Y. Shimizu, K. Ohta, T. Mizuno. Photocatalytic reduction of high pressure carbon dioxide using TiO2 powders with a positive hole scavenger. J. Photochem. Photobiol. A,1998,115,223-226.
    [25]P. L. Richardson, M. L. N. Perdigoto, W. Wang, R. J. G. Lopes. Manganese-and copper-doped titania nanocomposites for the photocatalytic reduction of carbon dioxide into methanol. Appl. Catal., B, 2012,126,200-207.
    [26]N. M. Dimitrijevic, B. K. Vijayan, O. G. Poluektov, T. Rajh, K. A. Gray, H. Y. He, P. Zapol. Role of water and carbonates in photocatalytic transformation of CO2 to CH4 on titania. J. Am. Chem. Soc., 2011,133,3964-3971.
    [1]X. C. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen, M. Antonietti. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater., 2009,8,76-80.
    [2]X. Jin, V. V. Balasubramanian, S. T. Selvan, D. P. Sawant, M. A. Chari, G. Q. Lu, A. Vinu. Highly ordered mesoporous carbon nitride nanoparticles with high nitrogen content:a metal-free basic catalyst. Angew. Chem. Int. Ed.,2009,121,8024-8027.
    [3]X. H. Li, J. S. Zhang, X. F. Chen, A. Fischer, A. Thomas, M. Antonietti, X. C. Wang. Condensed graphitic carbon nitride nanorods by nanoconfinement:promotion of crystallinity on photocatalytic conversion. Chem. Mater.,2011,23,4344-4348.
    [4]X. X. Zou, G. D. Li, Y. N. Wang, J. Zhao, C. Yan, M. Y. Guo, L. Li, J. S. Chen. Direct conversion of urea into graphitic carbon nitride over mesoporous TiO2 spheres under mild condition. Chem. Commun., 2011,47,1066-1068.
    [5]Y. Wang, Y. Di, M. Antonietti, H. R. Li, X. F. Chen, X. C. Wang. Excellent visible-light photocatalysis of fluorinated polymeric carbon nitride solids. Chem. Mater.,2010,22,5119-5121.
    [6]Q. J. Xiang, J. G. Yu, M. Jaroniec. Preparation and enhanced visible-light photocatalytic H2-production activity of graphene/C3N4 composites. J. Phys. Chem. C,2011,115,7355-7363.
    [7]Y. Wang, J. Yao, H. R. Li, D. S. Su, M. Antonietti. Highly selective hydrogenation of phenol and derivatives over a Pd@carbon nitride catalyst in aqueous media. J. Am. Chem. Soc.,2011,133, 2362-2365.
    [8]Y. J. Zhang, T. Mori, J. H. Ye, M. Antonietti. Phosphorus-doped carbon nitride Solid:enhanced electrical conductivity and photocurrent generation. J. Am. Chem. Soc.,2010,132,6294-6295.
    [9]K. Maeda, X. C. Wang, Y. Nishihara, D. L. Lu, M. Antonietti, K. Domen. Photocatalytic activities of graphitic carbon nitride powder for water reduction and oxidation under visible light. J. Phys. Chem. C, 2009,113,4940-4947.
    [10]J. R. Hoist. E. G. Gillan. From Triazines to Heptazines:Deciphering the local structure of amorphous nitrogen-rich carbon nitride materials. J. Am. Chem. Soc.,2008,130,7373-7379.
    [11]B. Jurgens, E. Irran, J. Senker, P. Kroll, H. Miiller, W. Schnick. Melem (2,5,8-Triamino-tri-s-triazine), an important intermediate during condensation of melamine rings to graphitic carbon nitride:synthesis, structure determination by X-ray powder diffractometry, solid-State NMR, and theoretical studies. J. Am. Chem. Soc.,2003,125,10288-10300.
    [12]M. J. Bojdys, J. O. Muller, M. Antonietti, A. Thomas. Ionothermal synthesis of crystalline, condensed, graphitic carbon nitride. Chem.-Eur. J.,2008,14,8177-8182.
    [13]J. S. Zhang, X. F. Chen. K. Takanabe. K. Maeda, K. Domen, J. D. Epping. X. Z. Fu, M. Antonietti, X. C. Wang. Synthesis of a carbon nitride structure for visible-light catalysis by copolymerization. Angew. Chem., Int. Ed.,2010,49,441-444.
    [14]F. Dong, L. W. Wu, Y. J. Sun, M. Fu, Z. B. Wu, S. C. Lee. Efficient synthesis of polymeric g-C3N4 layered materials as novel efficient visible light driven photocatalysts. J. Mater. Chem.,2011,21, 15171-15174.
    [15]G. H. Dong, L. Z. Zhang. Porous structure dependent photoreactivity of graphitic carbon nitride under visible light.J. Mater. Chem.,2012,22,1160-1166.
    [16]J. H. Liu, T. K. Zhang, Z. C. Wang, G. Dawson, W. Chen. Simple pyrolysis of urea into graphitic carbon nitride with recyclable adsorption and photocatalytic activity. J. Mater. Chem.,2011,21, 14398-14401.
    [17]A. Thomas, A. Fischer, F. Goettmann, M. Antonietti, J. O. Muller, R. Schlogl, J. M. Carlsson. Graphitic carbon nitride materials:variation of structure and morphology and their use as metal-free catalysts. J. Mater. Chem.,2008,18,4893-4908.
    [18]M. Kim, S. Hwang, J. S. Yu. Novel ordered nanoporous graphitic C3N4 as a support for Pt-Ru anode catalyst in direct methanol fuel cell. J. Mater. Chem.,2007,17,1656-1659.
    [19]Q. X. Guo, Y. Xie, X. J. Wang, S. Y. Zhang, T. Hou. Synthesis of carbon nitride nanotubes with the C3N4 stoichiometry via a benzene-thermal process at low temperatures. Chem. Commun.,2004,26-27'.
    [20]Q. X. Guo, Q. Yang, L. Zhu, C. Q. Yi, S. Y. Zhang, Y. Xie. A facile one-pot solvothermal route to tubular forms of luminescent polymeric networks [(C3N3)7(NH)3]n. Solid State Commun.,2004,132, 369-374.
    [21]I. H. Tseng, W. C. Chang, J. C. S. Wu. Photoreduction of CO2 using sol-gel derived titania and titania-supported copper catalysts. Appl. Catal, B,2002,37,37-48.
    [22]H. Yamashita, H. Nishiguchi, N. Kamada, M. Anpo. Photocatalytic reduction of CO2 with H2O on TiO2 and Cu/TiO2 catalysts, Res. Chem. Interne.,1994,20,825-833.
    [23]X. X. Fan, J. Gao, Y. Wang, S. Z. Li, Z. G. Zou. Effect of crystal growth on mesoporous Pb3Nb4O13 formation, and their photocatalytic activity under visible-light irradiation. J. Mater. Chem.,2010,20, 2865-2869.
    [24]H. G. Tian, Y. J. Chen, K. Pan, D. J. Wang, W. Zhou, Z. Y. Ren, H. G. Fu. Efficient visible light-induced degradation of phenol on N-doped anatase TiO2 with large surface area and high crystallinity. Appl. Surface Sci.,2010,256,3740-3745.
    [25]S. Lee, K. Teshima, Y. Niina, S. Suzuki, K. Yubuta, T. Shishido, M. Endo, S. Oishi. Highly crystalline niobium oxide converted from flux-grown K4Nb6O17 crystals. Cryst. Eng. Comm.,2009,11, 2326-2331.
    [26]S. Z. Hu, A. J. Wang, X. Li, H. Lowe. Hydrothermal synthesis of well-dispersed ultrafine N-doped TiO2 nanoparticles with enhanced photocatalytic activity under visible light. J. Phys. Chem. Solids, 2010,71,156-162.
    [27]P. L. Richardson, M. L. N. Perdigoto, W. Wang, R. J. G. Lopes. Manganese-and copper-doped titania nanocomposites for the photocatalytic reduction of carbon dioxide into methanol. Appl. Catal.,B, 2012,126,200-207.
    [28]Ⅰ.Ⅱ. Tseng, J. C. S. Wu, H. Y. Chou. Effects of sol-gel procedures on the photocatalysis of Cu/TiO2 in CO2 photoreduction. J. Catal,2004,221,432-440.
    [29]Slamet, H. W. Nasution, E. Purnama, S. Kosela, J. Gunlazuardi. Photocatalytic reduction of COt on copper-doped Titania catalysts prepared by improved-impregnation method. Catal. Commun.,2005,6, 313-319.
    [30]Q. D. Truong, J. Y. Li, C. C. Chung, Y. C. Ling. Photocatalytic reduction of CO2 on FeTiO3/TiO2 photocatalyst. Catal. Commun.,2012,19,85-89.
    [31]X. Li, H. L. Liu, D. L. Luo, J. T. Li, Y. Huang, H. Li, Y. P. Fang, Y. H. Xu, L. Zhu. Adsorption of CO2 on heterostructure CdS(Bi2S3)/TiO2 nanotube photocatalyst and their photocatalytic activities in the reduction of CO2 to methanol under visible light irradiation. Chem. Eng. J.2012,108,151-158.
    [32]J. Pan, X. Wu, L. Z. Wang, G. Liu, G. Q. (Max) Lu, H. M. Cheng. Synthesis of anatase TiO2 rods with dominant reactive{010} facets for the photoreduction of CO2 to CH4 and use in dye-sensitized solar cells. Chem. Commun.,2011,47,8361-8363.
    [33]W. Jiao, L. Z. Wang, G. Liu, G. Q. (Max) Lu, H. M. Cheng. Hollow anatase TiO2 single crystals and mesocrystals with dominant{101} facets for improved photocatalysis activity and tuned reaction preference. ACS Catal.,2012,2,1854-1859.
    [34]Q. H. Zhang, W. D. Han, Y. J. Hong, J. G. Yu. Photocatalytic reduction of CO2 with H2O on Pt-loaded TiO2 catalyst. Catal. Today,2009,148,335-340.
    [35]W. N. Wang, W. J. An, B. Ramalingam, S. Mukherjee, D. M. Niedzwiedzki, S. Gangopadhyay, P. Biswas. Size and structure matter:enhanced CO2 photoreduction efficiency by size-resolved ultrafine Pt nanoparticles on TiO2 single crystals. J. Am. Chem. Soc.,2012,134,11276-11281.
    [36]M. Anpo, H. Yamashita, Y. Ichihashi, Y. Fujii, M. Honda. Photocatalytic reduction of CO2 with H2O on titanium oxides anchored within micropores of zeolites:effects of the structure of the active sites and the addition of Pt. J. Phys. Chem. B,1997,101,2632-2636.
    [37]H. Yamashita, N. Kamada, H. He, K. I. Tanaka, S. Ehara, M. Anpo. Reduction of CO2 with H2O on TiO2(100) and TiO2(110) single crystals under UV-irradiation. Chem. Lett.,1994,23,855-858.
    [38]N. M. Dimitrijevic, B. K. Vijayan, O. G. Poluektov, T. Rajh, K. A. Gray, H. Y. He, P. Zapol. Role of water and carbonates in photocatalytic transformation of CO2 to CH4 on titania. J. Am. Chem. Soc., 2011,133,3964-3971.
    [39]N. M. Dimitrijevic, I. A. Shkrob, D. J. Gosztola, T. Rajh. Dynamics of interfacial charge transfer to formic acid, formaldehyde, and methanol on the surface of TiO2 nanoparticles and its role in methane production. J. Phys. Chem. C,2012,116,878-885.
    [40]S. Kaneco, Y. Shimizu, K. Ohta, T. Mizuno. Photocatalytic reduction of high pressure carbon dioxide using TiO2 powders with a positive hole scavenger. J. Photochem. Photobiol. A,1998,115,223-226.
    [1]H. Xu, S. X. Ouyang, P. Li, T. Kako, J. H. Ye. High-active anatase TiO2 nanosheets exposed with 95% {100} facets toward efficient H2 evolution and CO2 photoreduction. ACS Appl. Mater. Interfaces,2013, 5,1348-1354.
    [2]J. Y. Feng, M. C. Yin, Z. Q. Wang, S. C. Yan, L. J. Wan, Z. S. Li, Z. G. Zou. Facile synthesis of anatase TiO2 mesocrystal sheets with dominant {001} facets based on topochemical conversion. CrystEngComm, 2010,12,3425-3429.
    [3]S. W. Liu, J. G. Yu, M. Jaroniec. Tunable photocatalytic selectivity of hollow TiO2 microspheres composed of anatase polyhedra with exposed {001} facets. J. Am. Chem. Soc.,2010,132, 11914-11916.
    [4]Z. G. Xiong, X. S. Zhao. Nitrogen-doped titanate-anatase core-shell nanobelts with exposed {101} anatase facets and enhanced visible light photocatalytic activity. J. Am. Chem. Soc.,2012,134,5754-5757.
    [5]G. Liu, H. G. Yang, X. W. Wang, L. N. Cheng, J. Pan, G. Q.(Max) Lu, H. M. Cheng. Visible light responsive nitrogen doped anatase TiO2 sheets with dominant{001} facets derived from TiN. J. Am. Chem. Soc.,2009,131,12868-12869.
    [6]B. H. Wu, C. Y. Guo, N. F. Zheng, Z. X. Xie, G. D. Stucky. Nonaqueous production of nanostructured anatase with high-energy facets. J. Am. Chem. Soc.,2008,130,17563-17567.
    [7]X. G. Han, Q. Kuang, M. S. Jin, Z. X. Xie, L. S. Zheng. Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties. J. Am. Chem. Soc.,2009,131, 3152-3153.
    [8]F. Tian, Y. P. Zhang, J. Zhang, C. X. Pan. Raman spectroscopy:a new approach to measure the percentage of anatase TiO2 exposed (001) facets. J. Phys. Chem. C,2012,116,7515-7519.
    [9]U. Diebold. The surface science of titanium dioxide. Surf. Sci. Rep.,2003,48,53-229.
    [10]M. Liu, L. Y. Piao, L. Zhao, S. T. Ju, Z. J. Yan, T. He, C. L. Zhou, W. J. Wang. Anatase TiO2 single crystals with exposed{001} and{110} facets:facile synthesis and enhanced photocatalysis. Chem. Commun.,2010,46,1664-1666.
    [11]J. Zhao, X. X. Zou, J. Su, P. P. Wang, L. J. Zhou, G. D. Li. Synthesis and photocatalytic activity of porous anatase TiO2 microspheres composed of {010}-faceted nanobelts. Dalton Trans.,2013,42, 4365-4368.
    [12]W. Wang, Y. R. Ni, C. H. Lu, Z. Z. Xu. Hydrogenation of TiO2 nanosheets with exposed {001} facets for enhanced photocatalytc activity. RSCAdv.,2012,2,8286-8288.
    [13]M. Liu, L. Y. Piao, W. M. Lu, S. T. Ju, L. Zhao, C. L. Zhou, H. L. Li, W. J. Wang. Flower-like TiO2 nanostructures with exposed {001} facets:Facile synthesis and enhanced photocatalysis. Nanoscale, 2010,2,1115-1117.
    [14]J. Pan, G. Liu, G. Q. (Max) Lu, H. M. Cheng. On the true photoreactivity order of {001},{010}, and {101} facets of anatase TiO2 crystals. Angew. Chem. Int. Ed.,2011,50,2133-2137.
    [15]I. H. Tseng, W. C. Chang, J. C. S. Wu. Photoreduction of CO2 using sol-gel derived titania and titania-supported copper catalysts. Appl. Catal., B,2002,37,37-48.
    [16]H. Yamashita, H. Nishiguchi, N. Kamada, M. Anpo. Photocatalytic reduction of CO2 with H2O on TiO2 and Cu/TiO2 catalysts, Res. Chem. Interme.,1994,20,825-833.
    [17]J. Pan, X. Wu, L. Z. Wang, G. Liu, G. Q. (Max) Lu, H. M. Cheng. Synthesis of anatase TiO2 rods with dominant reactive {010} facets for the photoreduction of CO2 to CH4 and use in dye-sensitized solar cells. Chem. Commun.,2011,47,8361-8363.
    [18]Q. H. Zhang, W. D. Han, Y. J. Hong, J. G. Yu. Photocatalytic reduction of CO2 with H2O on Pt-loaded TiO2 catalyst. Catal. Today,2009,148,335-340.
    [19]M. Anpo, H. Yamashita, Y. Ichihashi, Y. Fujii, M. Honda. Photocatalytic reduction of CO2 with H2O on titanium oxides anchored within micropores of zeolites:effects of the structure of the active sites and the addition of Pt. J. Phys. Chem. B,1997,101,2632-2636.
    [20]Q. Liu,Y. Zhou, J. H. Kou, X. Y. Chen, Z. P. Tian, J. Gao, S. C. Yan, Z. G. Zou. High-yield synthesis of ultralong and ultrathin Zn2GeO4 nanoribbons toward improved photocatalytic reduction of CO? into renewable hydrocarbon fuel. J. Am. Chem. Soc.,2010,132,14385-14387.
    [21]P. Li, S. X. Ouyang, Y. J. Zhang, T. Kako. J. H. Ye. Surface-coordination-induced selective synthesis of cubic and orthorhombic NaNbO3 and their photocatalytic properties. J. Mater. Chem. A,2013,1, 1185-1191.
    [22]L. Sun, Y. Qin, Q. Cao, B. Hu, Z. Huang, L. Ye, X. Tang. Novel photocatalytic antibacterial activity of TiO2 microspheres exposing 100% reactive {111} facets. Chem. Commun.,2011,47, 12628-12630.
    [23]F. Amano, T. Yasumoto. O. P.-Mahaney. S. Uchida, T. Shibayamad, B. Ohtaniab. Photocatalytic activity of octahedral single-crystalline mesoparticles of anatase titanium(IV) oxide. Chem. Commun., 2009,45,2311.
    [24]L. F. Qi, J.G.Yu, M. Jaronic. Preparation and enhanced visible-light photocatalytic H2-production activity of CdS-sensitized Pt/TiO2 nanosheets with exposed (001) facets. Phys. Chem. Chem. Phys., 2011,13,8915-8923.
    [25]A. S. Barnard, L. A. Curtiss. Prediction of TiO2 nanoparticles phase and shape transitions controlled by surface chemistry. Nano. Lett,2005,5,1261-1266.
    [26]L. J. Liu, H. L. Zhao, J. M. Andino, Y. Li. Photocatalytic CO2 reduction with H2O on TiO2 nanocrystals:comparison of anatase, rutile, and brookite polymorphs and exploration of surface chemistry. ACS Catal,2012,2,1817-1828.
    [27]W. G. Su, J. Zhang, Z. C. Feng, T. Chen, P. L. Ying, C. Li. Surface phases of TiO2 nanoparticles studied by UV Raman spectroscopy and FT-IR spectroscopy. J. Phys. Chem. C.,2008,112, 7710-7716.
    [28]H. He, P. Zapol and L. A. Curtiss. Computational screening of dopants for photocatalytic two-electron reduction of CO2 on anatase (101) surfaces. Energy Environ. Sci.,2012,5.6196-6205.
    [29]J. Baltrusaitis, J. Schuttlefield, E. Zeitler, V. H. Grassian. Carbon dioxide adsorption on oxide nanoparticle surfaces. Chem. Eng. J.,2011,170,471-481.
    [30]A. Selloni. Crystal growth:Anatase shows its reactive side. Nat. Mater.,2008,7,613-615.
    [31]K. Nomura, Y. Ujihira, T. Hayakawa, K. Takehira. CO2 absorption properties and characterization of perovskite oxides, (Ba,Ca) (Co,Fe) O3-5. Appl. Catal, A,1996,137,25-36.
    [32]K. M. Merz. Gas-phase and solution-phase potential energy surfaces for carbon dioxide+n-water (n= 1,2). J. Am. Chem. Soc,1990,112,7973-7980.
    [33]K. I. Peterson, W. Klemperer. Structure and internal rotation of H2O-CO2, HDO-CO2, and D2O-CO2 van der Waals complexes. J. Chem. Phys.,1984,80,2439-2445.
    [34]M. Primet, P. Pichat, M. V. Mathieu. Infrared study of the surface of titanium dioxides. I. Hydroxyl groups J. Phys. Chem.,1971,75,1220.
    [35]A. Y. Yan, B. Liu, Y. L. Dong, Z. J. Tian, D. Z. Wang, M. J. Cheng. A temperature programmed desorption investigation on the interaction of Ba0.5Sr0.5Co0.8Fe0.2O3-δ perovskite oxides with CO2 in the absence and presence of H2O and O2. Appl. catal., B,2008,80,24-31.
    [36]M. Lazzeri, A. Selloni. Stress-driven reconstruction of an oxide Surface:the anatase TiO2(001)-(1×4) Surface. Phys. Rev. Lett.,2001,87,266105.
    [37]N. Ruzycki, G. S. Herman, L. A. Boatner, U. Diebold. Scanning tunneling microscopy study of the anatase (100) surface. Surf. Sci.,2003,529, L239-L244.
    [38]U. Diebold, N. Ruzycki, G. S. Herman, A. Selloni. One step towards bridging the materials gap: surface studies of TiO2 anatase. Catal. Today.,2003,85,93-100.
    [39]G. Liu, J. C. Yu, G. Q. Lu, H. M. Cheng. Crystal facet engineering of semiconductor photocatalysts: motivations, advances and unique properties. Chem. Commun.,2011,47,6763-6783.
    [40]D. C. Sorescu, W. A. Al-Saidi, K. D. Jordan. CO2 adsorption on TiO2(101) anatase:A dispersion-corrected density functional theory study. J. Chem. Phys.,2011,135,124701-124716.
    [41]M. Murdoch, G.I. N. Waterhouse, M. A. Nadeem, J. B. Metson, M. A. Keane, R. F. Howe, J. Llorca, H. Idriss. The effect of gold loading and particle size on photocatalytic hydrogen production from ethanol over Au/TiO2 nanoparticles. Nat. Chem.,2011,3,4189-4192.
    [42]N. Wang, T. Tachikawa, T. Majima. Single-molecule, single-particle observation of size-dependent photocatalytic activity in Au/TiO2 nanocomposites. Chem. Sci.,2011,2,891-900.
    [43]W. N. Wang, W. J. An, B. Ramalingam, S. Mukherjee, D. M. Niedzwiedzki, S. Gangopadhyay, P. Biswas. Size and structure matter:enhanced CO2 photoreduction efficiency by size-resolved ultrafine Pt Nanoparticles on TiO2 Single Crystals. J. Am. Chem. Soc.,2012,134,11276-11281.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700