用户名: 密码: 验证码:
雷达散射截面算法研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文围绕雷达散射截面的计算,从RCS的概念及基本电磁散射理论入手,讨论了采用物理光学法和等效电磁流法计算RCS的两种方法:面元法和图形法,重点论述了这两种算法分别采用的目标几何建模方法,即面元网格法和参数曲面法,详细介绍了根据目标原始外形数据生成计算所需模型数据的步骤和方法。对于面元法,本文讨论了面元划分及其近似方法,分析了遮挡处理算法,给出了计算大型复杂目标的部件分解算法,并举例说明了这种方法在工程实际中的应用。对于图形算法,本文做了以下研究:成功地从目标的图形显示获取了计算信息并加以应用,提出了可视化计算的几个加速技巧,可以显著提高图形算法的计算速度。最后,本文试图提供一个进行目标设计的完整解决方案,即一个能够从目标外形设计到对其进行RCS分析的交互式集成环境。本文进行了这方面的研究和探索性工作,将图形算法集成到CAD造型软件中,初步实现了上述功能。
Focused on computation of radar cross section (RCS), two methods, i.e. the faceting approach and graphical electromagnetic computing (GRECO), using physical optics (PO) method and method of equivalent currents (MEC), are discussed starting with the concept of RCS and the basic theory of electromagnetic scattering. Two kinds of corresponding model of target are discussed in detail. One is the grid model used in the faceting approach while the other is the parametric surface model used in GRECO. The steps to translate the source shape data of targets to the data for RCS computing are introduced in addition.
    Facet division and its approximation as well as shading algorithm are discussed on faceting approach. Furthermore, the method of components decomposing is provided to handle extremely complex targets. Computational examples of actual targets by faceting approach demonstrate its validity in practical application.
    As for GRECO, several researches have been done, such as obtaining the six-dimension geometric information for computation from the target image at the computer screen and the techniques for speeding up the computation.
    At last, an effort is made to provide an integral solution for targets design, in which targets can be designed mutually from shape to RCS prediction. The details of this solution are discussed in this paper. And elementary achievement is gained by integrating GRECO into CAD software package of modeling.
引文
[1] 阮颖铮等编著,雷达截面与隐身技术,国防工业出版社,1998.
    [2] Nazih N. Youssef, Radar Cross Section of Complex Targets, Proc. IEEE, Vol. 77, No. 5, May 1989, pp. 722-734.
    [3] 韩明华,袁乃吕,光学复杂目标RCS计算机软件集成技术进展,电子科技导报,Vol.4,1998.pp.9-12.
    [4] Eugene E Knott, A Progression of High-Frequency RCS Prediction Techniques, Proc. IEEE, Vol. 73, No. 2, Feb. 1985, pp. 252-264.
    [5] Juan M. Rius, Miguel Ferrando, et al., High-Frequency RCS of Complex Radar Targets in Real-Time, IEEE Trans. Antennas Propagat., Vol. AP-41, No. 9, Sept. 1993, pp 1308-1319.
    [6] J. Pérez, M. F. Cátedra, Application of Physical Optics to the RCS Computation of Bodies Modeled with NURBS Surfaces, IEEE Trans. Antennas Propagat., Vol. AP-42, No.10, Oct. 1994, pp. 1404-1411.
    [7] Juan M. Rius, Miguel Ferrando, et al., GRECO: Graphical Electromagnetic Computing for RCS Prediction in Real Time, IEEE Antennas Propagat. Mag., Vol. 35, No. 2, April 1993, pp. 7-17.
    [8] M. Domingo, E Rivas, et al, Computation of the RCS of Complex Bodies Modeled Using NURBS Surfaces, IEEE Antennas Propagat. Mag., Vol. 37, No. 6, Dec. 1995, pp. 36-47.
    [9] 朱贤阳,杨儒贵,陈益邻,复杂目标雷达散射截面计算方法的新进展,电波科学学报,Vol.13,No.3,1998.9,pp.322-328.
    [10] 宁焕生,蒋欣,王宝发,GRECO与行波求解低散射目标后向RCS,北京航空航天大学学报,Vol.25,No.5,1999.10,pp.517-520.
    [11] 谭莹,漆兰芬,董金明,B_3样条曲面在复杂目标RCS计算中的应用,电波科学学报,Vol.14,No.4,1999.12,pp.434-439.
    [12] 杨正军,鲁述,雷达散射截面预估的可视化技术,电波科学学报,Vol.12,No.2,1997.6,pp.149-155.
    [13] 昂海松,舒永泽,周建江等,复杂目标RCS计算的新方法——曲面像素法,电子与信息学报,Vol.23,No.10,2001.10,pp.962-969.
    [14] 金灿民,许家栋,韦高,复杂目标近场电磁散射的可视化计算方法,电波科学学报,Vol.13,No.3,1998.9,pp.241-244.
    [15] 金灿民,复杂目标近场电磁散射特性研究,西北工业大学博士学位论文,1998.
    
    
    [16] 朱海冰.NURBS拟合目标的雷达散射特性研究,西北工业大学硕士学位论文,1997.
    [17] 张璐,机载天线罩分析和设计的研究,西北工业大学硕士学位论文,2001.
    [18] 施法中 编著,计算机辅助几何设计与非均匀有理B样条(CAGD & NURBS),北京航空航天大学出版社,1994.
    [19] William B. Gordon, Far-Field Approximations to the Kirchhoff-Helmholtz Representations of Scatted Fields, IEEE Trans. Antennas Propagat., July 1975, pp. 590-592.
    [20] 张柏钦,吕慕林等 编著,Unigraphics实作范例,北京大学出版社,2000.
    [21] George T. Ruck, Donald E. Barrick, et al, Radar Cross Section Handbook, Plenum Press, New York-London, 1970.
    [22] 汪茂光 主编,几何绕射理论,西北电讯工程学院出版社,1985.
    [23] Arie Michaeli, Equivalent Edge Currents for Arbitrary Aspects of Observation, IEEE Trans. Antennas Propagat., Vol. AP-32, No.3, Mar. 1984, pp. 252-258.
    [24] Arie Michaeli, Correction to "Equivalent Edge Currents for Arbitrary Aspects of Observation", IEEE Trans. Antennas Propagat., Vol. AP-33, No.2, Feb. 1985, pp.227.
    [25] Eugene F. Knott, The Relationship Between Mitzner's ILDC and Michaeli's Equivalent Currents, IEEE Trans. Antennas Propagat., Vol. AP-33, No. 1, Jan. 1985, pp. 112-116.
    [26] 许家栋,×××电磁敞射理论建模技术报告.
    [27] 黎峰,复杂目标的RCS计算,西北工业大学硕士学位论文,2001.
    [28] OpenGL Architecture Review Board著,Dave Shreiner主编,孙守迁,王剑,林宗楷等译,OpenGL参考手册,机械工业出版社,2001.
    [29] 廖朵朵,张华军 编著,OpenGL三维图形程序设计,星球地图出版社 1996.
    [30] 金廷赞 编著,计算机图形学,浙江大学出版社,1988.
    [31] Unigraphics Solutions Inc., UG/Open API Programmer's Guide & UG/Open++ Programmer's Guide.
    [32] 严靖峰,徐鹏根,RCS预估中图形电磁学方法的改进,电波科学学报,Vol.13,No.3,1998.9.pp.313-317.
    [33] John S. Asvestas, The Physical-Optics Integral and Computer Graphics, IEEE Trans. Antennas Propagat., Vol. AP-43, No. 12, Dec. 1995, pp. 1459-1460.
    [34] Wu Xian-liang, Graphical Multiscattering Computing for Trihedral Corner Reflector, 安徽大学学报(自然科学版),Vol.24,No.3,2000.9,pp.85-91.
    [35] Cao Qinfeng, Xu Penggen, Application of Improved Z-Buffer Technique to RCS Computation, Wuhan Univercity Journal of Natural Sciences, Vol. 3, No. 1, 1998, pp. 53-55.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700