基于反馈校正机制的优化算法设计及其在薄板轧制调度中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
组合优化问题广泛存在于科学研究和工程应用中的各个领域。设计快速、可靠的最优化算法一直是研究者不懈努力的目标。随着现代社会日益增多的复杂问题,传统的确定性最优化方法存在计算复杂性方面的局限性,而启发式算法,包括现代智能优化算法在内,尽管简单、通用,但是不能保证解的质量。因此如何设计一种集成两种算法优点并应用于实际问题的混合算法正成为学术界关注的热点问题之一。而在钢铁生产中,尤其是在轧制调度问题中,存在着大量的组合优化问题。轧制过程是钢铁生产过程中的关键工序之一,优化钢铁轧制过程直接关系到成品的质量、库存的成本、客户的满意度。因此,该研究具有重要的经济意义。
     本文提出了基于反馈校正机制的混合优化算法,并分别针对薄板生产过程中的热轧调度问题和冷轧连续镀锌生产线调度问题做了深入的研究,其创新点主要概括有如下两个方面:
     从建模的角度,考虑了轧辊和轧件之间的耦合效应,建立了基于时变参数的调度模型。建模的难点是由于不同的轧件调度会造成不同程度的轧辊磨损,轧辊的磨损程度会直接影响轧件的性能,从而影响后续的调度结果。轧件和轧辊的耦合效应在连续镀锌线的平整机生产过程中体现的尤为明显。
     从算法的角度,设计了基于反馈校正原理的集成数学规划和启发式算法的混合算法框架。目的在于利用数学规划的精确性和启发式算法的快速性求解组合优化问题。反馈校正算法的原理是通过算法之间的大量信息交互,使得在不影响最优解的前提下简化问题。
     具体研究内容包括以下几个方面:
     (1)提出了解决非对称旅行商问题(ATSP)的基于反馈校正原理的优化算法框架。ATSP是许多工业生产调度问题原型,也是热轧问题需要解决的一个关键子问题。该方法核心是依据ATSP问题松弛模型对偶关系推断ATSP最优解被排除弧集合的弧排除算法。算法框架以ATSP问题的弧集合作为“参考输入”,以ATSP最优解的上下界求解算法作为“控制对象”,以弧排除算法作为“反馈校正控制器”,其“反馈输入”是“控制对象”的上下界差值。算法迭代过程中,上下界差值缩小,排除弧集合增加,算法呈现出自收敛性。该框架将数学规划方法和元启发式算法系统的集成在一个统一的框架之中,无论从理论上和还是从仿真上都充分说明该自收敛算法是非常有效的。
     (2)建立了热轧计划、调度问题的基于多路径、多目标的数学模型。与以往热轧模型不同之处在于:(i)将同宽度连续轧制数量的限制建立为资源约束模型;(ii)通过递阶目标层次结构,将原问题分解为易于解决的子问题求解。提出了基于数学规划与启发式方法相结合的混合策略。针对大型工业调度问题,以求近优解为出发点。算法的主要思想是根据对问题的宏观分析,松弛模型的复杂约束,通过数学规划定位最优解或者近优解的理想区域,然后由启发式算法进行后续寻优或者修复不可行解。相对与一般的混合算法,这种策略不仅可以找到相当出色的次优解,并且能够给出下界,可对解的性能做有效的评估。
     (3)针对复杂的连续镀锌生产线调度问题,考虑了轧辊性能与轧件之间耦合约束,并建立了时间相关旅行商问题(TDTSP)的调度模型,提出了基于反馈校正机制的上、下界并行求解算法。以第二章提出的框架为基础,在该框架之中嵌入了次梯度算法,使得在求解原始松弛问题的对偶问题过程中出现的大量对偶信息能够被有效的利用以降低问题的规模,并在此基础之上,归纳了解元素集排除过程及其算法实施的一般形式。而在一般的求解整数规划过程中,是根据对偶理论求解原问题松弛问题的对偶问题获得下界。如果该下界对应的解是可行的,则已经找到了最优解。若不可行,则采用分支定界或其他修复策略获得最优或者近优解。这种串行处理策略,只利用到了最后的下界信息,而没有利用到求解对偶问题过程出现的大量对偶信息。因此,如果不能充分利用计算获得的问题内部信息作为指导,算法性能会降低。
     本文对钢铁生产中的关键问题之一批量轧制调度问题从建模和算法设计两个方面都做了较为深入的探讨,研究成果可为优化钢铁生产物流水平,提高生产作业计划与调度的效率和质量提供理论与技术支持。本文研究工作受国家自然科学基金项目(No. 60574063)和香港城市大学基金(No. CityU122305)的资助。
Optimization problem exists widely in all domains of scientific research and engineering applications. Much effort has been, and will continue to be, devoted to the design of good optimization algorithms, that is the algorithm which find extrema or near extrema reliably and quickly. Traditional deterministic methods appear to be unrealistic when solving complex problem involving in modern practical applications due to great computational complexity. Heuristic methods, including intelligent optimization algorithms, are simple, general and can be implemented easily but they can not provide solutions with quality guaranteed. So, how to design a hybrid and applicable algorithm with both advantages of the two kinds of methods is attracting more and more interests of worldwide domain scholars. Meanwhile, there are many optimization problems arising in steel production, in particularly in rolling batch scheduling problem. The rolling process is one of the most important parts in the whole procedure of steel production and thus is of great importance with respect to improving the final product quality, to reducing the inventory cost and to making a more responsive position towards customers. Therefore, the research is of great economical profits.
     In this dissertation, a novel optimization method with feedback and self-tuning mechanism is proposed. Moreover, the Hot Strip Mill (HSM) scheduling problem as well as the Continuous Galvanizing Line (CGL) scheduling problem based on the proposed method are studied carefully. Concretely, the major contributions involved in this dissertation are twofold:
     From the viewpoint of the modeling, a time-dependent parameter model is established to consider the coupling effect between jobs (coils or slabs) and the machine (rolls). The mutual-effect lies in that jobs through the mill will wear the rolls and change physical parameters of surface of rolls meanwhile the physical parameters of surface will determine the posterior rolling sequence to avoid fabricating substandard products. Such mutual-effect is notable especially in the process of skin pass in CGL.
     From the viewpoint of the algorithm, a novel algorithm with feedback and self-tuning mechanism is proposed to solve combinatorial optimization in which the mathematical programming and the heuristic methods are integrated systematically. The motivation is to take full advantage of both the two kinds of algorithms to solve complex combinatorial problems. The most prominent advantage of the algorithm lies in that algorithms involved in the hybrid framework is interactive through a simple mechanism, which can reduce the searching region without excluding the optimality.
     The main topics included in this dissertation are generalized as follows:
     (1)A novel algorithmic framework based on the feedback and self-tuning mechanism is proposed to solve the asymmetric traveling salesman problem (ATSP). ATSP and its variations are very commonly used models to formulate many practical problems. Here, ATSP is a key sub-problem that has to deal with in order to solve the HSM scheduling problem. The main idea hint in the framework is that we develop an algorithm to exclude increasingly arcs not belonging to the optimal solution using the dual information produced during solving the dual problem of the relaxed ATSP problem. In the framework, the solution components set is regarded as the“reference input”, and the lower-bound solver as well as the upper bound solver is served as the“controlled plant”. The algorithm of excluding arcs not belonging to the optimal solution is used as the“controller”and the gap between the lower bound and the upper bound is employed as the input to the“controller”. During the process of iterations, the gap between the lower bound and the upper bound is reduced gradually. So, the cardinality of the excluding arc set will be augmented which guarantees the algorithm’s self-convergence to the optimal solution. The mathematical programming and the heuristic method are integrated systematically. The superiority of the hybrid algorithm over a single method can be illustrated theoretically and the computational experiments verify the efficiency.
     (2)The HSM planning and scheduling problem is modeled as a multi-route and multi-objective problem (MRMOP). It differs from earlier work in the following two aspects: (i) the restriction of limiting the number of slabs processed consecutively with the same width within a single round is formulated as a resource constraint.(ii) by defining a hierarchical cost structure it is natural to decompose the MRMOP into several well-studied sub-problems. A mixed serial strategy is developed that combing mathematical programming and local heuristics. To solving a large-scale industrial problem, the strategy, from the viewpoint of finding sub-optimal solutions, first employ the mathematical programming to locate the most promising searching region and then let heuristics perform the further optimization or repair some infeasible solutions. Compared with some existing algorithms, not only can our method find a promising solution, but also it provides a tight lower bound to evaluate the found solution. Computational results are presented compared with several promising methods on practical data which demonstrate the efficiency of the proposed algorithm.
     (3)A time dependent traveling salesman problem (TDTSP) is modeled for the complex CGL scheduling problem in which the coupling effect between the machine and jobs is considered. A parallel hybrid algorithm framework with feedback and self-tuning mechanism is presented that simultaneously utilizes the lower bound and upper bound. Based on the framework presented in Charter 2, the subgradient algorithm is incorporated to utilize the information generated in the process of solving the dual problem of the relaxed primal problem in order to reduce the searching region. Further step, we also present the generalized form and its algorithmic implementation about how to reduce the solution component set without excluding the optimal solution. The process is very different from the typical way to handle the integer programming problem where only the best so far lower bound is used to obtain an optimal integer solution. For example, the best so far lower bound is commonly embedded in some upper-layer framework such as branch and bound algorithm if the solution corresponding to the lower bound is infeasible. Thus, plenty of information produced during solving the dual problem is discarded. The performance of the algorithm is degenerated due to the inefficient usage of the obtained information.
     In summary, the models and algorithms for the rolling batch scheduling problem, one of the key parts in the entire steel production, are well explored in the research. The achievements can provide theoretical and technical support for optimizing logistics in the steel production process and enhancing the efficiency and quality of production planning and scheduling. The work is supported by grants from National Natural Science Foundation of Chain (Grant No. 60574063) and City University of Hongkong (Grant No. CityU122305).
引文
[1]朱道飞.钢铁生产作业计划与调度的自组织优化方法研究[D].重庆大学博士论文,2008.
    [2]覃一宁.冷轧薄板生产计划与调度系统的研究与应用[D].大连理工大学博士论文,2006.
    [3]陈玉旺.基于极值动力学的自组织优化理论、算法与应用研究[D].上海交通大学博士论文,2008.
    [4]高慧敏,曾建潮.钢铁生产调度智能优化与应用[M].冶金工业出版社,2006.
    [5]高慧敏,曾建潮.孙国基.热轧带钢调度问题的混合并行策略[J].西安交通大学学报,2002, 36(12):1291-1294.
    [6]徐心和,陈雄,郭令忠等.炼钢-连铸-热轧一体化管理[J].冶金自动化,1997,21(3):1-4.
    [7]刘晓冰,孙永利,郝应光.基于递阶优化的钢铁企业集团战略排产计划模型研究[J].计算机集成制造系统, 2007,13(5):833-838.
    [8]施锦萍.生产管理在国际大型钢铁企业的发展[J].上海交通大学, 2007,41(sup.):30-32.
    [9]唐立新,杨自厚,王梦光(a).钢铁生产企业生产管理与生产工艺特点分析[J].冶金自动化, 1996,20(1):25-29.
    [10]唐立新,杨自厚,王梦光(b).炼钢-连铸最优炉次计划与模型[J].东北大学学报, 1996,17(4):440-445.
    [11]唐立新(a).热轧带钢轧制批量计划的实例应用[J].东北大学学报, 1999,20(3):267-270
    [12]唐立新(b).热轧调度并行处理策略的多旅行商模型[J].东北大学学报, 1999,20(2):147-150.
    [13]唐立新.轧钢厂的精轧工序的轧制批量调度的优化模型[J].东北大学学报, 1998,19(6):624-626.
    [14]唐立新,杨自厚.轧制实施计划中最优倒垛问题的整数规划模型及遗传算法[J].自动化学报,2000,26(4):461-469.
    [15]张涛,王梦光,唐立新.钢厂合同计划的模型与算法[J].控制理论与应用,2000,17(5):711-715.
    [16]周永良,刘浏,何平.炼钢厂计算机辅助生产调度的应用现状[J].钢铁研究学报, 2003 15(5):51-55.
    [17]郑大钟,赵千川.离散事件系统[M].清华大学出版社, 2000.
    [18]孙一康.带钢热连轧的模型与控制[M].冶金工业出版社, 2002.
    [19]王文鹏,李铁克(a).冷扎机组生产批量计划的模型和算法研究[J].微计算机信息, 2006 22(53):10-13.
    [20]王文鹏,杨再步,李铁克(b).冷轧生产线的批量计划与调度方法[J].冶金自动化, 2006. 5:10-15.
    [21]李铁克,郭冬芬.基于约束满足的热轧批量计划与模型算法[J].控制与决策, 2007, 22(4):389-393.
    [22]李铁克,施灿涛.冷轧生产批量计划与调度问题模型及算法[J].管理学报, 2006, 5(1):64-69.
    [23]李铁克,周健,孙林.连铸连轧和冷装热轧并存环境下的炼钢连铸生产调度模型与算法[J].系统工程理论与实践, 2000,6:117-123.
    [24]常春光,胡琨元,汪定伟,郑秉霖,李慧莹.钢铁生产动态调度理论与工程应用综述[J].信息与控制, 2003,32(6):531-537.
    [25]刘士新,周山长,宋键海,王梦光.基于PCTSP的热轧单元计划与模型算法[J].控制理论与应用, 2006,23(1):89-92.
    [26]刘士新,宋键海,周山长(b).热轧带钢轧制批量计划优化模型及其算法[J].控制理论与应用, 2007,24(2):241-248.
    [27]韩丹,李大卫.热轧调度的数学模型及解法[J].海南大学学报, 2000,18(2):115-118.
    [28]李耀华,王伟,徐乐江,宁树实,张大波.热轧生产轧制计划模型与算法研究[J].控制与决策, 2005,20(3):275-278.
    [29]宁树实,王伟,潘学军.基于准时制思想的炼钢-连铸生产动态调度算法[J].信息与控制, 2007,36(1):56-62.
    [30]陈爱玲,杨根科,吴智铭.基于混合离散约束免疫算法的轧制计划编排[J].控制与决策, 2007,22(6):716-720.
    [31]陈爱玲,杨根科,吴智铭.轧制计划的优化模型及其算法的应用研究[J].系统仿真学报, 2007,18(9):2464-2562.
    [32]潘常春,杨根科.奖励收集斯坦利最小树问题混合拉格朗日&分散搜索算法[J].控制与决策, 2007,22(12):1341-1346.
    [33]朱宝琳,于海斌.炼钢-连铸-热轧生产调度模型及算法研究[J].计算机集成制造系统, 2003,9(1):33-36
    [34]傅传宝.冷轧薄钢板生产[M].冶金工业出版社, 2003.
    [35]王凌.智能优化算法及其应用[M].清华大学出版社, 2001.
    [36]王凌车间调度及其遗传算法[M].清华大学出版社, 2003.
    [37]王凌,郑大钟.一类GASA混合策略及其收敛性研究.控制与决策, 1998, 13(6): 699-672.
    [38]陈雄,徐心和.基于模拟退火轧制批量计划问题的两阶段算法[J].控制理论与应用, 2003,16(2):209-216
    [39]陈雄,郭令忠,徐心和.轧制批量计划问题的模型及算法研究[J].信息与控制, 1997,26(5):382-387.
    [40]刑文训,谢金星.现代化计算方法[M].清华大学出版社, 1999.
    [41]陈宝林.最优化理论与算法[M].清华大学出版社, 2002.
    [42]江贺,张宪超,陈国良,李明楚.二次分配问题的骨架分析与算法设计[J].中国科学E辑, 2006,38(2):209-222.
    [43]姜长元.蚁群算法的理论及其应用[J].计算机时代, 2004,l6:1-3.
    [44]齐杰,汪定伟.极值优化算法综述[J].控制与决策, 2007,22(10):1081-1090.
    [45]戴华.矩阵论[M].科学出版社. 2001.
    [46]周威,金以慧.利用模糊次梯度算法求解拉格朗日松弛对偶问题[J].控制与决策, 2004,19(11):1213-1217.
    [47]拉文得拉K.阿胡亚,托马斯L.马南提,詹姆斯B.沃林[M]著.网络流理论、算法与应用(英文版).机械工业出版社, 2005.
    [48]施鹏飞编著.高级信息工程(讲义)[M].上海交通大学自动化系图像处理与模式识别研究所, 2008.
    [49]王小平,曹立明.遗传算法理论、应用与软件实现[M]. 2002,西安交通大学出版社.
    [50]李圆圆.中国钢铁企业绿色供应链管理研究[J].管理评论, 2006,2:71-75.
    [51]胡毓达,郑权译, J. Cea[法]著.最优化理论与算法[M].高等教育出版设. 1982.
    [52] T.Quient. SteelPlanner-钢铁工业生产链综合优化方案.中国冶金, 2006,16(2):42-45.
    [53] Amico M.D., Maffioli F. and Varbrand P. On prize-collecting tours and the asymmetric traveling salesman problem[J]. International Transaction on Operations Research, 1995,2(3): 297-308.
    [54] Amico M. D., Maffioli F., and Sciomachen.. A Lagrangian heuristic for the prize collecting travelling salesman problem[J]. Annals of Operations Research, 1998,81: 289-305.
    [55] AndreasWesterlund, Maud Ghe-Lundgren and Torbjn Larsson. A stabilized column generation scheme for the traveling salesman subtour problem[J]. Discrete Applied Mathematics, 2006,154: 2212-2238.
    [56] Allen Ellen, Helgason Richard and Kennington Jeffery. A generalization of polyak’s convergence result for sub-gradient optimization[J]. Mathematical Programming, 1987,37:309-317.
    [57] Atighehchian Arezoo, Bijari Mehdi and Tarkesh Hamed. A novel hybrid algorithm for scheduling steel-making continuous casting production. Computer&Operations Research, 2009,36:2450-2461.
    [58] Achlioptas, D., Naor, A., Peres, Y. Rigorous location of phase transitions in hard optimization problems[J]. Nature, 2005,435: 759–764.
    [59] Balas Martin. Combinatorial Optimization in steel rolling. DIMACS/RUTCOR[A] workshop Proceedings, 1991,April.
    [60] Balas E.. The prize collecting traveling salesman problem[J]. Networks, 1989,19: 621-636.
    [61] Barahona F., Anbil R.. The volume algorithm: producing primal solutions with a subgradient method[J]. Math. Program, Ser. A, 2000,87: 385-399.
    [62] Blum Christian and Dorigo Marco. The hyper-cube Framework for ant colony optimization [J]. IEEE Transaction on System Man and Cybernetics-part B: Cybernetics, 2004,34(2):1161-1172.
    [63] Blum, C., Roli, A.. Metaheuristics in combinatorial optimization: overview and conceptual comparison[J]. ACM Computing Surveys, 2003,35(3): 268–308.
    [64] Bektas Tolga. The multiple traveling slesman problem: an overview of formulations and solution prodecures[J]. The International Journal of Management Science, 2006,34:209-219
    [65] Bigras Louisphilippe, Gamache Michel and Savard Gilles. The time-dependent traveling salesman problem and single machine scheduling problems with sequence dependent setup time [J]. Discrete Optimization. 2008,doi:10.1016/j.disopt. 2008.04.001.
    [66] Brotcorne Luce, Martine Labbe, Marcotto Partrice and Savard Gilles. Joint Design and pricing on a network[J]. Operations Research, 2008,56(5):1104-1115.
    [67] Boukas E.K. Manufacturing system: LMI approach[J]. IEEE Transcactions on Automiac Control, 2006,51(6):1014-1018.
    [68] Bonabeau, E., Dorigo, M., Theraulaz, G.. Swarm Intelligence: From Natural to Artificial Systems[M]. New York: Oxford University Press, 1999.
    [69] Capaneto G., Dellemico M. and Toth P.. Exact solution of large-scale, asymmetric traveling salesman problems[J]. ACM Transactions on mathematic software. 1995,21(4):394-409.
    [70] Chen A.I., Yang G.K. and Wu Z. M.. Production scheduling optimization for the hot rolling processe[J]. International Journal of Production Research. 2008,46(7):1955-1973.
    [71] Chen Assaf, Katzberg,. Steel production schedule generation[J]. International journal of Production Research. 1997 35(2) , 467-477.
    [72] Chen X., Wan W.S. and Xu X. H.. Modeling rolling batch planning as vehicle routing problem with time windows [J]. Computers &Opreational Research. 1998,25(12):1127-1136.
    [73] Chen Yuwang, Lu Yongzai, Yang Genke. Hyrbid evolutionary algorithm with marriage of genetic algorithm and extremal optimization for production scheduling[J]. International Journal of Advanced Manufacturing Technology, 2008,36:959-968.
    [74] Chen Yu-Wang, Lu Yong-Zai and Chen Peng. Optimization with extremal dynamics for the traveling salesman problem[J]. Physica A, 2007,385:115-123.
    [75] Chio Jaein, Realff Matthew J. and Lee Jay H. An algorithmic framework for improving heuristic solutions Part I. A deterministic discount couple traveling salesman problem[J]. Computers and Chemical Engineering, 2004,28:1285-1296.
    [76] Chio In-Chan, Kim Seong-In and Kim hak-Soo. A genetic algorithm with a mixed region search for the aymmetric traveling salesman problem[J]. Computer&Operations Research, 2003,30:773-786.
    [77] Cordeau J.F., Laporte G., and Mercier A.. A unified tabu search heuristic for vehicle routing problems with time windows[J]. The Journal of the Operational Research Society, 2001,52 (8):928–936.
    [78] Cowling P.. A flexible decision support system for the steel hot rolling mill scheduling[J]. Computer & Industrial Engineering, 2003.45:307-321.
    [79] Cowling P., Djamilaouelhadj, and Sanja Petrovic. A multi-agent architecture for dynamicscheduling of steel hot rolling. Journal of Intelligent Manufacutring, 2003,14:457-470;
    [80] Cowling, P., Ouelhadj D.and Petrovic S.. Dynamic Scheduling of Steel Casting and Milling using Multi-agents[J]. Production Planning & Control. 2004,15(2):178–188.
    [81] Chebouba A., Yalaoui F., Smati A.,Amodeo L., Younsi K., Tairi A.. Optimization of nural gas pipeline transportation using ant colony optimization.Computers&Operations Research. 2009,36:1916-1923.
    [82] Dror M.. Note on the complexity of the shortest path models for column generation in VRPTW[J]. Oper.ations Research., 1994,42 (5): 977–978.
    [83] Djamila Ouelhadj. A multi-agent system for the integrated dynamic scheduling of steel production[D].2003,Thesis of the University of Nottingham.
    [84] Dorigo Marco and Gambardella Luca Maria. Ant colony system: a cooperative learning approach to the traveling salesman problem[J]. IEEE Transactions on Evolutionary Computation, 1997,1(1):53-66.
    [85] DellAmico M. and Toth P.. Algorithms code for dense assignment problems: the state of the art[J]. Discrete Applied Mathematics, 2000,100:17-48.
    [86] Donati Alberto V., Montemanni Roberto, Casagrande Norman, and Rizzoli Andrea E. Gambardella Luca M. Time dependent vehicle routing problem with a multi ant colony system[J]. European Journal of Operational Research, 2008,185:1174-1191.
    [87] Fischetti Matteo and Toth Paolo. An additive bounding procedure for the asymmetric travelling salesman problem[J]. Mathematical Programming, 1992,53(13):173-197.
    [88] Fischetti M., Toth Paolo. and Vigo Daniele. A branch-and-bound algorithm for the capacitated vehicle routing problem on directed graphs[J]. Operations Research, 1994,42(5):846-859.
    [89] Fisher M. L. The lagrangian Relaxation Method for Solving Intger Programming Problems[J]. Management Science,1981,27(1):1-18.
    [90] Feillet D, Dejax P., and Gendreau M.. Traveling salesman problems with profits[J].. Transportation Science, 2005,39(2):188–205.
    [91] Fang, H.L. and Tsai C.H.. A genetic algorithm approach to hot strip mill rolling scheduling problems[A]. Proceedings of the Tenth IEEE International Conference on Tools with Artificial Intelligence, Taipei,1998: 264–271.
    [92] Fox K. Kenneth, R. Gavish Bezalel, and Graves Stephen C.. An n-constraint formulation of the time-dependent traveling salesman problem[J]. Operation Research, 1980,28(4):1018-1021.
    [93] Francesca Fumero. A modified sub-gradient algorithm for lagrangean relaxation[J]. Computer & Operations Research, 2001,28:33-52.
    [94] Ghosha S. P. l. Application of GA/GA-SA based fuzzy automatic generation control of a multi-area thermal generating system[J]. Electric Power Systems Research, 2004,70(2):115-127.
    [95] Gambardella L.M, Taillard E., Agazzi G.. MACS-VRPTW: A Multiple Ant Colony System for Vehicle Routing Problems with Time Windows[M]. In D. Corne, M. Dorigo and F. Glover, editors, New Ideas in Optimization. 1999:63-76. McGraw-Hill, UK.
    [96] Glover Fred .Tabu search: A tutorial[J]. Interfaces 1990. 20(4): 74-94.
    [97] Glover F., Gution G., Yeo A. and Zverovich A. Construction heuristics for the asymmetric TSP. European[J]. Journal of Operations Research, 2001,129:555-568.
    [98] Gouveia Luis, Stefan Vob. A classification of formulations for the time-dependent traveling salesman problem[J]. European Journal of Operational Research, 1995,83:69-82.
    [99] Guitjahr Walter J.. ACO algorithms with guaranteed convergence to the optimal solution[J]. Information Processing Letters, 2002,82:145-153.
    [100] Guitjahr Walter J.. A graph-based ant system and its convergence[J]. Future generation computer system. 2000, 16:873-888.
    [101] Gao Huiming, Zeng Jiaochao and Sun Guoji. Multi-agnet approach for planning and scheduling of integrated steel processed[A]. 2002 IEEE Confefrence on SMC.
    [102] Grorry G.Anthony & Shapiro Jeremy F. An adaptive group theoretic algorithm for integer programming problems[J]. Management Science 1971 17(5):285-306.
    [103] Hartmann, A.K., Rieger, H.. New Optimization Algorithms in Physics[M]. Berlin:Springer-Verlag. 2004.
    [104] Han Kuk-Hyun. Quantum-inspired evolutionary algorithms with a new termination criterion Hεgate and two-phase scheme[J]. IEEE Transactions on Evolutionary Computation, 2004,8(2):156-169.
    [105] Hoong C. L, Melvyn S. and Kwong M. T.. Vehicle routing problem with time windows and a limited number of vehicles[J]. European Journal of Operational Research. 2003,148, 559–569.
    [106] Hong Saman and Padberg Manfred W.. A Note on the symmetric multiple traveling salesman problem with fixed charges[J]. Operations Research, 1977,25(5):871-874
    [107] Haghani, Ali and Jung Soojung. A dynamic vehicle routing problem with time-dependent travel time[J]. Computer & Operations Research, 2005,32:2959-2986.
    [108] Harjunkoski and Grossman I.E.. A decomposition approach for the scheduling of a steel plant production[J]. Computer & Chemical Engineering, 2001,25:1647-1660.
    [109] Held M. and Karp R.M.. The traveling salesman problem and minimum spanning tree part II. [J]. Mathematical Programming, 1971,1: 6-25.
    [110] Held M. Wolfe P. and Crowder H.. Validation of subgradient optimization[J]. Mathematical Programming 1974,6: 62-68.
    [111] Jacobs T.L. and Wright J.R.. Optimal inter-process steel production scheduling[J]. Computers and Operational Research, 1998,15:497-507
    [112] Jose Albiach, Sanchis Jose Maria and Soler David. An asymmetric TSP with time windows and with time-dependent travel times and costs: an exact solution through a graph transformation [J]. European Journal of Operational Research, 2008,189:789-802.
    [113] Jorge Nocedal and Stephen J.Wright. Numerical Optimization[M]. Springer-Verlag 1999.
    [114] Kim Dong Hwa and Hirota Kaoro Vector control for loss minimization of induction motor using GA-PSO[J]. Applied Soft Computing, 2008,8(4):1692-1702.
    [115] Kim Dong Hwa. GA-PSO based vector control of indirect three phase induction motor[J]. Applied Soft Computing, 2007,7(2):601-611.
    [116] Kao Yi-Tung and Zahara Erwie. A hybrid genetic algorithm and particle swarm optimization for multimodal functions[J]. Applied Soft Computing, 2008,8(2):849-857.
    [117] Karp R. M.. A patching algorithm for the nonsymmetrical traveling sales-man problem[J]. SIAM Journal of Computing, 1979,8(4):561-573.
    [118] Kosiba. E.D., Wright.J.R and Cobbs,AE..Discrete event sequencing as a traveling salesman problem[J]. Computers in Industry, 1992,19:317-327.
    [119] Kallehauge B., Larsen J. and Oli B.G.Madsen.. Lagrangian duality applied to the vehicle routing problem with time windows[J]. Computer & Operations Research, 2006,33: 1464-1487.
    [120] Kapanoglu M and Koc IO. A multi-population parallel genetic algorithm for highly constrainted continuous galvanizing line scheduling[A]. Lecture notes in computer science, vol. 4030. Book hybrid metaheuristic.2006:28-41.
    [121] Kiwiel K. C.. A n aggregate subgradient method fo a non-smooth convex minimization[J]. Mathematical Programming, 1983,27(3):3202341.
    [122] Lopez .L, Michael W.Carter and Michel Gendreau. The hot strip mill production scheduling problem: A tabu search approach[J]. European Journal of Operational Research, 1998.106: 317-335.
    [123] Lee Zne-Jung and Lee Chou-Yuan.A hybrid search algorithm with heuristics for resource allocation problem[J]. Information Sciences. 2005,173,(1-3):155-167.
    [124] Marti Rafael, Laguna Manuel,Glover Fred. Principles of scatter search[J]. European Journal of Operational Research, 2006,169:359-372.
    [125] Marti Rafael. Scatter search-wellsprings and challenges. European Journal of Operations Research, 2006,169:351-358.
    [126] Martin Desrochers, Jacques Desrosiers and Marius Solomon.. A new optimization algorithm for the vehicle routing problem with time windows[J]. Operations Research, 1992,40(2):March-April: 342-354.
    [127] Mohanmed Haouari and Jouhaina Chaouachi Siala. A hybrid lagrangian genetic algorithm forthe prize collecting Steiner tree problem[J]. Computers and Operations Research, 2006,33:1274-1288.
    [128] Mohanta Dusmanta Kumar, Sadhu Pradip Kumar and Chakrabarti R. Deterministic and stochastic approach for safety and reliability optimization of captive power plant maintenance scheduling using GA/SA-based hybrid techniques: A comparison of results[J]. Reliability Engineering & System Safety, 2007,92(2):187-199.
    [129] Marc Gravel, Wilson L. Price and Caroling gagne. Scheduling continuous casting of aluminum using a multiple objective ant colony optimization metaheuristic[J]. European Journal of Operational Research, 2004,143:218-229.
    [130] Menon, A.,. Frontiers of Evolutionary Computation[M]. New York: Kluwer Academic Publishers. 2004.
    [131] Maniezzo Vittorio and Colorni Alberto. The ant system applied to the quadratic assignment problem[J]. IEEE Transaction on knowledge and data engineering, 1999,11(5):769-778.
    [132] Malandraki Chryssi and Dial Robert B. A restricted dynamic programming heuristic algorithm for the time dependent traveling salesman problem[J]. European journal of operational research, 1996,90:45-55.
    [133] Monasson, R., Zecchina, R., Kirkpatrick, S., Selman, B., Troyanskyk, L. Determining computational complexity from characteristic‘phase transitions[J]. Nature, 1999,400: 133–137.
    [134] Milano Michela and Roli Andrea. MAGMA:A multiagent architecture for metaheuristics[J]. IEEE Transaction on SMC-PartB, 2004,33(2):925-941.
    [135] Michalewicz, Z.. Genetic Algorithms + Data Structures = Evolution Programs[M]. Berlin: Springer-Verlag. 1996.
    [136] Mattfeld, D.C., Bierwirth, C., Kopfer, H.. A search space analysis of the Job Shop Scheduling Problem. Annals of Operations Research.1999,86: 441–453.
    [137] Niklas kohl, Jacques Desrosiers, Olib.g.madsen, M.M.Solomon and Franc. Oissoumis. 2-Path Cuts for the Vehicle Routing Problem with Time Windows[J]. Transportation Science, 1999, 33(1) February, 101-106.
    [138] Osman I.H. and Christofides N.. Capacitated clustering problem by hybrid simulated and tabu search[J]. International Transaction in Operation Research, 1994,1(3):317-336.
    [139] Okano H., Davenport, A.J., Trumbo, M., Reddy, C., Yoda, K. And Amano, M.. Finishing Line Scheduling in the steel industry.[J]. IBM Journal of Research and Development, 2004,48(5): 811–830.
    [140] Okano H., Morioka T and Yoda K. A heuristic solution for the continuous galvanizing line scheduling problem in steel mill. Rsearch Report RT-0478 [R]. IBM Tokyo Researh Laboratory, 1623-14, Shimo-tsuruma, Yamato-shi, Kanagawa-ken 242-8502, Janpan:2002.
    [141] Pinto, J.M. and Grossmann, I.E.. Assignment and sequencing models for the scheduling of process systems[J]. Annals of Operations Research, 1998, 81: 433–466.
    [142] Picard J. C. and Queyranne M. the time-dependent traveling salesman problem and its application to the tardiness problem in machine scheduling[J]. Operations Research, 1978,26(1):86-110.
    [143] Prins Christian.. A simple and effective evolutionary algorithm for the vehicle routing problem. [J]. Computers & Operations Research, 2004,31:1985–2002.
    [144] Pan Changchun, Yang Genke. A method of solving a large-scale rolling batch scheduling problem in steel production using a variant of column generation[J]. Computer & Industrial Engineering, 2009,56:165-178.
    [145] Peterson, C.M., Sorensen, K.L. and Vidal, R.V.V.. Inter-process synchronization in steel production[J]. International Journal of Production Research, 1992,30:1415–1425.
    [146] Potvin, J.Y.. Genetic algorithms for the traveling salesman problem[J]. Annals of Operations Research, 1996,63:339–370.
    [147] Pinedo Michael. Scheduling: theory, algorithm, and system.清华大学出版社,2005.
    [148] Qian B, Wang L, Huang DX, Wang WL, Wang X. An effective hybrid DE-based algorithm for multi-objective flow shop scheduling with limited buffers[J]. Computers & Operations Research. 2009,36(1): 209-233.
    [149] Roach A and Nagi R. A hybrid GA-SA algorithm for just-in-time scheduling of multi-level assemblies[J]. Computers & Industrial Engineering, 1996,30(4):1047-1060.
    [150] Redwine C.N. and Wismer D.A.. A mixed integer programming model for scheduling order in steel mill[J]. Journal of Optimization Theory and Applications, 1974,14:305-318.
    [151] Robert A. Russell and Wen-Chyuan Chiang.. Scatter search for the vehicle routing problem with time windows[J]. European Journal of Operational Research, 2006,169:606–622.
    [152] R.Jonker and A.Volgenant.. A shortest augmenting path algorithm for dense and sparse linear assignment problem[J]. computing, 1987,38:325-340.
    [153] Ravindra K. Ahuja, Thomas L. Magnanti and James B. Orlin. Network flows: theory, algorithms and applications[M], China Machine Press, 2005:404-405.
    [154] Silvio A. de Araujoa, Marcos N. Arenalesb, Alistair R. Clarkc, Lot sizing and furnace scheduling in small foundries, Computers & Operations Research.. 2008,35:916-932.
    [155] Steven E. Butt and David M. Ryan. An optimal solution procedure for the multiple tour maximum collection problem using column generation[J]. Computers & Operations Research,1999,26:427-441.
    [156] Stauffer, L. and Liebling T.M.. Rolling horizon scheduling in a rolling-mill[J]. Annals of Operations Research, 1997,69: 323–349.
    [157] Soler David, Albiach Jose and Martinez Eulalia. A way to optimally solve a time-dependent vehicle routing problem with time windows[J]. Operations Research Letters, 2008, doi:10.1016/j.orl.2008.07.007.
    [158] Salomon Marc, Solomon Marius M., Wassenhove Luk N.Van, Dumans Yvan and Stephane Dauzere-Peres. Solving the discrete lotsizing and scheduling problem with sequence dependent set-up costs and set-up times using the traveling salesman problem with time windows[J]. European Journal of Operation Research, 1997,100:494-513.
    [159] Sim mong Kwang and Sun Weng hong. Ant colony optimization for routing and load-balancing: survey and new directions[J]. IEEE Transaction on systems man cybernetics-Part A: Systems and Humans, 2003,33(5):560-572.
    [160] Stutzle Thomas and Dorigo Marco. A short convergence proof for a class of ant colony optimization algorithms[J]. IEEE transactions on evolutionary computations. 2002,6(4):357-365.
    [161] Schneider Johannes. The time-dependent traveling salesman problem[J]. Physica A, 2002,314:151-155.
    [162] Schneider Johannes. Searching for backbones-a high-performance parallel algorithm for solving combinatorial optimization problems[J]. Future Generation Computer Systems, 2003,19:121-131.
    [163] Stecco Gabriella, Cordeau Jean-Francois and Moretti Elena. A branch-and-cut algorithm for a production scheduling problem with sequence-dependent and time-dependent setup times[J]. Computer & Operations Research. 2008,doi:10.1016/j.cor.2006.12.021.
    [164] Schiavinotto, T., Stützle, T.. The linear ordering problem: instances, search space analysis and algorithms[J]. Journal of Mathematical Modelling and Algorithms, 2004,3: 367–402.
    [165] Spielman Daniel A. and Shanghua Teng. Smoothed analysis of algorithm: why the simplex algorithm usually takes polynomial time[J]. Journal of the ACM, 2004,51(3):385-463.
    [166] Shor Naum Z.. Non-differentiable optimization and polynomial problems[M]. Boston Kluwer, 1998.
    [167] Stadler, P.F., Schnabl, W.. The landscape of the traveling salesman problem[J]. Physics Letter A, 1992,161:337–344.
    [168] Tang L.X., Liu Jiyin, rong Aiying and Yang Zihou. A review of planning and scheduling systems and methods for integrated steel production[J]. European Journal of Operational Research, 2001,133:1-20.
    [169] Tang L. X., Liu J. Y., Rong A. Y., and Yang Z. H.. A multiple traveling salesman problem model for hot rolling scheduling in shanghai Baoshan Iron &Steel Complex[J]. European Journal of Operational Research, 2000,124:267-282.
    [170] Tang L. X., and Wang X. P. Iterated local search algorithm based on very large-scale neighborhood for prize-collecting vehicle routing problem[J]. Int J Adv Manuf Technol, 2005,26:1246-1258.
    [171] Tang L.X., Wang Gongshu, Liu Jiyin. A branch-and-price algorithm to solve the molten iron allocation problem in iron and steel industry. Computer&Operations Research, 2007,34:3001-3015.
    [172] Tang L.X., Wang X.P.. Simultaneously scheduling multiple turns for steel color-coating production. European Journal of Operational Research(2008), doi:10.1016/j.ejor.2008.09.025.
    [173] Toth Paolo. and Vigo D.. Models, relaxations and exact approaches for the capacitated vehicle routing problem[J]. Discrete Applied Mathematics, 2002,123:487-512.
    [174] Thomas L. Saaty. Operations research: some contributions to mathematics[J].Sience, 1972,178(4065):1061-1070.
    [175] Tseng Lin-Yu and Chen Shih-Chieh. A hybrid meta-heuristic for the resource-constrained project scheduling problem[J]. European Journal of Operatinal Research, 2006, 175(2):707-721.
    [176] Tseng Lin-Yu and Liang Shyi-Ching. A hybrid metaheuristic for the quadratic assignment problem[J]. Computational Optimization and Applications. 2006,34(1):85-113.
    [177] Volgnant ,T, Jonker. One some generalizations of the traveling salesman problem[J]. Journal of the operational Research society, 1987,38:1073-1079.
    [178] Vicente Valls Verejo, M. Angeles, Alarco Perez and M. pilar Lino Sorli. Scheduling in continuous galvanizing line[J]. Computers & Operation Research, 2009,36,280-296.
    [179] Wright J.R., Houck M.H. and Archibald L.L.. The application of system engineering to the hot mill production scheduling[R]. Report to Bethlehem Steel Corporation, 1984.
    [180] Winston W.L. Operations research: mathematical programming.(Third edition)[M]. Tsinghua University Press, 2004:315-328.
    [181] Wolpert David and Marready William. No free lunch theorems for optimization[M].IEEE Transasctions on Evolutionary Algorithm, 1997,1(1):67-82.
    [182] Wang Ling, Zhang Liang and Zheng Da-Zhong. An effective hybrid genetic algorithm for flow shop scheduling with limited buffers. Computers & Operations Research, 2006, 33(10):2960-2971.
    [183] Yu Bin, Yang Zhongzhen, Yao Baozhen. An improved ant colony optimization for vehicle routing problem. European Journal of Operational Research, 2009,196:171-176.
    [184] Zhao Jun, Liu Quan-Li and Wang Wei. Models and algorithm of production scheduling in tandem cold rolling[J]. ACTA Automatica Sinica, 2008,34(5):565-571.
    [185] Zhang W X. Phase transition and backbones of the asymmetric traveling salesman problem[J]. Journal of Artificial Intelligence Research, 2004,21(1): 471—497.
    [186] http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsplib.html.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700