金沙江干热河谷造林树种抗旱特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金沙江干热河谷气候燥热干旱,土地退化严重,水土流失强烈,生态环境极其恶劣。强烈的水土流失以成为长江上游泥沙的重要来源。为此查明干热河谷地区主要造林树种抗旱的生理生化特征及其影响因素,对干热河谷造林树种的选择具有重要的意义。本实验通过盆栽试验来模拟自然干旱对金沙江干热河谷几种主要造林树种的生理生化影响,以此来探讨参试树种的抗旱机制,并为该地区造林树种的选择提供依据。主要研究成果如下:
     1.金沙江干旱季节,坡柳(Dodonaea viscosa)中午出现明显的光合午休现象,非气孔限制因素是造成坡柳光合午休的主要原因。坡柳通过降低净光合速率和提高水分利用效率来适应水分缺乏。清香木(Pistacia weinmannifolia)有较高的光补偿点和光饱合点,属于阳生植物。
     2.水分胁迫对六种参试树种的生理生化等指标产生明显的影响。水分胁迫下,六种参试树种叶片的最大荧光效率下降,初始荧光上升,叶绿素含量下降,光合机构受到破坏;脯氨酸和可溶性糖含量明显增加,渗透调节在六种树种的抗旱机制中有重要作用;叶片相对电导率增加、丙二醛含量上升,细胞膜质受到损伤,SOD活性变化不明显,POD活性上升,清除活性氧保持细胞膜的完整性方面,POD酶所起的作用要大于SOD酶。参试树种对水分胁迫有不同的适应机制。
     3.利用测试八个生理生化指标,通过隶属函数综合值法对四种参试树种抗旱能力进行了排序。四种树种的抗旱能力从高到低依次排列为坡柳、(清香桂(Sarcococca ruscifolia))、银合欢(Leucaena Leucocephala)、清香木、黄连木(Pistacia chinensis)、山毛豆(Tephrosia caudida)。
The climate in Jinsha River Dry-hot valley is hot and dry during drought season,soi) erosion and degradation of land resources are significant problems, Eco-environmental is more serious.The intense soil and water loss has become mainly sediment sources of The upper reaches of Yangtze river.So it is important to investigate for some important silvicullural species character of physiological and biochemical and effect factor about drought-risistance.in order to further well select tree species for afforestation activities of Dry-hot valley,Through simulate arid conditon,we studied several important silvicultural species how to reponse water stress and further discuss them drought-resistance mechnism,and to do that we hope that we can provide scientific basis for tree species selection for afforestation activities in Dry-hot valley. The main results of the study are as follows:
    1. During the drought period, the plant of Dodonaea viscosa showed signigicant midday depression on sunny days, the main reason is that Nonstomatal limitation resulted in midday depression of D. viscose seedlings.D. viscosa plant adapt to dry-hot season with higher WUE and lower rates of photosynthesis, seedlings of Pistacia chinensis have higher light compensation point and saturation point.
    2. Water stress remarkably impact on physiological and biochemical indexes'of six experiment spieces.Under water stress,maximum photochemical efficiency( F v / F m) value and chl content decline ,basal rates of chl fluorescence( F 0) value ascend,photosynthetic organ was damaged;content of proline and total soluble sugar markly increase,osmotic adustment play an important role for six species of drought-risistance;leaf relative conductivity rate increase and malondialdehyde content ascend,cell plasmid membrane was destructed,SOD activity hardly change and POD activity ascend,show that POD activity play more important role in
    
    
    
    quenching activated oxygen than SOD does. Experiment species have different adaptive mechanisms for water stress.
    3. By studying 8 physiological and biochemical indexs of 6 plant species, applying The comprehensive appraisal index of drought tolerant physiological reaction and adaptability we estimeated and ordinated the drought tolerance of the species comprehensively as follows: Dodonaea viscose, Sarcococca ruscifolia, Leucaena Leucocephala , Pistacia weinmannifolia , Pistacia chinensis Bunge , Tephrosia caudida.
引文
1.陈立松,刘星辉.水分胁迫对荔枝叶片氮和核酸代谢的影响及其与抗旱性的关系.植物生理学报,1999,25(1):49~56.
    2.樊国盛,邓莉兰等.云南干热河谷常见非结瘤植物及其适应性研究.浙江林学院学报,1999,16(2):135~140.
    3.傅美芬,高洁等.干热河谷主要造林树种水分生理生态学特点.西南林学院学报,1997,17(2):29~39.
    4.高洁,刘成康.元谋干热河谷主要造林植物的耐旱性评估.西南林学院学报,1997,17(2):20~29.
    5.高洁,张尚云等.干热河谷主要造林树种旱性结构的初步研究,西南林学院学报,1997,17(2):59-65.
    6.郭建军等.冬小麦灌浆期渗透调节能力的研究.系被农业学报,1994,3(4):23-26.
    7.何维明等.水分梯度对沙地柏幼苗荧光特征和气体交换的影响.植物生态学报 2000,24(5)630-634.
    8.何永彬,卢陪泽等.横断山——云南高原干热河谷形成原因研究.资源科学,2000,22(5):69~74.
    9.何毓蓉,周红艺,张保华等.金沙江干热河谷典型区土壤退化机理研究——土壤侵蚀对土壤退化的作用.水土保持学报,2002,16(3),24-27.
    10.黄成敏.云南省元谋干热河谷的土壤退化及旱地农业研究.土壤侵蚀与水土保持学报,1997,3(1):182~191.
    11.霍仕平等.玉米抗旱性鉴定的形态和生理生化指标研究进展.干旱地区农业研究,1995,13(3):67~73.
    12.纪中华,李建增等.元谋于热河谷退化地罗望子人工林水土保持效益.水土保持学报,2001,15(4):62~66.
    13.蒋明义,荆家海,王韶唐.渗透胁迫对水稻幼苗膜脂过氧化及体内保护系统的影响[J].植物生理学报,1991,17(1):80-84.
    14.蒋明义,杨文英,徐江等,渗透胁迫下水稻幼苗中叶绿素降解的活性氧损伤作用。植物学报,1994,36:289-295.
    15.金振洲.云南元江干热河谷半萨王纳植被的植物群落学研究.广西植物,1999,19(4):289~296.
    16.郎南军,郭立群等.金沙江流域高原山地系统分异规律的分析研究.北京林业大学学报,2002,2:31-38.
    17.郎南军,郑科等.金沙江流域高原山地土壤侵蚀影响因子的相关分析.北京林业大学学报,2002,3:84-88.
    18.李德全,等.植物渗透调节研究进展.山东农业大学学报,1991,22(1):87-90.
    19.李吉跃.植物耐旱性及其机理.北京林业大学学报.1989,11(3):92~100.
    20.李昆.元谋干热河谷地区不同造林树种对土壤的改良作用研究.西南林学院学报,1999,10(3):75~81.
    21.李昆.曾觉民.金沙江干热河谷主要造林树种蒸腾作用研究.林业科学研究,1999,12(3):
    
    243~248.
    22.李世东.干热干旱河谷区和黄土丘陵沟壑区退耕化林还草模式初步研究.北京林业大学学报,2002,3,35-38.
    23.李小明等.人工环境下两种梭梭幼苗光合水分关系的比较研究.植物学报,1993,35(10):758—765.
    24.林植芳,李双顺,林桂珠等.水稻叶片的衰老与超氧物歧化酶活性及脂质过氧化作用的关系.植物学报,1984,26(6):605~615.
    25.刘刚才.金沙江干热河谷区土地荒漠化程度的土壤评判指标确定.土壤学报,1999,36(4):560~568.
    26.刘淑珍,范建容,刘刚才.金沙江干热河谷土地荒漠化评价指标体系研究.中国沙漠,2002,1:47-51.
    27.刘文耀,盛才余等.南涧干热河谷退化山地植被恢复重建的研究.北京林业大学学报,1999,21(3):8~19.
    28.刘彦琴、张丰雪、杨敏生.电导率在白杨杂种无性系耐旱性鉴定中的应用,河北林果研究,1997(4):301-305.
    29.马焕成,陈德强等.元谋干热河谷相思树种和桉树类抗旱能力分析.林业科学研究,2002,15(1):101-104.
    30.马焕成,吴延熊.元谋干热河谷几种外来树种在旱季的光合特点.浙江林学院学报,2001,18(1)46~49.
    31.马焕成.元谋干热河谷几种相思和桉树水分消耗估测.西北植物学报,2000,12(5):45~52.
    32.马宗仁,等.短芒披碱草和老芒麦在水分胁迫下游离脯氨酸积累的研究.干旱地区农业研究,小国草地,1991,(4):61-65.
    33.聂华堂等.水分胁迫下柑桔的生理变化与抗性的关系.中国农业科学,1991,24(4):14-18.
    34.彭祚登.油松抗旱性评估.[博士学位论文].北京:北京林业大学图书馆.2000.
    35.任文伟,钱吉,郑师章.不同地理种群羊草在聚乙二醇胁迫下含水量和游离脯氨酸含量的比较[J].生态学报,2000,20(2):349-352.
    36.山仑.植物水分亏缺和半干旱地区农业生产中的植物水分问题.植物生理生化进展,1983,(2):108~119.
    37.沈有信,张彦东,刘文耀.泥石流多发干旱河谷区植被恢复研究.山地学报,2002,16(2):188-193.
    38.孙国荣,张睿等.干旱胁迫下白桦师生苗叶片的水分代谢与部分渗透调节物质的变化.植物研究,2001,21(3):413-416.
    39.孙辉,唐亚,赵其国等.干旱河谷区坡耕地等高植物篱种植系统土壤水分动态研究.水土保持学报,2002,16(1):84-88.
    40.汤章城.植物对水分胁迫的反应和适应性.植物生理学通讯,1983,(4):1-7.
    41.王邦锡,孙莉,黄久常.渗透胁迫引起的膜损伤与膜质过氧化和某些自由基的关系.中国科学
    
    (B辑),1992,4:364-368.
    42.王宝山,赵思齐.干旱对小麦幼苗膜脂过氧化及保护酶活性的影响[J].山东师范大学学报(自然科学版),1987,2(1):29-39.
    43.王霞,侯平等.水分胁迫对柽柳植物可溶性物质的影响.干旱区研究.1999,16(2):6-11.
    44.魏良明,贾了然,胡学安等,玉米抗旱性生理生化研究进展.干旱地区农业研究,1997,15(4):66-71.
    45.武宝玕,格林.小麦幼苗中超氧化物歧化酶活性与幼苗脱水耐受力相关性研究.植物学报,1985,27:152-160.
    46.夏阳等.水分胁迫对果树脯氨酸和叶绿素含量变化的影响.甘肃农业大学学报,1993,28(1):26-31.
    47.现代植物生理学试验指南.科学出版社,1999.
    48.许大全,张玉忠.植物光合作用的光抑制.植物生理学通讯.1992,28(4):237-243.
    49.薛菘,王沛洪.许大全等.水分胁迫对冬小麦CO_2同化作用的影响.植物生理学报,1992,18(1): 1-7
    50.阎秀峰,李晶,组元刚.干旱胁迫对红松幼苗保护酶活性即脂质过氧化作用的影响.生态学胞,1999,19(6):850-854.
    51.杨忠,张信宝等.金沙江干热河谷植被恢复技术.山地学报,1999,17(2):152~156
    52.元谋县林业局.元谋县林业志.46~55.
    53.张丹.金沙江干热河谷区云南土壤退化过程研究.土壤侵蚀与水土保持学报,1999,5(4):1~8.
    54.张福锁.环境胁迫与植物营养.北京:中国农业大学出版社,1993,44~45.
    55.张建国,李吉跃,沈国舫.树木耐旱特性及其机理研究.中国林业出版社.2000,55~65.
    56.张建辉.云南元谋干热河谷区放牧对人工幼林地土壤水分性质的影响.水土保持学报.2000,14(2):10~18.
    57.张建辉等.云南元谋干热河谷林区植被生长有土壤渗透性的关系.山地学报,2001,19(1):25~28.
    58.张建平,王道杰,金沙江干热河谷区恢复退化土地的农林复合经营模式.国土经济,1992,2:64~66.
    59.张建平.元谋干热河谷区土地荒漠化研究.云南地理环境研究,2000,12(1)1~9.
    60.张建平等.元谋干热河谷森林消长与生态环境变化研究.中国沙漠,2001,21(1)79~88.
    61.张建平等.元谋干热河谷区节水农业与林业的技术研究.水土保持学报,2000,14(4):71~77.
    62.张尚云,高洁等.金沙江干热河谷恢复植被与造林技术研究.西南林学院学报,1997,17(2):452~459.
    63.张尚云.元谋干热河谷林地段划分立地类型主导因子研究.西南林学院学报,1999,17(2):8~17.
    64.章崇玲 曾国平 陈建勋.干旱胁迫对菜苔叶片保护酶活性和膜脂过氧化的影响.植物资源与环境学报 2000,8(4):23~26.
    
    
    65.赵俊臣,杨焕宗.干热河谷经济学初探.香港中国经济文化出版社,1992,123~130.
    66.周从斌,范建容.金沙江干热河谷土地荒漠化评价的质被指标分析.云南地理环境研究,2002,1:28-32.
    67.周蛟等.元谋干热河谷引种造林实验及树种选择研究.浙江林学院学报,2000,20(2):81~88.
    68.周麟.云南元谋干热河谷植被恢复初探.西北植物学报,1998,18(3):450~456.
    69.邹琦.作物抗旱生理生态研究[M].山东:科学技术出版社,1994.
    70. A.L.Nepomuceno, D.M.Oosterhuis, J.M.Stewart. Physiological responses of cotton leaes and roots to water deficit induced by polyethylene glycol. Environmental and experimental Botany 40(1998) 29-41.
    71. Abe,H.,Yamaguchi-Shinozaki,K., Urao,T.,Iwasaki,T., Hosokawa,D.and Shinozaki,K. 1997. Role of Arabidopsis MYC and MYB homologs in drought and abscisic acid regulated gene expression. Plant Cell 9:1859-1868.
    72. Arnon DI. Copper enzymes in isolated chloroplast:polyphenol oxidase in Beta vulagris. Plant Physiol, 1949,24:1-15.
    73. Asada, K 1992. Ascorbate peroxidase -a hydrogen peroxide-scavenging enzyme in plants.Physiol. Plant. 85:235-241.
    74. B R Buttery, R I Buzzell, 1979. 赵福江译.1979.大豆光合作用速率和叶绿含量之间的关系.光合作用.北京:科学出版社,72~75.
    75. Baisak R, Rana D, Acharya PBB, Kar M(1994). Alterations in activities of active oxygen scavenging enzymes of wheat leaves subjected to water stress. Plant Cell Physiol 35:489-495.
    76. Barathi,P., Sundar, D., Ramachandra Reddy, A.: Changes in mulberry leaf metabolism in response to water stress.-Biol. Plant.44:83-87,2001.
    77. Barathi. P., Sundar, D., Ramachandra Reddy, A: Changes in mulberry leaf metabolism in response to water stress.-Biol.Plant.44:83-87,2001.
    78. Bartley GE,Scolnik PA,Plant carotenoids:Pigments for photoprotection,visual attraction,and human health.Plant Cell, 1995,7:1027-1038.
    79. Becher et al. 1999. Root architeture and root:shoot allocation of shrubs and saplings in two lowland tropical tbrests:implications for life-form composition. Biotropica 31:93-101.
    80. Becker, P. &Castillo,A. 1990. Root architecture of shrubs and saplings in the understorey of tropical moist forest in lowland Panama. Biotropica 22:242-249.
    81. Belkhodja,R, Morales,F,, Abadia,A., Medrano,H., Abadia,J.: Effects of barley(Hordeum vulgare L.)grown under a triple-line-source sprinkler system in the field. -Photosynthetica 36:375-387,1999.
    82. Biehler K. and Fock H. 1996. Evidence for the contribution of the Mehler-peroxidase reaction in dissipating excess electrons in drought-stressed wheat. Plant Physiol.112:265-272.
    83. Bohnert H.J., Jenson R.G. Strategies for engineering water stress tolerance in plants, Trends in biotechnology, 1996,14:89~97.
    84. Bowler C, Van Montagu M. Inze D(1992). Superoxide dismutase and stress tolerance. Annu Rev
    
    Plant Physiol Plant Mol Biol. 43 :83-116.
    85. Bowler C., VanMontagu M. and Inze D. 1992. Superoxide dismutase and stress tolerance. Annu Rev. Plant Physiol.Plant Mol.Biol.43:83-116.
    86. Boyer T.S., Wong S.C. and Farquhar G..D. 1997. CO_2 and water vapour exchange across the leaf cuticle(epidermis) at various water potentials. Plant Physiol. 114:185-189.
    87. Bradford K.J. and Hsiao T.C. 1982. Physiological responses to moderate water stress. In: Lange OI., Nobel PS,Osmond CB and Ziegler H(eds). Physiological Plant Ecology Ⅱ(Encyclopidia in Plant Physiology, NS.vol 12B). Springer. New York,pp.264-324.
    88. Bruce Demple, Signal transduction by nitric oxide in cellular stress responses. Molecular and cellular Biochemistry,234/235: 11-18, 2002.
    89. Casano LM, Martin M, Sabater B(1994). Sensitivity of superoxide dismutase transcript levels and activities to oxidative stress is lower in mature-senscent than in young barely leaves. Plant Physiol 106: 1033-1039.
    90. Chaitanya et al. Water stress effects on photosynthesis in different mulberry cultivars. Plant Growth Regulation 40:75-80,2003.
    91. Chemyad'ev, LL., Monakhova, O.F.: The activity and content of ribulose- 1,5-bisphosphate carboxylase/oxygenase in wheat plants as affected by water stress and kartolin-4 -Photosynthetica 35:603-610,1998.
    92. Choi,H.L., Hong,J.H., Ha, J.O., Kang,J.Y. and Dim,S.Y. 2000. ABFs,a family of ABA-responsive elements binding factors, J. Biol. Chem. 275:1723-1730.
    93. Cowan,A.K., Richardson,G.R., Maurel,J.C.G.: Stress-induced abscisic acid transients and stimulus-response coupling.-Physiol. Plant. 100:491-499,1997.
    94. D.Sundar, K.V. Chaitanya and A.Ramachandra Reddy. Stress-induced proteins in Parthenium arentatum leaves. Biologia Plantarum,46(2):313-316,2003.
    95. Dat J., Vandenabeele S., Vranova E.,Van Montagu M.,Inze D.and Van Breusegem F. 2000. Dual acton of the active oxygen species during plant stress responses. Cell. Mol. Life Sci. 57:779-795.
    96. De Lillis, M., Fontanella,A., 1992. Comparative phenology and growth in different species of the Mediterranean maquis of central Italy. Vegetatio 99/100,83-96.
    97. Delauney ,A.J., Verma,D.P.S.: Proline biosynthesis and osmoregulation in plants. -Plant J.4:215-222,1993.
    98. Delfine,S.,Alvino,A.,Zacchini,M.,Loreto,F.:Consequences of salt stress on conductance to CO_2 diffusion,Rubisco characterstics and anatomy of spinach leaves.-Aust. J.Plant Physiol.25:395-402,1998.
    99. Demir, Y, Kocacaliskan,Ⅰ.: Effects of NaCl ad proline on polyphenol oxidase activity in bean seedlings. -biol. Plant.44:607-609,2001.
    100. Demming B, Bjorkman O. Comparison of effect of excessive light on chlorophyll fluorescence(77K) and photon yield of O_2 evolution in leaves of plants.Planta, 1987,171:171-184.
    101. Dhindsa A S, Mutowe W. Drought tolerance in two mosses;Correlated with enzymatic defense against lipid peroxidation, J Exp Bot, 1981,32:79-91.
    
    
    102. Dickmann D I et al. Photosynthesis, water relations and growth of two hybrid Populus genotypes during a severe drought. Can.J. Ror. Res., 1992,22(8): 1092~1106.
    103. E F E Istner. Oxygen activation and oxygen toxicity. Ann Rev Plant Physiology, 1982,33:73-96.
    104. Elstner E F, Wagner G A, Schutz W. Activated oxygen in green plants in relation to stress situations. Cuff Topics Plant Biochern Physiol, 1988,7:159-187.
    105. Eva-Mari A, Mccaffery S, Anderson JM . Photoinhibition and D1 protein degradation in peas acclimated to different growth irradiances. Plant Physiol, 1993,103:835-843
    106. Fray RG, Wallace A, Fraser PD et al. Constitutive expression of a fruit phytoene synthase gene in transgenic tomatoes causes dwarfism by redirectiong metabolites from the gibbrellin pathway. Plant J, 1995,8:693-701.
    107. Gao Y-B(高玉葆), Liu F(刘峰) and Ren A-Zh(任安芝)et al., Herbage production and water use of perennial ryegrass population under different types and levels of drough stress. Acta Phytoecol Sin(植物生态学报).1999, 23 (6): 501-520 (in Chinese) .
    108. Genty, B., J.M.Briantais &N.R.Baker. 1989. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimca et Biophysica Acta,900:87~92.
    109. Giridara Kumar, S., Lakshmi,C.: Photosynthesis parameters in two cultivars of mulberry differing in salt tolerance. -Photosynthetica 36:611-616,1999.
    110. Greco et al. S.A.Greco and J.B.Cavagnaro. 2002. Effects of drought in biomass production and allocation in three varieties of Trichloris crinita P.(Poaceae) a forage grass from the arid Monte region of Argentina. Plant Ecology 164:125-135,2002.
    111. Griffiths H.and Parry M.A.J. 2002. Plant responses to water stress.Ann. Bot.89:801-802.
    112. Grover, A., Pareek, A., Singla, S.L. et al., 1998. Engineering crop plants for tolerance against abiotic stresses through gene manipulation. Curr. Sci.75:689-696.
    113. H.Nayyar and D.P. Walia. Water stress induced proline accumulation in contrasting wheat genotypes as affected by calcium and abscisic acid. Biologia Plantarum 46(2):275-279,2003.
    114. Hare,P.D., Cress,W.A., Van Staden,J.: Proline synthesis and degradation:a model system for elucidating stress related signal transduction. -J.exp. Bot.50:413-434,1999.
    115. Hasegawa,P.M., Bressan,R.A., Zhu,J.-K. and Bohnert,H.J. 2000. Plant cellular and molecular responses to high salinity. Annu. Rev. Plant Physiol.Plant Mol. Biol. 51:463-499.
    116. Hellebust J A. Osmoregulation.Ann Rev Plant Physiol, 1976,27:485.
    117. Herbert,T.J.&Larsen,P.B.(1985) Leaf movement in Calathea lutea (Marantaceae Oecologia,67,238-500.
    118. Herppich,W.B., M.Herppich &A.Tuffers. Photosynthetic responses to CO_2 concentration and photon fluence rates in the CAM-cycling plant Delosperma tradescantioides (Mesembryanthemaceae). New Phytologist, 1998,138:433-440
    
    
    119. Hsiao,T.C. Plant responses to water stress.Ann. Rev. Plant physiol. 1973(24):419~570.
    120. Ingram, J. and Bartels,D. 1996. The molecular basis of dehydration tolerance in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol.47:377-403.
    121. Iturbe-Ormaetxe I.I., Escuredo P.R., Arrese-Igor C. and Becana M.1998. Oxidative damage in pea plants exposed to water deficit or paraquat. Plant Physiol. 116:173-181.
    122. Jagtap,V., Bhargava. S., Sreb,P., Feierabend,J.: Comparative effect of water, heat and light stresses on photosynthetic reactions in Sorghum bicolor(L.)Moench. -J. exp. Bot. 49:1715-1721,1998.
    123. Jimenez,A. J.Hemandez,A., delRio,L.A.and Sevilla, F. 1997. Evidence for the presence of the ascorbate-glutathione cycle in mitochondria and peroxisomes of pea leaves. Plant Physiol. 114:275-284.
    124. Jones,H.G. &Sutherland,R.A. 1991. Stomatal control of xylem embolism. Plant Cell and Environment 14:607-612.
    125. Jones,H.G. 1992. Plants and microclimate,a quantitative approach to environmental plant physiology(2nd edn.).Cambridge University Press,Cambridge.428 pp.
    126. Kramer P.T. & Kozlowski T.T.著, 汪振儒等译.木本植物生理学.北京:中国林业出版社,1985.
    127. Larher, F., Leport, L., Petrivalsky, M.: Effectors of osmoinduced proline response in higher paints. -Plant Physiol. Biochem. 31:911-922,1993.
    128. Lawlor D.W. 2002. Limitation to photosynthesis in water-stressed leaves:stomata vs metabolism and the role of ATP. Ann. Bot. 89:871-885.
    129. Lawlor D.W. and Cornic G. 2002. Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant Cell Environ.25:275-294.
    130. Leung,J., Giraudat,J.: Abscisic acid signal transduction.-Annu. Rev. Plant Phsiol. Plant mol. Biol. 49:199-122,1998.
    131. Levitt,J. Response pf plants to environmental strss.Academic press, New York, 1972.
    132. Mahoney J M et al. Response of a hybrid poplar to water table decling in different substrates. Forest Ecology and Management, 1992,54(1~4): 141~156.
    133. Marina Malatrasi, Timothy J.Close and Nelson Marmiroli. Identification and mapping of a putative stress response regulatior gene in barley. Plant Molecular Biology 50:143-152,2002.
    134. Marshall,J., Rutledge,R., Blumwald,E., Dumboroff, E.: Reduction in turgid water volume in jack pine,white spruce and black spruce in response to drought and paclobutrazol. Tree Physiol.20:701-707,2000.
    135. Mittler R. and Zilinskas B.A. 1994. Regulation of pea cytosolic ascorbate peroxidase and other antioxidant enzymes during the progressin of drought stress and following recovery from drought. Plant J. 5:397-405.
    136. Moran JF, Becana M, Iturbe-Ormaetxe I, Frenchilla S, Klucas RV. Aparicio-Tejo P(1994).Drought induces oxidative stress in pea plants. Planta 194:346-352.
    137. Morgan J M. Osmoregulation and water stress in high plants. Ann. Rev. Plant Physiol, 1984,37: 299~319.
    
    
    138. Morgan JM. Osmotic adjustment in spikelets and leaves of wheat.J exp Bot. 1980,6-7.
    139. Mudrik et al. Changes in the photosynthetic characteristics of Plantago major plants caused by soil drought stress. Plant Growth Regulation 40:1-6,2003.
    140. Nautiyals., Badola, H.K., Pal,M. &Negi,D.S. (1994) Plant responses to water stress changes in growth,dry matter production,stomatal frequency, and leaf anatomy. Biologia Plantarum, 36,91-97.
    141. Osmond CB (1994). What is photoinhibition?Some insight from comparison of shade and sun plants.In:Baker NR,Bowyer JR(eds). Photoinhibition of Photosynthesis from Molecular Mechanism to the Field. Oxford:Information Press, 1-24.
    142. Ott JC,Birks K, Johnson G . Regulation of the photosynthetic electron transport chain. Planta, 1999,209:250-258.
    143. Pankovic D., Sakac Z., Kevresan S. and Plesnicar M. 1999. Acclimation to long term water deficit in the leaves of two sunflower hybrids: photosynthesis,electron trasport and carbon metabolism.J.Exp. Bot. 50:127-138.
    144. Pinedo,M.L., Hemandez. G.F., Conde,R.D., Tognetti,J.A., Effect of low temperature on the protein metabolism of wheat leaves. -Biol. Plant. 43:363-367,2000.
    145. Price A H, Hendry G A. Stress and the role of active oxygen scavengers and protection enzymes in plants subjected to drought. Biochem Soc Trans, 1992,17:493.
    146. Proctor MCF. 1982. Physiological ecology:Water relations,Litht and temperature reaponses,Carbon balance. In:Smith AJE eds. Bryophyte Ecology. London:Chapman and Hall.
    147. Quartacci M.F. and Navari-Izzo F. 1992. Water stress and free radical mediated changes in sunflower seedlings. J. Plant Physiol. 139:621-625.
    148. Rabinowitch,H. and Fridovich,I. 1983. Superoxide radicals,superoxide dismutases and oxygen toxicity in plants. Photochem. Photobiol. 37:679-690.
    149. Ramanjulu,S., Sreenivasalu,N., Giridhara Kumar, S., Sudhakar, C.: Photosynthetic characteristics in mulberry during water stress and rewatering. -Photosynthetica 35:259-263,1998.
    150. Ramanjulu,S., Sudhakar, C.: Proline accumulation during dehydration in two mulberry genotypes with contrasting drought tolerance. -J. Plant. Physiol. 157:81-87,2000.
    151. Reddy. P.S., Ramanjulu,S., Sudhakar. C., Veeranjaneyulu. K.: Differential sensitivity of stomatal and non-stomatal components to NaCl and Na_2SO_4 salinity in horsegram,Macrolyloma uniflorum(Lam.). -Photosynthetica 35:99-105,1998.
    152. S P Mukherjee, M A Choudhuri. Implication of hydrogen peroxide-ascorbate system on membrance permeability of water stressed Vigna seedlings. New Phytology, 1985,99:335.
    153. S.Y. HSU,Y.T. HSU and C.H.KAO. The effect of polyethylene glycol on proline accumulation in rece leaves. Biologia Plantarum, 46(1):73-78,2003.
    154. Sala,A., Tenhunen,J.D., 1994. Site-specific water relations and stomatal response of Quercus ilex L. in a Mediterranean watershed. Tree Physiol. 14,601-617.
    155. Sanderson M., Stair D.W. and Hussey M.A. 1997. Physiological and morphological responses of perennial forages to stress. Advances in Agronomy 59:171-223.
    156. Schreiber U, Armond P A. Heat induced changes of chlorophyll fluorescence in isolated
    
    chloroplasts and related heat damage at the pigment level [J].Biochim Biophys Acta, 1978,502:138-151.
    157. Schulze,E-D. 1993. Soil water deficits and atmospheric humidity as environmental signals. Pp.129-145 in Smith,J.A.C.&Griffiths,H.(eds).Water deficits,plant responses from cell to community. Bios Scientific Publishers,Oxford.
    158. Seel WE, Hendry GAF, Lee JA. The combined effects of desiccation and irradiance on mosses from xeric and hydric habitats. J Exp Bot, 1992,43:1023.
    159. Sgherri C.I.M., Pinzino C. and Navari-Izzo F. 1996. Sunfolwer seedlings subjected to increasing stress by water deficit: Changes in O_2~- production related to the composition of thylakoid membranes. Physiol. Plant. 96: 446-452.
    160. Shabala, S.N., Shabala,S.I., Martynenko,A.I., Babourina, O., Newman,I.A.: Salinity effect on bioelectric activity, growth,Na~+ accumulation and chlorophyll flurescence of maize leaves: a comparative survey and prospects for screening. -Aust. J. Plant Physiol. 25:609-616,1998.
    161. Shangguan Z., Shao M. and Dyckmans J. 1999. Interaction of somotic adjustment and photosynthesis in winter heat under soil drought. J.Plant Physiol. 154:735-758.
    162. Sharma PK, Hall DO(1992). Effect of high-irradiance stress on primary photochemistry and light regulated enzymes of photosynthetic carbon metabolism, J Plant Physiol, 139:719~726.
    163. Shen Y-G(沈允钢), Shi J-N(施教耐), Xu D-Q(许大全). In:Dynmic Photosynthesis(动态的光合作用).Beijing:Science Press. 1998.134~135.
    164. Shen,Q., Zhang, P. and Ho,T.H.D.1996. Modular nature of abscisic acid(ABA)-response complex: composite promoter units that are necessary and sufficient for ABA induction of gene expression in barley. Plant Cell 8: 1107-1119.
    165. Shinozaki,K., Yamaguchi-Shinozaki,K. Molecular responses to drought stress. -In:Shinozaki,K., Yamaguchi-Shinozaki,K. (ed): Molecular Responsesto Cold,Drought, Heat and Salt Stress in Higher Plants. -R. G. Lands Company Austin 1999.
    166. Singh,D.V., Srivastava,G.D., Abdin,M.A.: Amelioration of negative effect of water stress in cassia angustifolia by benzyladenine and/or asorbic acid. -Biol. Plant.44:141-143,2001.
    167. Smith,J.A.C. &Griffiths,H. (eds). 1993. Water deficits,plant responses from cell to community. Bios Scientific Publishers,Oxford.
    168. Tenhunen,J.D., Sala Serra, A., Harley, P.C., Dougherty, R.L., Reynolds, J.F., 1990. Factors influencing carbon fixation and water use by Mediterranean sclerophyll shrubs during summer drought. Oecologia 82,381-393.
    169. Tezara W., Mitchell V.J., Driscoll S.D. and Lawlor D.W. 1999. Water stress inhibits plant photosynthesis by decreasing conpling factor and ATP. Nature 401:914-917.
    170. Tezara W. and Lawlor D.W. 1995. Effects of water stress on the biochemistry and physiology of photosynthesis in sunflowe In:Mathis P.(ed), Photosynthesis:From Light to Biosphere Kluwer Academic Publishers,Dordrecht,Boston,London,pp.625-628.
    171. Thimmanaik et al. Photosynthesis and the enzymes of photosynthetic carbon reduction cycle in
    
    mulberry during water stress and recovery. Photosynthetica 40(2):233-236,2002.
    172. Thomashow, M.F. 1999.Plant cold acclimation:freezing tolerance genes and regulatory mechanisms.Annu. Rev. Plant physiol. Plant Mol. Biol.50:571-599.
    173. Trotel-Aziz,P., Niogret, M.F., Larher, F.: Proline level is partly under the control of abscisic acid in canola leaf discs during recovery from hyper-osmotic stress. -Physiol. Plant. 110:376-383,2000.
    174. Turner, N.C., Adaptation to water deficits:A Changing perspective,Aust.J.Plant Plysiology, 1986,13:175~190.
    175. Uno,Y, Furihata,T., Abe,H., Yoshida,R., Shinozaki,K., Yamaguchi-Shinozaki,K. 2000. Arabidopsis basic leucine zipper transcription factors involved in and abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc.Natl.Acad. Sci. USA 97:11632-11637.
    176. Vu JCV, Allen LH,Bowes G.1987.Drought stress and elevated CO_2 effects on soybean ribulose bisphosphate carboxylase activity and canopy photosynthetic rates. Plant Physiol, 83: 573-578.
    177. Willekens,H., Chamnongpol,S., Davey, M., Schraudner, M., Langebartels,C.Van Montagu, M., Inze,D. and Van Camp,W. 1997. Catalase is a sink for H_2O_2 and is indispensable for stress defence in C-3 plants. EMBO J. 16:1806-1816.
    178. Wright, S.J.,Machado,J.L,Mulkey, S.S.&Smith,A.P. 1992.Drought acclimation among tropical forest shrubs(Psychotria,Rubiaceae).Oecologia 89:457-463.
    179. Yang,C.-W., Lin,C.C., Kao,C.H.: Proline,omithine,arginine and glutamic acid contents in detached rece leaves.-Biol. Plant. 43:305-307,2000a.
    180. Yang,C.-W., Wang, I.W. Wang,Kao,C.H.: The relation between accumulation of abscisic acid and proline in detached rice leaves. -Biol Plant.43:301-304,2000b.
    181. Yang,C.W., Wang,J.W., Kao,C.H.: The relation between accumulation of abscisic acid and proline in detached rice leaves. -Biol. Plant.43:301-304,2000.
    182. Yordanov, I., Velikova,V., Tsonev, T.: Plant responses to drought,acclimation,and stress tolerance,-Photosynthetica 38:171-186,2000.
    183. Yoshiba, Y., Kiyosue,T., Nakashima, K., Yamaguchi-shinozaki,K., Shinozaki,K.: Regulation of levels of proline as an osmolyte in plants under water stress.-Plant Cell Physiol. 38:1095-1102,1997
    184. Zhang J. and kirkham M.B. 1994. drought-stress-induced changes in activities of superoxide dismutase,catalase,and peroxidase in wheat species. Plant Cell Physiol.35:785-791.
    185. Zhang,S.R A discussion on chlorophyll fluorescence kinetics parameters and their significance,Chinese Bulletin of Botany.. 1999,16: 444-448.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700