云南干热河谷退化生态系统植被恢复影响因子研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文在分析云南干热河谷退化生态系统植被退化过程的基础上,通过对云南干热河谷具有典型性和代表性的金沙江元谋干热河谷研究区四年的人工植被恢复和人工促进天然植被恢复定点定位研究,揭示了环境胁迫与植物抗逆性是影响植被群落结构稳定和生态系统优化的重要特征因子,阐明了植被群落与环境因子相互作用构成了云南干热河谷退化生态系统植被恢复和重建核心关键的思想,目的是为云南干热河谷退化生态系统植被恢复提供重要的科学依据。主要研究内容和结论如下:
     (1)建立气象站,重点观测研究区的降雨、温度、空气相对湿度和蒸发等影响植被恢复相关气象因子;通过观测数据的分析处理,解读气象因子在干热河谷退化生态系统植被恢复中的作用原理;研究表明:由于干热河谷的降水少且分配不均,光照充足气温高,蒸发量巨大,空气湿度小,冬春夏初呈灾害性干旱缺水,因此植被恢复极为困难。
     (2)通过比较观测分析,探明干热河谷退化生态系统在植物群落恢复后对小气候的影响和作用;研究表明:①林中与林外地温存在极差值,各层次地温出现时刻延后;②在干季,林外、林中平均空气相对湿度差别不大;③林外平均蒸发量大于林中。
     (3)通过对研究区土壤因子的调查、定期测定分析土壤理化性质和不同季节的土壤水分,摸清干热河谷不同地形部位土壤的理化性质、营养成分及水分含量空间分异特征。研究表明:①干热河谷土壤空间变异程度大;②干热河谷土壤结构差,容重偏高,保水能力差;③干热河谷土壤水分动态有雨季和旱季之分,而在不同立地条件下,土壤含水量差异相对较大;④干热河谷地温比较高,土壤热量交换昼夜可逆;⑤干热河谷区土壤坚硬致密,入渗能力差,研究区表层土壤初渗速率大小顺序为:加勒比松+车桑子混交林>加勒比松纯林>山合欢纯林>桉树纯林>山毛豆+车桑子混交林>裸地>膨胀土;
     (4)应用相应的植物生理生态研究的实验仪器和设备,研究干热河谷植物在水分胁迫下光合系统的光能吸收、转换和利用效率等植物生理生化因子;研究表明:①实验植物光合午休现象主要是由非气孔限制因素——光抑制引起的,其保护光合机构免受损伤;②实验植物车桑子在严重的水分胁迫下,仍能维持基本的光合生理能力,在PAR仍不低于1300umol.m~(-2).s~(-1)情况下,Pn达到很高水平,这说明乡土植物对水分胁迫和高光强有很强的适应能力;
     (5)运用叶片相对含水量、相对电导率、MDA、SOD、POD、荧光、叶绿素含量、Pro等八个生理生化指标,分析评价植被物种抗旱能力的大小;研究表明:①在受到水分胁迫时,乡土树种车桑子和清香木幼苗更耐干旱;②在水分胁迫环境下,乡土树种车桑子叶片中的PSⅡ能保持比较高的光化学活性;③水分胁迫下,车桑子叶片中的光合色素系统比山毛豆、银合欢的更稳定,车桑子叶片中的光合色素系统更耐
Based on the analysis on the converse succession of vegetation in degraded ecosystems in dry-hot valleys of Yunnan, a fixed site study on artificial vegetation restoration and human assisted vegetation restoration were conducted for 4 years in the experimental area located in a typical dry-hot valley of Jinsha River, Yuanmou, Yunnan Province. The study suggested that environmental stress and plant resistance were the key factors that affected community stability and optimization of an ecosystem, clarified the interaction of community and environment was vital for vegetation restoration or reconstruction in degraded ecosystems in Jinsha River dry-hot valleys. The objective of the study was to provide with a science support for the vegetation restoration for degraded ecosystems in dry-hot valleys in Yunnan. The main results were given as follows:(1) Meteorological factors were studied in the experimental weather station to find out their roles in vegetation restoration in degraded ecosystems of dry-hot valley. It suggested that low and unevenly distributed rainfall, sufficient light, high temperature and evaporation, low air humidity made jointly vegetation restoration in dry-hot valleys very difficult.(2) A comparison study was conducted to study the impacts of restored vegetation on microclimate. It's results showed that ①There was variation on soil temperature inside and outside forests ,and the time for temperature variation to occur lagged downward the soil. ②The relative humidity did not differ too much in dry season inside and outside a forest. ③ Evaporation outside forest was higher than that inside forest.(3) Soil surveys was conducted to study the soil distribution, soil properties and fertility. It suggested: ① The dry -hot valleys had a great variance in soil types.② The poor soil structure, relatively high volume density, and poor water holding capacity were common for soils in dry-hot valleys ③ The soil water contents differed clearly from rainy season to dry season. Water contents were greatly different under different site conditions. ④The soil temperature in the hot-dry valley was relatively high, heat was conducted from surface soil downwards in daytime and from deeper soil upwards in nighttime;(5) The compact and dense soil in hot-dry valley resulted in poor soil water infiltration .The infiltrations of soil with different vegetations followed a sequence based infiltration velocity at initial stage: Pinus Caribaea+ Dodonaea wiscosa mixed forest > Pinus Caribaea pure forest>Albizzia kalkora forest >Eucalyptus forest > Tephrosia candida+ Dodonaea wiscosa mixed forest> barren land>expansive soil.(4) Physiological and biochemical factors like light absorption, energy conversion and use efficiency etc for plants subjected to water stress were studied. The results suggested that: ① The noon break of photosynthesis for tested Dodonaea wiscosa was mainly caused by a non-stoma limiting factor —photoinhabition that was a protection mechanism against damage to photosynthesis organs;② The tested Dodonaea wiscosa maintained a basic photosynthesis level when subjected to severe water stress, reaching a very high Pn value when PAR not less than 1300 umol.m~(-2).s~(-1) .Which indicated indigenous species had great adaptability to high light intensity and water stress .(5 ) The drought resistance for plants was tested using 8 physiological and
    biochemical parameters of leaf water content, relative conductivity, MDA n SOD > POD,fluorescence, chlorophyll content and Pro. The results showed that: ?Seedlings of indigenous Radonea wiscosa, and Tephrosia Candida were relatively more drought resistant to water stress;? When subjected to water stress PSII in the leaves of indigenous Radonea wiscosa still maintained a relatively high photochemistry activity;? When subjected to water stress, photosynthetic pigments inside the leaves of Radonea wiscosa were more stable than those of Leucaena leucocephala and Tephrosia Candida, the photosynthetic pigments of Radonea wiscosa was more resistant to water stress;@ When subjected to water stress, proline content,soluble sugar contents and potassium ion were increased , turgor pressure of plants was maintained at a certain level Therefore physiological processes like cell growing, stomata opening and photosynthesis were kept going on. (5) MDA content of leaf for tested species was affected by water stress. (6) Water stress increased relative conductivity of tested species at varied degree, the increases for leaf from Radonea wiscosa and Pistacia weinmannifolia were smaller and slowly, suggesting their membrane maintained normal for a longer time and less injured when subjected to water stress. ? Subordinate function values based on leaf relative water content, relative conductivity, MDA> SOD> POD, fluorescence, chlorophy content and Pro were used to assess drought resistance of tested species. The species were listed from high drought resistance to low as: Radonea wiscosa, Pistacia weinmannifolia, Leucaena leucocephala and Tephrosia Candida.(6 )The analysis on succession kinetics of vegetation was conducted using a model based on the theory of dissipativity structure and theory of heterogeneity. The results showed that:? The community succession of the degraded ecosystem in hot-dry valleys in Yunnan was an embodiment of a dissipativity structure. There were exchanges on energy and information between vegetation communities and their environments. The succession might be towards either deterioration or restoration. ?Entropy theory was of great application value in analyzing vegetation succession in degraded ecosystems of dry-hot valley in Yunnan. Entropy values could be applied to assess the structure characteristics and succession tendency of vegetation communities.? During the course of vegetation restoration in dry-hot valleys, the entropy was decreased and the order was increased. The fact suggested the ecosystem's structure and functions became better, a plant community and its environment could be optimized.(7) The study on hydrological factors and their impacts on vegetation restoration indicated: ? In rainy season soil water content in barren land was higher than in forest land. Because of the shield effect of forest, hysteresis was found in forest land. ? Stem flow was determined by the area of direct effective water intercepting surface on the stem. (3) The clayey soil in the hot-dry valley easily resulted in ground runoff. Besides rainfalls were highly concentrated and intensified, so ground runoff coefficient on a slope was relatively higher. @ Owing to the successful vegetation restoration in the experimental area with coverage over 60%, only small quantity of runoff was collected in plots and the volume measured at the general outlet of the catchment was also small.(8) Soil erosion in relation to vegetation was conducted by setting up plots and long term monitoring. The results showed: ?The dry-hot climate, long history of human
    disturbance, and sparse vegetation resulted in severe desertification in dry-hot valleys. (2) The experimental area was very sensitive to hydrodynamic effects and prone to soil erosion and landslide. (3)The main erosion in this area included gully erosion, sheet erosion, debris collapse, and landslips. Expansive soil was especially prone to debris collapse and sheet erosion. ? For barren lands without vegetation cover and with very high soil erosion intensity, soil erosion could be under control after restoring vegetation. ?Splash erosions outside forests of Pinus Caribaea and Albizia kalkora were higher than those inside forests.
引文
1.杨一光.云南省综合自然区划[M].北京,高等教育出版社,1991.
    2.周国兴、张兴永.元谋人—云南元谋古人类与古文化图集[Z].昆明:云南人民出版社,1984.170~175.
    3.任美谔等.云南西北部金沙江河谷地貌与河流袭夺问题.地理学报,1959,25(2):135~155.
    4.欧晓昆.云南省干热河谷地区的生态现状与生态建设.长江流域资源与环境[J],1994,3(3):271~276.
    5.何毓蓉、黄成敏.云南省元谋干热河谷的土壤系统分类.山地研究[J],1995,13(2):73~78.
    6.汗家育、朱禾青、于南子等.云南省森林土壤图的编绘.(查阅出处)
    7.陆景冈、毛昆明.云南省新构造运动与土壤形成及分布的关系.云南农业大学学报[J],1992,7(1):7~12.
    8.黄成敏、何毓蓉.云南省元谋干热河谷土壤水分的动态变化.山地研究[J],1997,15(4):234~238.
    9.魏汉功、叶厚源.金沙江干热河谷旱季土壤含水率评价立地质量的研究.云南林业科技[J],1991(2):48~51.
    10.李昆、陈玉德.元谋干热河谷人工林地的水分输入与土壤水分研究.林业科学研究[J],1995,8(6):651~657.
    11.刘刚才、刘淑珍.金沙江干热河谷区水环境特性对士地荒漠化的影响.山地研究[J],1998,(2):156~159.
    12.张信宝、陈玉德.云南元谋干热河谷区不同岩士类型荒山植被恢复研究.应用与环境生物学报[J],1997,3(1):13~18.
    13.杨忠、张信宝、王道杰等.金沙江干热河谷植被恢复技术.山地学报[J],17(2):152~156.
    14.刘淑珍、张建平、范建蓉等.云南元谋土地荒漠化特征及原因分析.中国沙漠[J],1996,16(1):1~2.
    15.刘刚才、刘淑珍.金沙江干热河谷区土地荒漠化程度的土壤评判指标确定.土壤学报[J],1999,36(4):559~563.
    16.张建平、刘淑珍.金沙江干热河谷区攀枝花市土地退化初探.中国沙漠[J],1998,18(2):149~153.
    17.黄成敏、刘淑珍.云南元谋干热河谷区土壤侵蚀对土壤肥力的影响.热带亚热带土壤科学[J],1996,5(2):102~107.
    18.金振洲、欧晓昆.元江、怒江、金沙江、澜沧江—干热河谷植被[M].云南大学出版社,云南,昆明,2000.
    19.金振洲.滇川干热河谷种子植物区系研究.广西植物[J],1999,19(1):1~14.
    20.曹永恒.云南潞江坝怒江干热河谷植物区系研究.云南植物研究[J],1993,15(4):339~345.
    21.周泽生.木本植物引种驯化的理论利方法述评(一)(二).陕西林业科技[J],1986,(3):52~57,(4):67~72.
    22.余丽云.元谋干热河谷植被恢复造林树种选择研究.西南林学院学报[J],1997,17(2):49~54.
    23.吴坤明、吴菊英、徐建民.桉树引种栽培.中国林业科学研究院热带林研究建所30周年纪念文集[M],广州,1992:43~45.
    24.杨民权.相思类树种引种的回顾.中国林业科学研究院热带林研究建所30周年纪念文集[M],广州,1992:76~77.
    25.余丽云、舒清态、高洁.元谋干热河谷植被恢复造林树种的引种试验研究初报.西南林学院学报[J],1997,17(2):25~29.
    26.刁阳光、表志明、林兴贵.金沙江干热河谷新银合欢优良造林类型选择研究.四川林业科技[J],1998,19(1):74~77.
    27.周蛟.干热河谷区的造林树种——银合欢.云南林业[J],1996(1):18.
    28.计加辉.干热河谷荒山造林的好树种——膏桐.云南林业[J],1996(1):21.
    29.周蛟、张明友.元谋抗旱耐热造林树种的定量选择研究.云南热作科技[J],1998,第3期:32~36.
    30.许国志,等.系统科学[M].上海:上海科技教育出版社,2000.
    31.李建华,等.现代系统科学与管理[M].北京:科学技术文献出版社,1996.
    32.肖笃宁.景观生态学理论、方法及其应用.北京:中国林业出版社,1991:13~25
    33.李树云、李云、范眸天.干热河谷一种优良覆盖植物—大翼豆.云南农业大学学报[J],11(2):77~80.
    34.朱宏业、杨长楷、赵克祥.元谋干热河谷晚秋季甜瓜引种试种.云南热作科技[J],1998,21(1):18~21.
    35.冷洪万.发展酸角大有可为.个旧科技[J],1995(3):21~24.
    36.侯正龙.山毛豆在东川市干热河谷的引种试验.云南林业科技[J],1991(2):59~60.
    37.袁素蓉、期俊光、普凤仙.易门县干热河谷地区塔拉引种试验.云南林业科技[J],200l,第2期:41~44.
    38.高洁、张尚云、傅美芬.干热河谷主要造林树种旱性结构的初步研究.西南林学院学报[J],1997,17(2):59~63.
    39.高洁、刘成康、张尚云.元谋干热河谷主要造林植物的耐旱性评估.西南林学院学报[J],1997,17(2):19~24.
    40.李昆、曾觉民.元谋干热河谷区9种造林树种水分生理特性比较.云南林业科技[J],1993,第1期:70~74.
    41.高洁、傅美芬、刘成康.干热河谷主要造林树种水分生理生态学特点.西南林学院学报[J],1997,17(2):30~35.
    42.傅美芬,高洁等.干热河谷主要造林树种水分生理生态学特点.西南林学院学报,1997,17(2): 29~39.
    43.李昆、曾觉民.元谋干热河谷地区不同造林树种对土壤的改良作用研究.西南林学院学报,1999,19(3):161~164.
    44.孙谷畴、潘永言.施肥与间种对桉树速生丰产作用的初步研究.澳大利亚树种在中国的栽培和利用国际研讨会论文集[J],1988:88~89.
    45.屠梦照、姚文华.幼林地间作绿肥—山毛豆的试验初报.广东林业科技[J],1986,(4):31~32.
    46.庄馥翠、张雪珠、陈玉钗.苏门答腊金合欢适应性和利用的研究.植物引种驯化集刊[J],1993,(8):77~87.
    47.喻赞仁.干热河谷区滇刺枣生物学特性.林业科学研究[J],1994,7(2):220~223.
    48.张尚云、高洁、傅美芬.金沙江干热河谷恢复植被与造林技术研究.两南林学院学报[J],1997,17(2):1~6.
    49.张金畅.元谋干热河谷区人工造林技术研究初报.云南林业科技[J],1989(1):33~39.
    50.叶厚源、张金畅.干热河谷地区苗圃遮阴效果的试验.云南省林业调查规划[J],1988(2):35~38.
    51.杨登满.浅谈元江干热河谷地区的人工造林.
    52.R.克纳普.植被动态[M].北京,科学出版社,1986.
    53.叶厚源、魏汉功.金沙江干热河谷防护林营造技术试验研究.云南林业科技[J],1991(2):43~47.
    54.吴建勇、杨争福.干热河谷柠檬桉育苗技术.云南林业[J],.1996(5):15.
    55.胡荣春.干热河谷台湾相思育苗造林技术研究.四川林业科技[J],1995,16(3):74~78.
    56.谭宏超、张清.金沙江干热河谷区的主要造林技术.云南林业调查规划[J],1991(4):32~35.
    57.杨世德.浅析攀枝花市干热河谷飞播造林成效及其影响的主要因素.四川林勘设计[J],1999年第1期:28~31.
    58.张立恭.干热河谷发展径流林业的潜力.四川林勘设计[J],1997年第3期:29~31.
    59.郑益兴、张尚云、段安安.元谋干热河谷相思树种的嫁接试验.西南林学院学报[J],2000,20(1):54~57.
    60.武国华、蒋昭龙、刘宏屏.干热河谷和干旱山地人工混播造林试验.云南林业科技[J],1996,第4期:33~40.
    61.汤发兴.干热河谷区飞播车桑子述评.云南林业调查规划设计[J],1998,23(2):4~6.
    62.刁阳光、袁志明、林兴贵.金沙江干热河谷赤桉低效林管理技术研究.四川林业科技[J],1998,19(2):34~37.
    63.傅美芬、高洁.影响元谋植被恢复与造林成败的主要气象条件及其对策.西南林学院学报[J],1997,17(2):36~42.
    64.叶厚源.干热河谷区的绿化造林与成效.云南林业科技[J],1994,第2期:14,30~32.
    65.杨忠、张信宝、王道杰.金沙江干热河谷植被恢复技术.山地学报[J],1999,17(2):152~155.
    66.张建平、王道杰、王玉宽.元谋干热河谷区生态环境变迁探讨.地理科学[J],2000,20(2):148~152.
    67.元谋县志编撰委员会.元谋县志[M].昆明:云南人民出版社,1993.
    68.钟祥浩.干热河谷区生态系统退化及恢复与重建途径.长江流域资源与环境[J],2000,9(3):376~382.
    69.张建平、王道杰.元谋干热河谷区农业生态系统的优化对策.山地学报[J],2000,18(2):134~138.
    70.欧晓昆.云南省干热河谷地区的生态现状与生态建设.长江流域资源与环境[J],1994,3(3):271~276.
    71.周从斌、范建容.金沙江干热河谷土地荒漠化评价的植被指标分析.云南地理环境研究[J],2002,14(1):80~84.
    72.刘刚才、刘淑贞.金沙江干热河谷区水环境特性对荒漠化的影响.山地研究[J],1998,16(2):156~159.
    73.袁远亮、孙辉、唐亚.金沙江干热河谷区黑荆树引种研究.中国生态农业学报[J],2002,10(4):99~100.
    74.何毓蓉、黄成敏、宫阿都.金沙江干热河谷典型区(云南)土壤退化机理研究—母质特性对土壤退化的影响.两南农业学报[J],2001,14卷增刊:9~13.
    75.黄成敏、何毓蓉.云南元谋干热河谷的土壤抗旱力评价.山地研究[J],1995,13(2):79~84.
    76.柴宗新、范建蓉.金沙江干热河谷植被恢复的思考.山地学报[J],2001,19(4):381~384.
    77.赵俊臣,杨焕宗.干热河谷经济学初探.香港中国经济文化出版社,1992,123~130.
    78.何永彬,卢陪泽等.横断山——云南高原干热河谷形成原因研究.资源科学,2000,22(5):69~74.
    79.Kramer P.T.&Kozlowski T.T.著,汪振儒等译.木本植物生理学.北京:中国林业出版社,1985.
    80.李吉跃.植物耐旱性及其机理.北京林业大学学报.1989,11(3):92~100.
    81.郎南军,郑科,温少龙,等.金沙江流域高原山地土壤侵蚀相关分析.北京林业大学学报,2002,24(3):39~44.
    82.郑科,郎南军,温少龙,等.水士保持研究中的回归分析.水土保持科技情报,2004,05:21~22.
    83.陈少瑜,郎南军,李吉跃,等.干旱胁迫下3树种苗木叶片相对含水量、质膜相对透性和脯桉酸含量的变化,西部林业科学,2004.33(03):30~33.
    84.袁春明,郎南军,孟广涛,等.长江上游云南松水土保持林地坡面径流与侵蚀规律的研究,水土保持学报.2003,17(06):74~76.
    85.郑科,袁春明,郎南军,等.云南省水土流失概况及其防治对策,水土保持通报,2003,23(02):60~63.
    86.郑科,郎南军,郭玉红,等.典型半自然稀树草原雨季中末期土壤水分分异规律的研究,水土保持通报,2003,23(02):9~14.
    87.郑科,郎南军,温少龙,等.水士保持生物措施的研究,水土保持研究,2003,10(02):73~76.
    88.郑科,郎南军,杨新民,等.干热河谷山合欢、加勒比松林地雨季中末期水文侵蚀效应的研究, 水土保持学报,2003,17(02):84~88.
    89.贾立强,李吉跃,郎南军.水分胁迫对黄连木、清香木幼苗的影响,北京林业大学学报,2003,25(03):55~59.
    90.李吉跃.贾立强,郎南军.金沙江干热河谷坡柳的光合特性,北京林业大学学报,2003,25(05):20~24.
    91.袁春明,郎南军,孟广涛,等.长江上游云南松林水土保持生态效益的研究,,水土保持学报,2002,16(2):87~90.
    92.袁春明,郎南军,孟广涛,等.长江上游华山松水土保持人工群落的结构特征与生物量,东北林业大学学报,2002,30(03):5~7.
    93.孟广涛,郎南军,方向京,等.滇中华山松人工林的水文特征及水量平衡.,林业科学研究,2001,14(01):78~84
    94.梁长秀,冯仲科,郎南军,等.森林资源调查数据的稳健估计及分析,北京林业大学学报2001,23(06):11~13.
    95.孟广涛,方向京,郎南军,等.云南金沙江流域山地圣诞树人工林水土保持效益,水土保持学报,2000,14(04):60~63
    96.郎南军,郭立群,孟广涛,等.金沙江流域高原山地系统分异规律的分析研究,北京林业大学学报,2002,24(2):31~38
    97.张建国,李吉跃,沈国舫.树木耐旱特性及其机理研究.中国林业出版社.55~65
    98.袁正科,郎南军.长江中上游高原山地丘陵区防护林体系建设配套技术——研究与示范,湖南科学技术出版社出版,2003年2月
    99.许大全等.毛竹叶光合作用的气孔限制研究.植物生理学报,1987,13(2):154~160.
    100.上官周平,陈陪元.土壤干旱对小麦叶片渗透调节和光合作用的影响.华北农学报,1989,4(3):49~55.
    101.汤章城.逆境条件下植物脯氨酸的积累及其可能的意义.植物生理学通讯.1984,1(1):15~21.
    102.曹仪植,吕忠怒.水分胁迫下植物体内游离脯氨酸的积累及ABA在其中的作用[J].植物生理学报,1985,(11):9-15.
    103.于邦锡,黄久常,王辉.不同植物在水分胁迫条件下脯氨酸的积累与抗旱性的关系[J].植物生理学报,1989,15(1):45~51.
    104.吕庆,郑荣梁.干旱及活性氧引起小麦膜质过氧化于脱脂化.中国科学(C辑),1996,26(1):26-30
    105.王宝山,赵思齐.干旱对小麦幼苗膜脂过氧化及保护酶活性的影响[J].山东师范大学学报(自然科学版),1987,2(1):29-39.
    106.蒋明义,荆家海,于韶唐.渗透胁迫对水稻幼苗膜脂过氧化及体内保护系统的影响[J].植物生理学报,1991,17(1):80-84.
    107.章崇玲 曾国平 陈建勋.干旱胁迫对菜苔叶片保护酶活性和膜脂过氧化的影响.植物资源与 环境学报 2000,8(4):23~26.
    108.李正理.我国甘肃九种旱生植物同化植的解剖观察.植物学报,1981,23(4).
    109.王世绩、等.10种杨树幼苗水分关系的研究.林业科学,1982,18(1):6-14.
    110.李吉跃 太行山区主要造林树种耐旱特性的研究(Ⅰ)—叶解剖构造及叶子运动与脱落.北京林业大学学报,1991:13增刊:1~9.
    111.李吉跃 太行山区主要造林树种耐旱特性的研究(Ⅱ)—一般水分生理生态特征.北京林业大学学报,1991;13增刊:11~19
    112.李吉跃 太行山区主要造林树种耐早特性的研究(Ⅲ)—水分参数—.北京林业大学学报,1991;13增刊:230~239.
    113.何维明等.水分梯度对沙地柏幼苗荧光特征和气体交换的影响.植物生态学报2000,24(5)630-634.
    114.李吉跃 太行山区主要造林树种耐早特性的研究(Ⅴ)—耐旱生产力.北京林业大学学报,1991:13增刊:252~260
    115.吕庆,郑荣梁.膜质过氧化脱质化在干旱引起植物膜损伤中的作用[M].自由基生命科学进展(第2版).北京:原子能出版社,1994,1-6.
    116.揭雨成,黄不生,李宗道.苎麻抗旱型基冈型差异及其生理生化机理研究[J].中国麻作,1998,20(1):1-6.
    117.蒋进等.几种旱生植物盆栽苗木的水分关系利抗旱排序.干旱区研究,1992,9(4):31~37.
    118.马焕成等.元谋干热河谷几种外来树种在旱季的光合特点.浙江林学院学报,2001,18(1)46~49
    119.马焕成.元谋干热河谷几种相思和桉树水分消耗估测.西北植物学报,2000,12(5):45~52
    120.马焕成,陈德强等.元谋干热河谷相思树种和桉树类抗旱能力分析.林业科学研究,2002,15(1):101-104.
    121.李昆.曾觉民.金沙江干热河谷主要造林树种蒸腾作用研究.林业科学研究,1999,12(3):243~248
    122.元谋县林业局.元谋县林业志.46~55
    123.曾觉民等.元谋森林及其植物资源.西南林学院生态组、元谋县林业事业管理局.2001,30-35.
    124.李昆,曾觉民,赵虹.金沙江干热河谷主要造林树种游离脯氨酸含量于抗旱性的关系.林业科学研究,1999,12(1):103~107.
    125.李小明等.人工环境下两种梭梭幼苗光合水分关系的比较研究.植物学报,1993,35(10):758—765.
    126.现代植物生理学试验指南.科学出版社,1999.
    127.许大全,张玉忠.植物光合作用的光抑制.植物生理学通讯.1992,28(4):237-243
    128.邹琦.作物抗旱生理生态研究[M].山东:科学技术出版社,1994.
    129.孙国荣,张睿等.干旱胁迫下白桦师生苗叶片的水分代谢与部分渗透调节物质的变化.植物研 究,2001,21(3):413-416.
    130.闹秀峰,李晶,组元刚.干旱胁迫对红松幼苗保护酶活性即脂质过氧化作用的影响.生态学胞,1999,19(6):850-854.
    131.刘彦琴、张丰雪、杨敏生.电导率在白杨杂种无性系耐旱性鉴定中的应用,河北林果研究,1997(4):301-305.
    132.B R Buttery,R I Buzzell,1979.赵福洪译.1979.大豆光合作用速率和叶绿素含量之间的关系.光合作用.北京:科学出版社,72~75.
    133.夏阳水分胁迫对果树脯氨酸和叶绿素含量变化的影响.甘肃农业大学学报,1993,28(1):26-31
    134.聂华堂等.水分胁迫下柑桔的生理变化与抗性的关系.中国农业科学,1991,24(4):14-18
    135.蒋明义,杨文英,徐江等,渗透胁迫下水稻幼苗中叶绿素降解的活性氧损伤作用。植物学报,1994,36:289-295.
    136.林植芳,李双顺,林桂珠等.水稻叶片的衰老与超氧物歧化酶活性及脂质过氧化作用的关系.植物学报,1984,26(6):605~615.
    137.汤章城.植物对水分胁迫的反应和适应性.植物生理学通讯,1983,(4):1-7
    138.李德全,等.植物渗透调节研究进展.山东农业大学学报,1991,22(1):87-90.
    139.马宗仁,等.短芒披碱草和老芒麦在水分胁迫下游离脯氨酸积累的研究.干旱地区农业研究,中国草地,1991,(4):61-65.
    140.王霞,侯平等.水分胁迫对柽柳植物可溶性物质的影响.干旱区研究.1999,16(2):6-11
    141.邹琦.作物抗旱生理生态研究[M].山东:科学技术出版社,1994.
    142.任文伟,钱吉,郑师章.不同地理种群羊草在聚乙二醇胁迫下含水量和游离脯氨酸含量的比较[J].生态学报,2000,20(2):349-352.
    143.郭建军等.冬小麦灌浆期渗透调节能力的研究.系被农业学报,1994,3(4):23-26.
    144.霍仕平等.玉米抗旱性鉴定的形态和生理生化指标研究进展.干旱地区农业研究,1995,13(3):67~73.
    145.张福锁.环境胁迫与植物营养.北京:中国农业大学出版社,1993,44~45.
    146.山仑.植物水分亏缺和半干旱地区农业生产中的植物水分问题.植物生理生化进展,1983,(2):108~119.
    147.陈立松,刘星辉.水分胁迫对荔枝叶片氮和核酸代谢的影响及其与抗旱性的关系.植物生理学报,1999,25(1):49~56.
    148.王邦锡,孙莉,黄久常.渗透胁迫引起的膜损伤与膜质过氧化和某些自由基的关系.中国科学(B辑),1992,4:364-368.
    149.武宝开,格林.小麦幼苗中超氧化物歧化酶活性与幼苗脱水耐受力相关性研究.植物学报,1985,27:152-160.
    150.彭祚登.油松抗旱性评估.2000,博士论文.
    151.马世骏主编.现代生态学透视.北京:科学出版社,1990.
    152. Soil Survey Staff. "Soil Taxonomy" Agr. Handbook, No.435. Washington D.C 1975.
    153. Menaut J C. The vegetation of African savannas, in: Ecosystems of the world(13): Tropical savannas. New York: Elsevier, 1983: 109~149.
    154. Sarmiento G: The savannas of tropical America. In: Ecosystems of the world(13): Tropical savannas. New York: Elsevier, 1983: 245~285.
    155. Battaglia, M. and Sands, P. 1998. Application of sensitivity analysis to a model of Eucalyptus globules plantation productivity. Ecol Model, 111: 237~259.
    156. Carlson, D. H. and Thruow, T. L. 1996. Comprehensive evaluation of improved SPUR model (SPRU-91). Ecol Model, 85: 229-240.
    157. Clark, J. S. et al. 2001. Ecological forecasts: An emerging imperative. Science, 27: 657-660.
    158. Crosetto, M. et al. 2001 (b). Uncertainty and sensitivity analysis: Tools for GIS-based model implementation. INT J Geogr Inform Sci. 15(5): 415-437.
    159. David, R. F. et al. 1997. Forest response to disturbance and anthropogenic stress. Bioscience, 40: 437-445.
    160. Eckersten, H. 1986. Simulated willow growth and transpiration: the effect of high and low resolution weather data. Agric. For. Meteorol., 38: 289-306.
    161. Favrichon, V. 1998. Modeling the dynamics and species composition of a tropical mixed species uneven-aged natural forest: effects of alternative cutting regimes. Forest Science, 41: 112-124.
    162. Fennel, K. et al. 2001. Testing a marine ecosystem model: Sensitivity analysis and parameter optimization. J. Mar. Syst, 28: 45-63.
    163. Gardner, R. H. 1981. A comparison of sensitivity analysis and error analysis based on a stream ecosystem model. Ecol Model, 12: 173-190.
    164. Gentil, S. and Black, G. 1981. Validation of complex ecosystem models. Ecol Model, 14: 21-38.
    165. Halvorsen, E. et al. 2001. Microzooplankton and mesozooplankton in an upwelling filament of Galicia: Modeling and sensitivity analysis of the linkage and their impact on the carbon dynamics. Prog Oceanogr, 51: 499-513.
    166. Henderson-Sellers B. and Henderson-Sellers, A. 1996. Sensitivity evaluation of environmental models using fractional factorial experimentation. Ecol Model, 86: 291-295.
    167. Mahamah, D. S. 1988. Simplified sensitivity analysis applied to a nutrient-biomass model. Ecol Model, 42: 103-109.
    168. Majkowski J. et al. 1981. Multiplicative sensitivity analysis and its role in development of simulation models. Ecol Model, 12: 191-208.
    169. McCarthy, M. A. et al. 1995. Sensitivity analysis for models of population viability. Biol Conserv, 73: 93-100.
    170. Omlin, M. et al. 2001. Biogeochemical model o lake Zurich: Sensitivity, identifiabiligy and uncertainty analysis. Ecol Model, 141: 105-123.
    171. Pastres, R. et al. 1999. Global sensitivity analysis of a shallow water 3-D eutrophication model. Comput Phys Commun, 117: 62-74.
    172. Ratto, M. et al. 2001. Sensitivity analysis in model calibration: GSA-GLUE approach. Comput Phys Commun, 136: 212-224.
    173. Ray, D. and Nicoll, B. C. 1998. The effect of soil water-Tab, depth on root-plate development and stability of sitka spruce. Forestry, 71: 169-182.
    174. Saltelli, A. et al. 2000. Sensitivity analysis, Probability and Statistics Series. New York: John Wiley & Sons.
    175. Sobol, I. M. 1993. Sensitivity Estimates for nonlinear mathematical models. Math Model Comput Exp, 1: 407-414.
    176. Tomovic, R. 1963. Sensitivity analysis of Dynamic Systems. New York: McGraw-Hill.
    177. Webster, R. 1985. Quantitative spatial analysis of soil in the field. Advanced Soil Science, 3: 1-70.
    178. Daniels, F. J. A. 1990. Changes in dry grassland after cutting of scots pine in inland dunes near Keotwijk, the Netherlands. In: Marrel ed. Spatial Processes in Plant Communities. 215-235.
    179. Davis, J. 1996. Focal species offer a management tool. Science, 271: 1362-1363.
    180. Egler, F. E. 1954. Vegetation concepts. I. Initial floristic composition, a factor in old-field vegetation development. Vegetatio, 4: 412-417.
    181. Gittins, R. 1965. Multivariate approaches to a limestone grassland community. I. A stand ordination. Journal of Ecology, 53: 385-401.
    182. Gittins, R. 1968. Trend-surface analysis of ecological data. Journal of Ecology, 56: 845-869.
    183. Gittins, R. 1981. Towards the analysis of vegetation succession. Vegetatio, 46: 37-59.
    184. Glaster, P. H. et al. 1990. The response of vegetation to chemical and hydrological gradients in the lost river peatland. Northern Minnesota J Eco., 78: 1021-1048.
    185. Hannon, B. 1985. Linear dynamic ecosystems. J. Thero Biol, 116: 89-98.
    186. Hill, M. O. et al. 1975. Indicator species analysis, divisive polythetic method of classification, and its application to a survey of native pinewoods in Scotland. Journal of Ecology, 63: 597-613.
    187. Kareiva, P. 1994. Diversity begets productivity. Nature, 368: 686-687.
    188. Kareiva, P. 1996. Diversity and sustainability on the prairie. Nature, 379: 673.
    189. Lambert, J. M., Williams W. T. 1962. Multivariate methods in plant ecology. IV. Normal analysis. Journal of Ecology, 50: 775-802.
    190. Lamd, D. 1994. Reforestation of degraded tropical forest lands in the Asia-Pacific region. Journal of Tropical forest Science, 7: 1-7.
    191. MacGillivray, C. W. et al. 1995. Testing predictions of the resistance and resilience of vegetation subjected to extreme events. Functional ecology, 9: 640-649.
    192. Morista, R. F. 1959. Single factor analysis in population dynamics. Ecology, 40: 580-588.
    193. Orloci, L. 1978. Multivariate Analysis in Vegetation Research (2nd ed). Junk: The Hague.
    194. Palmer M. A. et al. 1997. Ecological theory and community restoration ecology. Restoration Ecology, 5(4): 291-300.
    195. Patraitis, P. S. 1979. Likelihood measures of niche breadth and overlap. Ecology, 60: 703-710.
    196. Pickett, S. T. A. et al. 1987. Models, mechanisms and pathways of succession. Botanical Review, 53: 335-371.
    197. Pickett, S. T. A. et al. 1989. the ecological concept of disturbance and its expression at various hierarchical levels. Oikos, 54: 129-136.
    198. Pickett, S. T. A. et al., 1987. A hierarchical consideration of causes and mechanisms of succession. Vegetatio, 69: 109-114.
    199. Rapport, D. J. et al. 1985. Ecosystem behavior under stress. Am Nat, 125: 617-640.
    200. Rapport, D. J. et al. 1998. assessing ecosystem health. Trends in Ecology and Evolution, 13: 397-402.
    201. Recknegel, F. 1984. A comprehensive sensitivity analysis for an ecological simulation model. Ecol Model, 26: 77-96.
    202. Rowe, J. S. 1956. Uses of undergrowth plant species in forestry. Ecology, 37: 461-473.
    203. Saltelli, A. et al. 1999. A quantitative model-independent method for global sensitivity analysis of model output. Technometrics, 41: 39-56.
    204. Sharnov, A. A. 1995. Non-linear sensitivity analysis as a tool for explaining population dynamics in a life-system conceptual framework. Comput Electron Agric, 13: 103-113.
    205. Tillman, E. 1989. Plant strategies and the dynamics and structures of plant communities. Princeton Uni. Press. USA.
    206. Tokeshi, M. 1990. Niche apportionment or random assortment: species abundance patterns revisited. J Anim Ecol, 59: 1129-1146.
    207. Tokeshi, M. 1993. Species abundance patterns and community structure. Advances in Ecological Research, 24: 111-186.
    208. Ulanowicz, R. E. 1986. growth and development: Ecosystems Phenomenology. Springer-Verlag. New York.
    209. Usher, M. B. 1975. Analysis of pattern on real and artificial plant populations. Journal of Ecology, 63: 569-586.
    210. Waider, J. B. and Webster, J. R. 1976. In: Patten B. C. eds. Systems Analysis and Simulation in Ecology. New York: Academic Press. 329-371.
    211. Walker, B. 1992. Biological diversity and ecological redundancy. Conservation Biology, 6: 18-23.
    212. Walker, B. 1995. conserving biological diversity through ecosystem resilience. Conservation Biology, 9: 747-752.
    213. Williams, M. R. 1995. an extreme-value function model of the species incidence and species area relationships. Ecology, 76: 2607-2616.
    214. Williams, W. T. and Lambert, J. M. 1959. Multivariate methods in plant ecology. I. Association analysis in plant communities. Journal of Ecology, 47: 83-101.
    215. Braak, C. J. F. Ter. 1986. Canoical correspondence analysis: A new engenvector method for multivariate directed gradient analysis. Ecology, 67: 1167-1179.
    216. Constanza, R. and Neil C. 1984. Energy intensities, interdependence, and value in ecological systems: A linear programming approach. Journal of Theoretical Biology, 106: 41-57.
    217. Constanza, R. and Patten, B. C. 1995. Defining and predicting sustainability. Ecol Econ, 15: 193-196.
    218. Singh T N, Aspinal D, Palley L G. Proline accumulation and varietal adaptability to drought in barely: a potential metabotic measure of drought resistance[J]. Nature New Biol., 1972, 236: 188-190.
    219. Blum A, Ebercon A. Genotypic responses in sorghum to drought stress. 3. Free proline accumulation and drought resistance[J]. Crop Sci., 1979, (16): 428-431.
    220. Hanson A D, Nelsen C F, Everson E H. Evaluation of free proline accumulation in barley cultivars [J]. Crop Sci., 1977, 17: 720-726.
    221. Tan B H, Halloran G M. Variation and correlation of proline accumulation in spring wheat cultivars [J]. Crop Sci., 1982, 22: 459-463.
    222. Kramer, P. L., in Turner, N. C. et al.(eds): adaptation of Plants to Water and High Temperature Stress New York: John Wiley &Sons, 1980, 7~20.
    223. Hsiao, T. C. Plant responses to water stress. Ann. Rev. Plant physiol. 1973(24): 419~570.
    224. Dickmann D I et al. Photosynthesis, water relations and growth of two hybrid Populus genotypes during a severe drought. Can. J. Ror. Res., 1992, 22(8): 1092~1106.
    225. Mahoney J M et al. Response of a hybrid poplar to water Tab. decling in different substrates. Forest Ecology and Management, 1992, 54(1~4): 141~156.
    226. Kelliher F M et al. Stomatal resistance and growth of drought-stressed eastern cottonwood from a wet and dry site. Silvage genet., 1980, 29: 166~171.
    227. Kelliher F M et al. Stomatal resistance, transpiration and growth of drought-stressed eastern cottonwood. Kan. For. Res., 1980, 10: 447-451.
    228. Farquhar, C. D. and Sharkey, T. D. Stomatal conductance and photosynthesis. Ann. Rev. Plant physiol., 1982(33): 317~345.
    229. Bohnert H. J., Jenson R. G. Strategies for engineering water stress tolerance in plants, Trends in biotechnology, 1996, 14: 89~97.
    230. A. L. Nepomuceno, D. M. Oosterhuis, J. M. Stewart. Physiological responses of cotton leaes and roots to water deficit induced by polyethylene glycol. Environmental and experimental Botany 40(1998) 29-41.
    231. Osmond CB. What is photoinhibition? Some insight from comparison of shade and sun plants. In: Baker NR, Bowyer JR(eds). Photoinhibition of Photosynthesis from Molecular Mechanism to the Field. Oxford: Information Press, 1994, 1-24.
    232. Dhindsa A S, Mutowe W. Drought tolerance in two mosses;Correlated with enzymatic defense against lipid peroxidation. J Exp Bot, 1981, 32: 79-91.
    233. Krause GH, Koster S, Wong SC(1985). Photoinhibition of photosynthesis under anaerobic conditions studied with leaves chloroplasts of Spinacia oleracea L. Planta, 165: 430-438.
    234. Proctor MCF. 1982. Physiological ecology: Water relations, Litht and temperature reaponses, Carbon balance. In: Smith AJE eds. Bryophyte
    235. Ecology. London: Chapman and Hall.
    236. Vu JCV, Allen LH, Bowes G.. Drought stress and elevated CO_2 effects on soybean ribulose bisphosphate carboxylase activity and canopy photosynthetic rates. Plant Physiol, 1987, 83: 573-578.
    237. Levitt, J. Response pf plants to environmental strss. Academic press, New York, 1972.
    238. Turner, N. C., Adaptation to water deficits: A Changing perspective, Aust. J. Plant Plysiology, 1986, 13: 175~190.
    239. Price A H, Hendry G A. Stress and the role of active oxygen scavengers and protection enzymes in plants subjected to drought. Biochem Soc Trans, 1992, 17: 493
    240. Elstner E F, Wagner G A, Schutz W. Activated oxygen in green plants in relation to stress situations. Cuff Topics Plant Biochem Physiol, 1988, 7: 159-187.
    241. Morgan J M Osmoregulation and water stress in high plants. Ann. Rev. Plant Physiol, 1984, 37: 299~319
    242. Hellebust J A. Osmoregulation. Ann Rev Plant Physiol, 1976, 27: 485.
    243. Seel WE, Hendry GAF, Lee JA. The combined effects of desiccation and irradiance on mosses from xeric and hydric habitats. J Exp Bot, 1992, 43: 1023.
    244. E F E Istner. Oxygen activation and oxygen toxicity.Ann Rev Plant Physiology, 1982, 33: 73-96.
    245. S P Mukherjee, M A Choudhuri Implication of hydrogen peroxide-ascorbate system on membrance permeability of water stressed Vigna seedlings. New Phytology, 1985, 99: 335.
    246. Genty, B., J. M. Briantais& N. R. Baker. 1989. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimca et Biophysica Acta, 900: 87~92.
    247. Sharma PK, Hall DO(1992). Effect of high-irradiance stress on primary photochemistry and light regulated enzymes of photosynthetic carbon metabolism. J Plant Physiol, 139: 719~726.
    248. Shen Y-G(沈允钢), Shi J-N(施教耐), Xu D-Q(许大全). In: Dynmic Photosynthesis(动态的光合作用). Beijing: Science Press. 1998. 134~135.
    249. Demming B, Bjorkman O. Comparison of effect of excessive light on chlorophyll fluorescence(77K) and photon yield of O_2 evolution in leaves of plants. Planta, 1987, 171: 171-184.
    250. Schreiber U, Armond P A. Heat induced changes of chlorophyll fluorescence in isolated chloroplasts and related heat damage at the pigment level [J]. Biochim Biophys Acta, 1978, 502: 138-151.
    251. Ott JC, Birks K, Johnson G. Regulation of the photosynthetic electron transport chain. Planta, 1999, 209: 250-258.
    252. Eva-Marl A, Mccaffery S, Anderson JM. Photoinhibition and D1 protein degradation in peas acclimated to different growth irradiances. Plant Physiol, 1993, 103: 835-843
    253. Morgan JM. Osmotic adjustment in spikelets and leaves of wheat. J exp Bot. 1980, 6-7.
    254. Herppich, W. B., M. Herppich &A. Tuffers.. Photosynthetic responses to CO_2 concentration and photon fluence rates in the CAM-cycling plant Delosperma tradeseantioides (Mesembryanthemaceae). New Phytologist, 1998, 138: 433-440
    255. Zhang, S. R A discussion on chlorophyll fluorescence kinetics parameters and their significance, Chinese Bulletin of Botany.. 1999, 16: 444-448.
    256. Save R, Biel c, Domingo R, Ruiz-Snchez MC, Torrecillas A.. Some physiological and morphological characteristics of citrus plants for drought resistance. Plant Sci, 1995, 110: 167-172.
    257. Torrecillas A, Galego R, Perez-Pastor A et al.. Gas exchange and water relations of young qpricot plants under drought conditions. Jagr Sci, 1999, 132: 445-452.
    258. Amon DI. Copper enzymes in isolated chloroplast: polyphenol oxidase in Beta vulagris. Plant Physiol, 1949, 24: 1-15
    259. Nautiyals., Badola, H. K., Pal, M. &NEGI, D. S. (1994) Plant responses to water stress changes in growth, dry matter production,stomatal frequency, and leaf anatomy.Biologia Plantarum, 36, 91-97.
    260. Herbert, T. J. &Larsen, P. B. (1985) Leaf movement in Calathea lutea (Marantaceae Oecologia, 67, 238-500
    261. De Lillis, M., Fontanella, A., 1992. comparative phenology and growth in different species of the Mediterranean maquis of central Italy. Vegetatio 99/100, 83-96.
    262. Tenhunen, J. D., Sala Serra, A., Harley, P. C., Dougherty, R. L., Reynolds, J. E, 1990. Factors influencing carbon fixation and water use by Mediterranean sclerophyll shrubs during summer drought. Oecologia 82, 381-393.
    263. Sala, A., Tenhunen, J. D., 1994. Site-specific water relations and stomatal response of Quercus ilex L. in a Mediterranean watershed. Tree Physiol. 14, 601-617.
    264. Aspinall D and Paleg. L G. Proline accumulation:physiological aspects In: Paleg, L G. Aspinall, K(eds), The physiology and biochemistry of drought resistance in plant. Sydney: Academic Press 1981, 205-241.
    265. Hanson A D and Hitz W D Metabolic responses ofmesophytes to plant water deficits. Annu. Rev. Plant Physiol., 1982, 33: 163-203.
    266. Gao Y-B (高玉葆), Liu F(刘峰) and Ren A-Zh(任安芝)et al., 1999H erbage production and water use of perennial ryegrass population under different types and levels of drough stress.Acta Phytoecol Sin(植物生态学报), 23 (6): 501-520 (inChinese).
    267. Heque E, Kathe W, Tesche M, et al. Abscisic acid and its beta-D-lucopy ranosyl easter in saplings of Scots Pine in relation to water stress. Biochemieund-Physiologie-cler-Pflanzen, 1983, 178(4): 287-295.
    268. Mccord J M, Fridovich J. Superoxide dismutase: An enzymic function for erythrocuprein (Hemocaperin). J Biol Chem., 1969, 224: 6049-6055.
    269. Dhindsa R S, Ries S K, Drought tolerance in two mosses: correlated with enzymatic defence against lipid peroxidation [J].J Exp Bot, 1981, 32: 79-91.
    270. Bouslama M et al. Stress. Tolerance in soybeans. I. Evaluation of three screening techniques for heat and drought stress. Field Cnops Res, 1984;24: 933~937
    271. Sankarapandian R., Krishnadoss D., Muppidathi N., Chidambaram S. Variability studies in grain sorghum for certain physiological characters under water stress condition. Crop Improvement, 1993, 20(1): 45~50.
    272. Quartacci M F and Navarilzzo EWater stress and free radical mediated changes in sunflower seedling. J Plant Physiol, 1991, 139(5): 621-625.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700